Math 215 - Homework 6 Solutions

1. For each of the following relations R;, determine whether R; is an equivalence relation on R.
Prove your answer.

(a) e Riyiff y —x € Z.
(b) z Ryyiff y —2z>0.
(¢) zRzyiff [y —z| < 1.
(a) This is an equivalence relation. We check each of the three properties:
e Reflexivity: Forallx € Z, x —x=0€ Z. So x Ry « for all z € R.
e Symmetry: Suppose t R1y. Soy—x €Z,andx —y=—(y—x) € Z as well. So y R; z.

e Transitivity: Suppose z,y,z € R are such that z Ry y and y Ry z. Theny—x =k, € Z, and
z—y=ko€Z. Soz—x=z—y+y—x=ko+ k1 €Z, since Z is closed under addition. We
have x R; z, so that Ry is transitive.

(b) Ry is not an equivalence relation. It is not symmetric, for example: 2—1=1 >0, so 1 Ry 2; but
1-2=-1<0, sothat =(2 Ry 1).

(c) R3 is not an equivalence relation. It is reflexive and symmetric, but it is not transitive: For
example, 0 R3 0.8 and 0.8 R3 1.5, but —(0 R3 1.5).

2. Recall the floor function [-| : R — Z is defined by |z | = the greatest integer n such that n < x.

For each of the following equivalence relations R; on R, determine whether the definition
[]r, ® [y]lr, = [x + y]r, is a well-defined binary operation on the R;-equivalence classes. Prove
your answers.

(a) x Ryy iff |x] = |y].
(b) e Ry iff v — |z] =y — [y].
(¢c) zRey iff y —z € Q.

(a) @ is not well-defined on the R4-equivalence classes. For example, 0 R4 0.6 and 2 R4 2.6. But
0+2=2and 0.6 +2.6 =32, and ~(2 Ry 3.2).

(b) This is well-defined. Proof: Note that this is the same relation as R; in problem 1(a). To see
this, note that z — || = y— | =] implies z —y = |z] + |y], and the right hand side is a sum of integers.
Conversely, |z +n] = n+ |z] for all integers n, soxz+n—|z+n| =z+n—n—|z| =z — |z].
So x Rs (z + n) for all integers n. This shows x Ry y if and only if  — y is an integer.

Suppose we have x1,za,y1,y2 such that [z1]r, = [z2]r, and [y1]r, = [y2]r,. Note that x1 R5
says precisely that the non-integer parts of 1, xo are the same. In particular, 1 R5x2 means z1 = ni+a
and x2 = no+a, for some integers ny,ng € Zand areala, 0 < a < 1 (wherea = z;— [z;], 1 € {1,2}).
Similarly, y1 = m1 + b and yo = mo + b with my,my € Z and 0 < b < 1.



So now z1+y1 = (n1+a)+(na+b) = (n1+n2)+(a+b). And zo+ys = (m1+ma)+(a+b). And
since (n1+n2)+(a+b) and (my +msa)+ (a+0b) differ by an integer, we have [z1+v1]r. = [T2+Y2|Rs,
by the remarks above. This shows @ is well-defined.

(c) This is well-defined. Suppose x; Rg x2 and y; Rg y2. Then set p = z9 — 21 € Q and
g=1vy2—y1 € Q. We have 1 +y1 = (x2 —p) + (y2 — q) = (2 + y2) — (p+ q); since these differ by a
rational, we have (z1 + y1) Rg (x2 + y2), which shows @ is well-defined on the Rg-equivalence classes.

3. Recall for all reals x that the interval [z,z + 1) contains exactly one integer a.
Use this fact and properties of the order < on R to show the following.

(a) For all reals x, there is an integer n > z.
(b) For all positive reals ¢, there is an integer n > 0 with 1/n < e.
(¢) For all pairs of reals 2 < y, there is a rational number p with < p < y.

(a) Let x be a real number. Then [x + 1,2 + 2) contains some integer n, so that z < x +1 <n
with n an integer as needed.

(b) Let € > 0. Then also 0 < %, and by part (a), there is an integer n > 1 with n > . Multiplying
both sides by £/n doesn't reverse the inequality (since £/n is positive) so we obtain £ > 1 as needed.

(c) Fix z < y. Then y —x > 0. By part (b), there is an integer n with % < y — x. So multiplying
by 2n, we have 2 < 2ny — 2nz. In particular, 2nz < 2nz + 1 < 2nz + 2 < 2ny. By the fact we
are allowed to assume, there is some integer in [2nz 4+ 1,2nz + 2), say 2nz + 1 < m < 2nz + 2 with
m € Z. So by transitivity of <, 2nz < m < 2ny. Dividing through by 2n, » < - <y. And 3> € Q,
so we have a rational strictly between = and y, which is what we needed to prove.

Let A be a set. For the next problems, we let AN denote the set of infinite sequences in A,
AN = Fun(N, A),
and A<N denotes the set of finite sequences in A,

AN = U Fun(Ng, A).

keN
4. Show the relation £ on NV defined by
aE B iff {n e N|a(n) # B(n)} is finite,
for o, 3 € NV, is an equivalence relation.

Let us show E is reflexive. Let o« € NN, that is, « is a function @ : N — N. Then for all n,
a(n) = a(n). So the set {n € N | a(n) # a(n)} is the empty set; in particular, it is finite. So « F «.
So FE is reflexive.

Now let's show symmetry. But this is straightforward, since

{neN|a(n)# pn)} = {n e N|p(n) # a(n)},

for any sequences o, 3 € NV, In particular, one set is finite iff the other is; that is, o E 3 iff 3 E a.
Now, transitivity. Suppose we have a, 3,y € NN, such that o E 3 and 3 E 7. We need to show
«a E v, that is, that the set

{neNlan)#~(n)}



is finite. This will follow if we show that

{neNla(n) #~y(n)} C{neNlan)# )} U{neN|[Bn)#~(n)},

since by assumption, the right hand side is the union of two finite sets, which is finite (and a subset of
a finite set is finite).

So we need to show that if n € Nis such that a(n) # v(n), then either a(n) # B(n) or B(n) # v(n).
Suppose not: We would have a(n) = §(n) and (n) = vy(n). In which case, by transitivity of “=",
we'd have a(n) = v(n), contrary to assumption.

This shows E is transitive.



