Math 215 - Homework 4 Solutions

1. For each of the following sets A;, give three examples of elements A;, and three examples of
elements of A§.

(a) Air={a€Z| JacZ}
(

)
b) As = {p?|p,q € N and p, g are primes}

(¢) As={zeR|forsomen€c€Z, 3n<z<3n+2}
(d) Ay ={{(z,y) e NxR|e¥ =2z}

Aj is the set of squares of integers. Examples: 1,4,9,16,25,36, etc. Any number that isn't a perfect
square is in the complement, e.g.: —1,5,12,15, etc.

A, contains an integer n if and only if it can be written as a power p? with p,q both prime. So
23 = 8,2° = 32,33 = 27 ahd 5% = 125 are all in A,. But 6,7,12, and 2* = 16 are not, since these are
not prime-exponent powers of primes.

Note that for any integer n, the half-open interval [3n,3n + 2) is a subset of A3, examples:
[-6,—4),]0,2),[3,5). So we can pick from these sets: —5,0,1,3,7,4.999,27,101.5 are all in A3. The
complement A$§ is the union of sets of the form [3n — 1,3n); examples of subsets of the complement
are [—4,-3),[2,3), [98,99), and so on. So e.g. —4, —3.6,2,98.999 are all in the complement.

Ay consists of pairs of the form (x,y with y = In 2z, where n is a natural number; note we must
have n > 0. So we have (1,1n2), (2,In4), (3,In6) are typical elements of A4. But things like (1/2,1),
(2,12) and (5,5) are in the complement.

2. Let f: N x N — Z be defined by f(z,y) =z —y.
(a) Give a table of values for f|{0,1,2,3}.

(b) Is f injective? Surjective? Prove your answers.

(a) Table:
Yo 1 2 3
X
0 o -1 -2 -3
1 1 0 -1 =2
2 2 1 0 -1
3 3 2 1 0

(b) It's clear from the table that f is not injective; for one example, f((1,1)) =0 = f((2,2)).

f is surjective, however. Suppose n is an integer. If n > 0, then (n,0) € N x N, and we have
f(n,0) = n — 0 = n; on the other hand, if n < 0, then we have (0,—n) € N, and f((0,—n)) =
0—(—n)=n.



3. Let A, B be sets such that |A| =7, |B| =29, and |A U B| = 32. Determine the sizes of each of
the following sets:

(a)
(b) B
(c) Ax B

ANB

(d) (Ax A)—{(a,b) € A% | a = b}

(
) Since |JAU B| = |A| +|B| — |AN B|, we have |[ANB| = (7+29) — 32 =4.
)|B—A|=|B|-|ANB| =29 —4=25.
) |Ax B|=|A]-|B|=7-29 = 203.

) Since {(a,b) € A% | a = b} = {({a,a) | a € A}, this set has the same size as A. So
|(Ax A) — {{a,b) € A% | a =b}| =49 — 7 = 42.

(a
(b
(c
(d

4. Let f: A — B be a function. Show that f is injective if and only if for all sets X, Y C A,
m(f[(X NY)) =Im(f|X) N Im(f[Y).

(=) Suppose f is injective. We need to show the displayed equality holds. We do this by showing
both inclusions. For C: Suppose y € Im(f|(X NY). So y = f(z) for some x € X NY. Since z € X,
y = f(z) € Im(f|X); similarly x € Y implies y = f(x) € Im(f]Y). So y € Im(f|X)NIm(f|Y), which
proves C in the above equality (note this inclusion did not use injectivity of f).

Now for the reverse inclusion, D: suppose y € Im(f|X)NIm(f|Y); so y = f(x1) for some z; € X,
and y = f(x2) for some 25 € Y. That is, f(x1) = f(x2), so by injectivity of f, 1 = x2. Thus
x1 € XNY, and we have y = f(x1) € Im(f|(X NY)).

(«=) Suppose now that Im(f|(X NY)) = Im(f|X)NIm(f|Y) whenever X, Y are subsets of A. We
wish to prove f is injective. For this, fix aj,as € A such that a; # as. Note that then if X = {a;}
and Y = {az}, then X NY = 0; it follows that Im(f|(X NY)) = 0. Now Im(f|X) = {f(a1)}, and
Im(f|Y) = {f(az2)}. By assumption, these sets must be disjoint; and this is the case precisely when
f(a1) # f(az2). This proves f is injective.

5. Recall RZ = {z € R | # > 0} = [0, 00). For each of the following, give an example of a function
fi : RZ% = R with the listed properties.

(a) f1 is injective, but not surjective.
(b) f2 is surjective, but not injective.
) f

c) fs3 is bijective.

(
()

Just take f1(z) = x; clearly this is injective, but takes no negative values, so is not onto R.
(b) We could take, for example:

_f log(z) ifx>0;
f2(x)_{ 256 ifa=0.

Note just taking fo = log would not be enough, since this wouldn’t be a function on all of [0, c);
also, it didn't matter what value we picked for fs(x), since no matter what we choose f> will fail to
be surjective (since log “used up” all reals: Its range is already all of R).

(c) With this part we must be more creative; indeed, it can be shown that any bijection as in this
problem must fail to be continuous at infinitely many points, so a piecewise definition of some kind is
necessary.



Here is one example:

0 ifz=0
falx)y=<¢ z—n 2n<ax<2n+1, neN
n—z if2n—1<z<2n,neNandn>0

Note this is well-defined: Given any z € (0,00), there is a unique natural k such that k < 2 < k4 1;
and this k is either even (k = 2n some n) or or odd (k = 2n — 1), and not both. So precisely one of
the three cases will be used to define f3(z).

It may be instructive to sketch a graph of f3, and | strongly encourage you to do so!

Let’s check that this is one-to-one and onto. First notice that « > 0 implies | f3(x)| = |z —n| where
n < x/2; in particular |f3(x)| > |z/2| > 0, so f3(x) # 0 whenever x # 0.

Now notice that if z € (2n,2n + 1], that

n=2n—-n<z—-n<@2n+1)—n=n+1;

so Im(f3|(2n,2n + 1]) C (n,n + 1]. In fact we have an equality here, since f3(2n+ 1) =n+ 1 and
f3](2n,2n + 1] has slope 1.
Similarly we can check Im(f3|(2n — 1,2n]) = [-n,—n + 1) as follows:

2n—1<x<2n
==n—1<zx—nm<n
=1l-n>n—-x>-n,
which gives C; and again since f3(2n) =n — 2n = —n and f3](2n — 1,2n| has slope —1, the range of
this restriction is all of [—n, —n + 1).
Since R is the disjoint union of the sets {0}, (n,n+1] forn € N, and [-n, —n+1) forn € N—{n}, we

have that f5 is onto R. Note also that since this family is pairwise disjoint, we have that f3(x) # f3(y)
whenever x € (m,m + 1], y € (n,n + 1] for distinct naturals m,n; and if =,y are in the same piece

(n,n+ 1], clearly = # y implies f5(z) # f3(y).
This shows that f3(x) is onto and one-to-one, hence bijective.

6. Let g : N x N — N be defined by
9(@,y) = (@ +y+1)(z+y) +2y.
(a) Give a table of values for g|{0, 1,2, 3}>.
(b) Is g injective? Surjective? Prove your answers.

textsf(a) Table:

Yo 1 2 3

X
0 0 4 10 18
1 2 8 16 26
2 6 14 24 36
3 12 22 34 48

(b) From the table, we can guess that g is not surjective, but appears to be injective—indeed it appears
to be listing just the even numbers, in increasing order going across up and right diagonals. (You could
expand this table to confirm this suspicion.)

Proving g is not surjective is somewhat straightforward; for any choice of = + y, precisely one of
(x+y+1),(z+y) is even, and since even - odd = even, we have that (z +y + 1)(x + y) = 2k for



some k; thus g(x,y) = 2k + 2y = 2(k + y) is even. Since all outputs of g are even, it cannot be onto
N.

Showing g is injective is more challenging. We need to show that if (z,y), (z’,y’) are distinct pairs
of naturals, then g(x,y) # g(2’,3’). Let us denote n =x +y and ' =2’ +3'. So

g(@,y) = (n+n+2y, g(a',y) =0 +1)n' +2y.

Note that if n = n’, then we must have y # ¢/, which implies g(2,y') = (n+1)n+2y’ # (n+1)n+2y =
g(x,y). So we may assume that n < n/. We claim that g(x,y) < g(z’,3") (note this corresponds to
all outputs of g on the nth up-and-right diagonal being less than those on the n'th).

Now since n < n’ and these are naturals, we have n + 1 < n’. So we get

m+n=n>+1=0*+3n+2)-3n—-1=m0n+2)(n+1)-3n—-1<(n+1)n' —3n—1.

Note also that n = x + y and z,y € N together imply y < n. Putting this all together:

g(z,y) = (n+1)n+2y
<(n+1)n+2n
<[ +1)n —3n—-1]+2n
= +1)n"—n-1
< (n+1)n’
<(n +1)n' + 2y
=g(z",y").

We got the strict inequality because n + 1 > 0 for all naturals n. So we have g(z,y) < g(z',y")
whenever z + y < 2’ + 3'; together with the case n = n’ covered above, this shows that ¢ is an
injection.



