Math 215 - Review for Final

Due by 4pm, Monday, Dec 10

1. Give a truth table for each of the following propositional forms.

- (a) $\neg (P \to Q)$
- (b) $P \vee (Q \wedge P)$
- (c) $P \to (P \leftrightarrow Q)$
- (d) $(P \to Q) \land \neg (Q \to R)$

2. Give a useful denial of each of the following (the denials should not simply be the statement with a "not" in front):

- (a) Every person who appreciates action movies loves Arnold Schwarzenegger.
- (b) I'll buy dinner for anybody who can prove the Collatz conjecture.
- (c) If the litter box is dirty, then it was the cat.

3. For each of the following statements, provide a negation in a form so that all quantifiers appear first; then decide which of the given statement and its negation is true, proving your answer.

- (a) $\forall m \in \mathbb{N} \ m \not\mid m+1$
- (b) $\exists k \in \mathbb{N} \ \forall m \in \mathbb{N} \ k > 1 \land (0 < m < k \rightarrow m \mid k)$
- (c) $\forall n \in \mathbb{N} \ \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \ge x \land n \mid y$

4. For each of the following, state both the contrapositive and the converse. For both statements (two in each part), say whether it is true or false.

- (a) $(n \in \mathbb{N})$. If n is prime, then n is a sum of two squares.
- (b) $(f \in \operatorname{Fun}(\mathbb{R}, \mathbb{R}))$. If $\operatorname{Im}(f) \subseteq \mathbb{Z}$, then f is constant.
- (c) $(r \in \mathbb{Q})$. If $r = y^2$ for some $r \in \mathbb{R}$, then r > 0.

5. Show that if $a, b, c \in \mathbb{Z}$ and a divides both b and c, then a divides b + c.

6. Show by induction on n that for all positive naturals n,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

1

- **7.** Show by induction on n that for all naturals n, if $n \ge 4$, then $2^n < n!$.
- **8.** Show by example that for sets $A, B, A B = \emptyset$ does not imply A = B.

- **9.** Suppose $f: A \to B$ is a bijection. Show there is a bijection $F: \mathcal{P}(A) \to \mathcal{P}(B)$.
- **10.** Suppose $g:A\to B$ is injective. Show there is a surjection $f:B\to A$.
- **11.** For sets $A \subseteq \mathbb{N}$, define $2A := \{2n \mid n \in A\}$.
- (a) Show the function $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ defined by f(A) = 2A is one-to-one, but not onto.
- (b) What is $|\mathbb{N}_{15} \cap 2\mathbb{N}_{10}|$?
- **12.** Show that $\{x^3 x \mid x \in \mathbb{N}, x \geq 1\} \subseteq \{n \in \mathbb{N} \mid 6 \text{ divides } n\}$. Does the reverse inclusion hold?
- 13. How many numbers between 200 and 900 (inclusive) are divisible by 5 or 9? Explain.
- **14.** Suppose you roll two standard six-sided dice and take the difference of their outcomes. What are the probabilities of each of the differences 1,2,3,4,5? Explain.
- **15.** How many binary sequences of length 10 do not contain two 1's in a row? Explain how you found your answer.
- **16.** Define the set $\mathcal{P}_{12}(\mathbb{N}_{20})$, and show $|\mathcal{P}_{12}(\mathbb{N}_{20})| = |\mathcal{P}_{8}(\mathbb{N}_{20})|$.
- 17. For sets X, let $X \sim Y$ if and only if there is a bijection $f: X \to Y$. Show \sim is an equivalence relation.
- **18.** Give a function $f: \operatorname{Fun}(\mathbb{N}, \mathbb{N}) \to \operatorname{Fun}(\mathbb{N}, \{0, 1\})$ that is injective, and prove it is injective.

For the remaining problems, let n be a natural number. Define a relation \equiv_n on \mathbb{Z} by: $a \equiv_n b$ iff n|(a-b).

- **19.** Show \equiv_n is an equivalence relation.
- **20.** Show \mathbb{Z}/\equiv_0 is infinite, and that $|\mathbb{Z}/\equiv_1|=1$. How many \equiv_n -equivalence classes are there, for $n \geq 2$?
- **21.** Define an operation \oplus on \mathbb{Z}/\equiv_n by: $[a] \oplus [b] = [a+b]$. Show this operation is well-defined.
- **22.** Define an operation \otimes on \mathbb{Z}/\equiv_n by: $[a]\otimes[b]=[ab]$. Show this operation is well-defined.
- **23.** Suppose we define an "exponentiation" operation on \mathbb{Z}/\equiv_4 by: $\exp([m],[n])=[m^n]$. Prove this operation is *not* well-defined.