
Math 215 - Homework 5 Solutions

1. Suppose f : A→ B is a bijection, and that A is a proper subset of B. Show A is infinite.

Suppose as in the hypotheses that A ( B and that f : A → B is a bijection. Suppose, for a
contradiction, that A is finite. Since A and B are in bijective correspondence, B is finite as well.

Since A is a proper subset of B, we have B − A is nonempty. By the addition principle, |B| =
|A|+ |B −A|, and |B −A| ≥ 1 since A is a proper subset; in particular, |A| < |B|.

Now f−1 : B → A is an injection. By the pigeonhole principle, |B| ≤ |A|. But this contradicts the
conclusion of the previous paragraph. We must have that A is infinite.

2. Suppose n dogs and k ≤ n cats are to sit at a circular table (with n + k chairs around it) in
such a way that no two cats are sitting next to each other. How many seating arrangements are
possible? Carefully explain your answer.

For illustration, let’s consider 5 dogs and 3 cats. Each seating arrangement is uniquely determined
by some ordering of the animals, so let’s concentrate on this.

If we line up the dogs in a row, we have one space between each pair (plus one at the end, for when
they sit down) where we can put a cat, for 5 spaces total.

Note there are 5! ways to line up the dogs. For each of these, we have
(
5
3

)
ways to pick spaces where

the cats will sit, for example

Lassie Fido Spot Tuna Hachi

Once these positions are chosen, we may forget about the unused spaces, and order the cats, which we
have 3! ways to do; for example,

Lassie Fido Mooch Spot Tuna Andrew Hachi Garf

So we have 5!
(
5
3

)
3! = 60 ways to line up the animals in this manner. For general k and n, we get

n!k!
(
n
k

)
ways to order the animals.

Now we also have a choice as to what our final answer should actually be counting. First, we can
imagine the seats are numbered, so we have a one-to-one correspondence between seating arrangements
and orderings, and our answer is the same: n!k!

(
n
k

)
(this is how I interpreted the problem when I was

asked about this in class).
Alternatively, we may want to regard two seating arrangements as identical if they are obtained

from one another by a rotation (so all we care about is the relative positions of the animals). Since
there are n+ k rotations of the table, we have overcounted the number of arrangements by a factor of
n + k, and we obtain our final answer by dividing to correct for this: n!k!

(
n
k

)
/(n + k).
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3. Suppose A ⊆ Nn = {1, 2, . . . , n}, and that k = |A| satisfies

k(k − 1)

2
> n− 1.

Show there is some “distance” between elements of A which occurs at least twice; that is, there
are a1 < a2 and b1 < b2, all in A, with a1 6= b1, such that

a2 − a1 = b2 − b1

Recall P2(A) is the set of 2-element subsets of A. Define a function f : P2(A) → Nn−1 by:
f({x, y}) = |x− y|. Note this f is well-defined: If we have {x, y} ∈ P2(A), say with x < y, then since
1 ≤ x < y ≤ n, we have that 1 ≤ y − x ≤ n− 1, so f({x, y}) ∈ Nn−1.

Now, |A| = k, so |P2(A)| =
(
k
2

)
= k(k − 1)/2; and by assumption, k(k − 1)/2 > n− 1 = |Nn−1|.

We thus have a map f : P2(A) → Nn−1, and |P2(A)| > |Nn−1|. By the pigeonhole principle, f
is not injective; there must exist distinct subsets {a1, a2}, {b1, b2} of A so that d := f({a1, a2}) =
f({b1, b2}); we may assume a1 < a2 and b1 < b2. Note then a1 6= b1, as otherwise a2 = a1 + d =
b1 + d = b2, which would contradict these sets being distinct. By our definition of f , we have

a2 − a1 = f({a1, a2}) = f({b1, b2}) = b2 − b1,

as desired.

4. A sequence s : Nk → N is decreasing if i < j ≤ k implies s(i) > s(j). There is a unique
decreasing sequence whose first entry is 0 (namely, 〈0〉) and two with first entry 1 (these are 〈1, 0〉
and 〈1〉.)

How many decreasing sequences s : Nk → N (k ∈ N) with first entry n are there? Prove your
answer.

For n ∈ N, let Dn be the set of decreasing sequences whose first entry is n. We claim |Dn| = 2n.
There are a few ways to see this. One is inductive: Clearly |D0| = 1, and a sequence of length n

is either the one-element sequence 〈n〉, or is obtained by adjoining n to the beginning of a sequence

from Dk for some k < N. So Dn is in one-to-one correspondence with {〈n〉} ∪
⋃n−1

i=0 Di. Thus by the
addition principle,

|Dn| = 1 + |D0|+ |D1|+ · · ·+ |Dn−1| = 1 + 20 + 21 + · · ·+ 2n−1 = 1 +

n−1∑
i=0

2i = 2n.

Note here the second equality is by inductive hypothesis.
We could also more simply note that a decreasing sequence whose first entry is n is uniquely

determined by its set of entries less than n: We simply list them in decreasing order. Thus we have a
bijection between Dn and P({0, 1, . . . , n− 1}), and the power set of an n-element set has cardinality
2n.

5. Consider finite sequences whose entries are subsets of N, s : Nk → P(N). We now say s is
decreasing (inclusionwise) if i < j ≤ k implies s(i) ) s(j), that is, s(j) is a proper subset of s(i).
Let F (n) for n ∈ N be the number of decreasing sequences s of subsets of N such that s(1) = Nn.

(a) Show F (0) = 1 and F (1) = 2.

(b) What are F (2), F (3) and F (4)?

(c) Find an inductive definition for F . That is, find an expression for F (n + 1) in terms of
F (0), F (1), . . . , F (n).
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For this problem, let’s denote the set of decreasing sequences with first entry Nn by Sn; so F (n) =
|Sn| for all n.

(a) There is a unique set of size 0, namely ∅, and this has no proper subsets. So S0 = {〈∅〉}. By
similar reasoning, the only decreasing sequences with first entry N1 are 〈{1}〉 and 〈{1},∅〉.

(b) and (c). The situation is now more complicated, but as in problem 4, notice that if a sequence
s has first entry Nn, then either it has length one, or it is obtained by adjoining a sequence whose first
entry has size k with k < n; however, there are

(
n
k

)
such possible sets to choose from for each k.

Suppose A ∈ Pk(N). The number of decreasing sequences with first entry A is the same as the
cardinality of Sk (what is the bijection?), and this is just F (k), no matter which set A is.

|S2| = 1 +

(
2

0

)
|S0|+

(
2

1

)
|S1| = 1 + 1 + 4 = 6;

and

|S3| = 1 +

(
3

0

)
|S0|+

(
3

1

)
|S1|+

(
3

2

)
|S2| = 1 + 1 + 3 · 2 + 3 · 6 = 26;

and

|S4| = 1 +

(
4

0

)
|S0|+

(
4

1

)
|S1|+

(
4

2

)
|S2|+

(
4

3

)
|S3| = 1 + 1 + 4 · 2 + 6 · 6 + 4 · 26 = 150.

As the reasoning above shows, we select a decreasing sequence whose first entry is Nn+1 as follows:
first (1) either (1a) don’t extend the sequence at all, or (1b) choose some natural k ≤ n (so step (1)
gives us n+2 summands in all); then (2) if we chose a natural k, we choose a subset A of Nn+1 of size
k (for which we have

(
n+1
k

)
choices); and finally (3) choosing a decreasing sequence with first entry A,

for which we have F (k) choices. (Why does this count each sequence exactly once?)
So we have the inductive definition

F (n + 1) = 1 +

(
n + 1

0

)
F (0) +

(
n + 1

1

)
F (1) +

(
n + 1

2

)
F (2) + · · ·+

(
n + 1

n

)
F (n),

or more compactly,

F (n + 1) = 1 +

n∑
i=0

(
n + 1

i

)
F (i).
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