Math 215 - Homework 6

Due Friday, November 16

1. For each of the following relations R_i , determine whether R_i is an equivalence relation on \mathbb{R} . Prove your answer.

- (a) $x R_1 y$ iff $y x \in \mathbb{Z}$.
- (b) $x R_2 y \text{ iff } y x \ge 0.$
- (c) $x R_3 y$ iff |y x| < 1.

2. Recall the floor function $\lfloor \cdot \rfloor : \mathbb{R} \to \mathbb{Z}$ is defined by $\lfloor x \rfloor =$ the greatest integer n such that $n \leq x$. For each of the following equivalence relations R_i on \mathbb{R} , determine whether the definition $[x]_{R_i} \oplus [y]_{R_i} = [x+y]_{R_i}$ is a well-defined binary operation on the R_i -equivalence classes. Prove your answers.

- (a) $x R_4 y$ iff |x| = |y|.
- (b) $x R_5 y$ iff $x \lfloor x \rfloor = y \lfloor y \rfloor$.
- (c) $x R_6 y$ iff $y x \in \mathbb{Q}$.

3. Recall for all reals x that the interval [x, x+1) contains exactly one integer a. Use this fact and properties of the order < on $\mathbb R$ to show the following.

- (a) For all reals x, there is an integer n > x.
- (b) For all positive reals ε , there is an integer n > 0 with $1/n < \varepsilon$.
- (c) For all pairs of reals x < y, there is a rational number p with x .

Let A be a set. For the next problems, we let $A^{\mathbb{N}}$ denote the set of infinite sequences in A,

$$A^{\mathbb{N}} := \operatorname{Fun}(\mathbb{N}, A),$$

and $A^{\leq \mathbb{N}}$ denotes the set of finite sequences in A,

$$A^{<\mathbb{N}} = \bigcup_{k \in \mathbb{N}} \operatorname{Fun}(\mathbb{N}_k, A).$$

4. Show the relation E on $\mathbb{N}^{\mathbb{N}}$ defined by

$$\alpha E \beta$$
 iff $\{n \in \mathbb{N} \mid \alpha(n) \neq \beta(n)\}$ is finite,

1

for $\alpha, \beta \in \mathbb{N}^{\mathbb{N}}$, is an equivalence relation.

- **5.** Show $\mathbb{N}^{<\mathbb{N}}$ is countable.
- **6.** Use the Cantor-Shröder-Bernstein Theorem to show $|\mathbb{R}| = |\{0,1\}^{\mathbb{N}}|$.