Math 215 - Homework 4

Due Friday, October 19

1. For each of the following sets A_i , give three examples of elements A_i , and three examples of elements of A_i^c .

- (a) $A_1 = \{a \in \mathbb{Z} \mid \sqrt{a} \in \mathbb{Z}\}$
- (b) $A_2 = \{ p^q \mid p, q \in \mathbb{N} \text{ and } p, q \text{ are primes} \}$
- (c) $A_3 = \{x \in \mathbb{R} \mid \text{for some } n \in \mathbb{Z}, 3n \le x < 3n + 2\}$
- (d) $A_4 = \{ \langle x, y \rangle \in \mathbb{N} \times \mathbb{R} \mid e^y = 2x \}$
- **2.** Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ be defined by f(x, y) = x y.
 - (a) Give a table of values for $f|\{0, 1, 2, 3\}^2$.
 - (b) Is f injective? Surjective? Prove your answers.

3. Let A, B be sets such that |A| = 7, |B| = 29, and $|A \cup B| = 32$. Determine the sizes of each of the following sets:

- (a) $A \cap B$
- (b) B A
- (c) $A \times B$
- (d) $(A \times A) \{ \langle a, b \rangle \in A^2 \mid a = b \}$

4. Let $f: A \to B$ be a function. Show that f is injective if and only if for all sets $X, Y \subseteq A$,

 $\operatorname{Im}(f|(X \cap Y)) = \operatorname{Im}(f|X) \cap \operatorname{Im}(f|Y).$

5. Recall $\mathbb{R}^{\geq 0} = \{x \in \mathbb{R} \mid x \geq 0\} = [0, \infty)$. For each of the following, give an example of a function $f_i : \mathbb{R}^{\geq 0} \to \mathbb{R}$ with the listed properties.

- (a) f_1 is injective, but not surjective.
- (b) f_2 is surjective, but not injective.
- (c) f_3 is bijective.
- **6.** Let $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be defined by

$$g(x, y) = (x + y + 1)(x + y) + 2y.$$

- (a) Give a table of values for $g|\{0, 1, 2, 3\}^2$.
- (b) Is g injective? Surjective? Prove your answers.