
Math 215 - Homework 6 Solutions

1. For each of the following relations Ri, determine whether Ri is an equivalence relation on R.
Prove your answer.

(a) x R1 y iff y − x ∈ Z.

(b) x R2 y iff y − x ≥ 0.

(c) x R3 y iff |y − x| < 1.

(a) This is an equivalence relation. We check each of the three properties:

• Reflexivity: For all x ∈ Z, x− x = 0 ∈ Z. So x R1 x for all x ∈ R.

• Symmetry: Suppose x R1 y. So y − x ∈ Z, and x− y = −(y − x) ∈ Z as well. So y R1 z.

• Transitivity: Suppose x, y, z ∈ R are such that x R1 y and y R1 z. Then y − x = k1 ∈ Z, and
z − y = k2 ∈ Z. So z − x = z − y + y − x = k2 + k1 ∈ Z, since Z is closed under addition. We
have x R1 z, so that R1 is transitive.

(b) R2 is not an equivalence relation. It is not symmetric, for example: 2− 1 = 1 ≥ 0, so 1R2 2; but
1− 2 = −1 < 0, so that ¬(2R2 1).

(c) R3 is not an equivalence relation. It is reflexive and symmetric, but it is not transitive: For
example, 0R3 0.8 and 0.8R3 1.5, but ¬(0R3 1.5).

2. Recall the floor function b·c : R→ Z is defined by bxc = the greatest integer n such that n ≤ x.
For each of the following equivalence relations Ri on R, determine whether the definition

[x]Ri
⊕ [y]Ri

= [x + y]Ri
is a well-defined binary operation on the Ri-equivalence classes. Prove

your answers.

(a) x R4 y iff bxc = byc.

(b) x R5 y iff x− bxc = y − byc.

(c) x R6 y iff y − x ∈ Q.

(a) ⊕ is not well-defined on the R4-equivalence classes. For example, 0 R4 0.6 and 2 R4 2.6. But
0 + 2 = 2 and 0.6 + 2.6 = 3.2, and ¬(2R4 3.2).

(b) This is well-defined. Proof: Note that this is the same relation as R1 in problem 1(a). To see
this, note that x−bxc = y−bxc implies x−y = bxc+byc, and the right hand side is a sum of integers.
Conversely, bx+ nc = n + bxc for all integers n, so x + n − bx+ nc = x + n − n − bxc = x − bxc.
So x R5 (x+ n) for all integers n. This shows x R5 y if and only if x− y is an integer.

Suppose we have x1, x2, y1, y2 such that [x1]R5 = [x2]R5 and [y1]R5 = [y2]R5 . Note that x1 R5 x2
says precisely that the non-integer parts of x1, x2 are the same. In particular, x1R5x2 means x1 = n1+a
and x2 = n2+a, for some integers n1, n2 ∈ Z and a real a, 0 ≤ a < 1 (where a = xi−bxic, i ∈ {1, 2}).
Similarly, y1 = m1 + b and y2 = m2 + b with m1,m2 ∈ Z and 0 ≤ b < 1.
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So now x1+y1 = (n1+a)+(n2+b) = (n1+n2)+(a+b). And x2+y2 = (m1+m2)+(a+b). And
since (n1+n2)+(a+b) and (m1+m2)+(a+b) differ by an integer, we have [x1+y1]R5

= [x2+y2]R5
,

by the remarks above. This shows ⊕ is well-defined.
(c) This is well-defined. Suppose x1 R6 x2 and y1 R6 y2. Then set p = x2 − x1 ∈ Q and

q = y2− y1 ∈ Q. We have x1 + y1 = (x2− p) + (y2− q) = (x2 + y2)− (p+ q); since these differ by a
rational, we have (x1 + y1)R6 (x2 + y2), which shows ⊕ is well-defined on the R6-equivalence classes.

3. Recall for all reals x that the interval [x, x+ 1) contains exactly one integer a.
Use this fact and properties of the order < on R to show the following.

(a) For all reals x, there is an integer n > x.

(b) For all positive reals ε, there is an integer n > 0 with 1/n < ε.

(c) For all pairs of reals x < y, there is a rational number p with x < p < y.

(a) Let x be a real number. Then [x + 1, x + 2) contains some integer n, so that x < x + 1 ≤ n
with n an integer as needed.

(b) Let ε > 0. Then also 0 < 1
ε , and by part (a), there is an integer n ≥ 1 with n > 1

ε . Multiplying
both sides by ε/n doesn’t reverse the inequality (since ε/n is positive) so we obtain ε > 1

n as needed.
(c) Fix x < y. Then y − x > 0. By part (b), there is an integer n with 1

n < y − x. So multiplying
by 2n, we have 2 < 2ny − 2nx. In particular, 2nx < 2nx + 1 < 2nx + 2 < 2ny. By the fact we
are allowed to assume, there is some integer in [2nx+ 1, 2nx+ 2), say 2nx+ 1 ≤ m < 2nx+ 2 with
m ∈ Z. So by transitivity of <, 2nx < m < 2ny. Dividing through by 2n, x < m

2n < y. And m
2n ∈ Q,

so we have a rational strictly between x and y, which is what we needed to prove.

Let A be a set. For the next problems, we let AN denote the set of infinite sequences in A,

AN := Fun(N, A),

and A<N denotes the set of finite sequences in A,

A<N =
⋃
k∈N

Fun(Nk, A).

4. Show the relation E on NN defined by

α E β iff {n ∈ N | α(n) 6= β(n)} is finite,

for α, β ∈ NN, is an equivalence relation.

Let us show E is reflexive. Let α ∈ NN, that is, α is a function α : N → N. Then for all n,
α(n) = α(n). So the set {n ∈ N | α(n) 6= α(n)} is the empty set; in particular, it is finite. So α E α.
So E is reflexive.

Now let’s show symmetry. But this is straightforward, since

{n ∈ N | α(n) 6= β(n)} = {n ∈ N | β(n) 6= α(n)},

for any sequences α, β ∈ NN. In particular, one set is finite iff the other is; that is, α E β iff β E α.
Now, transitivity. Suppose we have α, β, γ ∈ NN, such that α E β and β E γ. We need to show

α E γ, that is, that the set
{n ∈ N | α(n) 6= γ(n)}
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is finite. This will follow if we show that

{n ∈ N | α(n) 6= γ(n)} ⊆ {n ∈ N | α(n) 6= β(n)} ∪ {n ∈ N | β(n) 6= γ(n)},

since by assumption, the right hand side is the union of two finite sets, which is finite (and a subset of
a finite set is finite).

So we need to show that if n ∈ N is such that α(n) 6= γ(n), then either α(n) 6= β(n) or β(n) 6= γ(n).
Suppose not: We would have α(n) = β(n) and β(n) = γ(n). In which case, by transitivity of “=”,
we’d have α(n) = γ(n), contrary to assumption.

This shows E is transitive.
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