Math 215 - Homework 6 Solutions

- 1. For each of the following relations R_i , determine whether R_i is an equivalence relation on \mathbb{R} . Prove your answer.
 - (a) $x R_1 y$ iff $y x \in \mathbb{Z}$.
 - (b) $x R_2 y \text{ iff } y x \ge 0.$
 - (c) $x R_3 y$ iff |y x| < 1.
 - (a) This is an equivalence relation. We check each of the three properties:
 - Reflexivity: For all $x \in \mathbb{Z}$, $x x = 0 \in \mathbb{Z}$. So $x R_1 x$ for all $x \in \mathbb{R}$.
 - Symmetry: Suppose $x R_1 y$. So $y x \in \mathbb{Z}$, and $x y = -(y x) \in \mathbb{Z}$ as well. So $y R_1 z$.
 - Transitivity: Suppose $x,y,z\in\mathbb{R}$ are such that $x\,R_1\,y$ and $y\,R_1\,z$. Then $y-x=k_1\in\mathbb{Z}$, and $z-y=k_2\in\mathbb{Z}$. So $z-x=z-y+y-x=k_2+k_1\in\mathbb{Z}$, since \mathbb{Z} is closed under addition. We have $x\,R_1\,z$, so that R_1 is transitive.
- (b) R_2 is not an equivalence relation. It is not symmetric, for example: $2-1=1\geq 0$, so 1 R_2 2; but 1-2=-1<0, so that $\neg(2$ R_2 1).
- (c) R_3 is not an equivalence relation. It is reflexive and symmetric, but it is not transitive: For example, $0 R_3 0.8$ and $0.8 R_3 1.5$, but $\neg (0 R_3 1.5)$.
- **2.** Recall the floor function $\lfloor \cdot \rfloor : \mathbb{R} \to \mathbb{Z}$ is defined by $\lfloor x \rfloor =$ the greatest integer n such that $n \leq x$. For each of the following equivalence relations R_i on \mathbb{R} , determine whether the definition $[x]_{R_i} \oplus [y]_{R_i} = [x+y]_{R_i}$ is a well-defined binary operation on the R_i -equivalence classes. Prove your answers.
 - (a) $x R_4 y$ iff $\lfloor x \rfloor = \lfloor y \rfloor$.
 - (b) $x R_5 y$ iff x |x| = y |y|.
 - (c) $x R_6 y$ iff $y x \in \mathbb{Q}$.
- (a) \oplus is not well-defined on the R_4 -equivalence classes. For example, $0~R_4~0.6$ and $2~R_4~2.6$. But 0+2=2 and 0.6+2.6=3.2, and $\neg(2~R_4~3.2)$.
- (b) This is well-defined. Proof: Note that this is the same relation as R_1 in problem 1(a). To see this, note that $x-\lfloor x\rfloor=y-\lfloor x\rfloor$ implies $x-y=\lfloor x\rfloor+\lfloor y\rfloor$, and the right hand side is a sum of integers. Conversely, $\lfloor x+n\rfloor=n+\lfloor x\rfloor$ for all integers n, so $x+n-\lfloor x+n\rfloor=x+n-n-\lfloor x\rfloor=x-\lfloor x\rfloor$. So x R_5 (x+n) for all integers n. This shows x R_5 y if and only if x-y is an integer.

Suppose we have x_1, x_2, y_1, y_2 such that $[x_1]_{R_5} = [x_2]_{R_5}$ and $[y_1]_{R_5} = [y_2]_{R_5}$. Note that $x_1 R_5 x_2$ says precisely that the non-integer parts of x_1, x_2 are the same. In particular, $x_1 R_5 x_2$ means $x_1 = n_1 + a$ and $x_2 = n_2 + a$, for some integers $n_1, n_2 \in \mathbb{Z}$ and a real $a, 0 \le a < 1$ (where $a = x_i - \lfloor x_i \rfloor$, $i \in \{1, 2\}$). Similarly, $y_1 = m_1 + b$ and $y_2 = m_2 + b$ with $m_1, m_2 \in \mathbb{Z}$ and $0 \le b < 1$.

So now $x_1 + y_1 = (n_1 + a) + (n_2 + b) = (n_1 + n_2) + (a + b)$. And $x_2 + y_2 = (m_1 + m_2) + (a + b)$. And since $(n_1 + n_2) + (a+b)$ and $(m_1 + m_2) + (a+b)$ differ by an integer, we have $[x_1 + y_1]_{R_5} = [x_2 + y_2]_{R_5}$, by the remarks above. This shows \oplus is well-defined.

- (c) This is well-defined. Suppose x_1 R_6 x_2 and y_1 R_6 y_2 . Then set p = x_2 x_1 \in $\mathbb Q$ and $q = y_2 - y_1 \in \mathbb{Q}$. We have $x_1 + y_1 = (x_2 - p) + (y_2 - q) = (x_2 + y_2) - (p + q)$; since these differ by a rational, we have $(x_1+y_1) R_6 (x_2+y_2)$, which shows \oplus is well-defined on the R_6 -equivalence classes.
- **3.** Recall for all reals x that the interval [x, x + 1) contains exactly one integer a. Use this fact and properties of the order < on \mathbb{R} to show the following.
 - (a) For all reals x, there is an integer n > x.
 - (b) For all positive reals ε , there is an integer n > 0 with $1/n < \varepsilon$.
 - (c) For all pairs of reals x < y, there is a rational number p with x .
- (a) Let x be a real number. Then [x+1,x+2) contains some integer n, so that $x < x+1 \le n$ with n an integer as needed.
- (b) Let $\varepsilon>0$. Then also $0<\frac{1}{\varepsilon}$, and by part (a), there is an integer $n\geq 1$ with $n>\frac{1}{\varepsilon}$. Multiplying both sides by ε/n doesn't reverse the inequality (since ε/n is positive) so we obtain $\varepsilon>\frac{1}{n}$ as needed. (c) Fix x< y. Then y-x>0. By part (b), there is an integer n with $\frac{1}{n}< y-x$. So multiplying by 2n, we have 2<2ny-2nx. In particular, 2nx<2nx+1<2nx+2<2ny. By the fact we are allowed to assume, there is some integer in [2nx+1,2nx+2), say $2nx+1 \le m < 2nx+2$ with $m \in \mathbb{Z}$. So by transitivity of <, 2nx < m < 2ny. Dividing through by 2n, $x < \frac{m}{2n} < y$. And $\frac{m}{2n} \in \mathbb{Q}$, so we have a rational strictly between x and y, which is what we needed to prove.

Let A be a set. For the next problems, we let $A^{\mathbb{N}}$ denote the set of infinite sequences in A,

$$A^{\mathbb{N}} := \operatorname{Fun}(\mathbb{N}, A),$$

and $A^{\leq \mathbb{N}}$ denotes the set of finite sequences in A,

$$A^{<\mathbb{N}} = \bigcup_{k \in \mathbb{N}} \operatorname{Fun}(\mathbb{N}_k, A).$$

4. Show the relation E on $\mathbb{N}^{\mathbb{N}}$ defined by

$$\alpha E \beta$$
 iff $\{n \in \mathbb{N} \mid \alpha(n) \neq \beta(n)\}$ is finite,

for $\alpha, \beta \in \mathbb{N}^{\mathbb{N}}$, is an equivalence relation.

Let us show E is reflexive. Let $\alpha \in \mathbb{N}^{\mathbb{N}}$, that is, α is a function $\alpha : \mathbb{N} \to \mathbb{N}$. Then for all n, $\alpha(n) = \alpha(n)$. So the set $\{n \in \mathbb{N} \mid \alpha(n) \neq \alpha(n)\}$ is the empty set; in particular, it is finite. So $\alpha \to \infty$. So E is reflexive.

Now let's show symmetry. But this is straightforward, since

$$\{n \in \mathbb{N} \mid \alpha(n) \neq \beta(n)\} = \{n \in \mathbb{N} \mid \beta(n) \neq \alpha(n)\},\$$

for any sequences $\alpha, \beta \in \mathbb{N}^{\mathbb{N}}$. In particular, one set is finite iff the other is; that is, $\alpha E \beta$ iff $\beta E \alpha$. Now, transitivity. Suppose we have $\alpha, \beta, \gamma \in \mathbb{N}^{\mathbb{N}}$, such that $\alpha E \beta$ and $\beta E \gamma$. We need to show $\alpha E \gamma$, that is, that the set

$$\{n \in \mathbb{N} \mid \alpha(n) \neq \gamma(n)\}\$$

is finite. This will follow if we show that

$$\{n \in \mathbb{N} \mid \alpha(n) \neq \gamma(n)\} \subseteq \{n \in \mathbb{N} \mid \alpha(n) \neq \beta(n)\} \cup \{n \in \mathbb{N} \mid \beta(n) \neq \gamma(n)\},\$$

since by assumption, the right hand side is the union of two finite sets, which is finite (and a subset of a finite set is finite).

So we need to show that if $n \in \mathbb{N}$ is such that $\alpha(n) \neq \gamma(n)$, then either $\alpha(n) \neq \beta(n)$ or $\beta(n) \neq \gamma(n)$. Suppose not: We would have $\alpha(n) = \beta(n)$ and $\beta(n) = \gamma(n)$. In which case, by transitivity of "=", we'd have $\alpha(n) = \gamma(n)$, contrary to assumption.

This shows ${\cal E}$ is transitive.