
Math 215 - Homework 7 Solutions

1. Suppose X ⊆ Y and X is uncountable. Show Y is uncountable.

Proof. Fix X ⊆ Y . We need to show that if X is uncountable, then Y is uncountable. We show
the contrapositive. Suppose Y is not uncountable; that is, Y is countable. Then X ⊆ Y implies X is
countable also (a theorem from class). So X is not uncountable.

2. Suppose there is an injection f : R→ X. Show X is uncountable.

Proof. There are a few ways to do this. One is to note that since f is an injection, the function
f̄ : R → Im(f) defined by f̄(x) = f(x) is a bijection (since by definition of range, for all y ∈ Im(R)
we have some x ∈ R with f̄(x) = f(x) = y; this shows f̄ is surjective, and it is injective since f is).

Now if X were countable we would have a bijection g : N → X. But the composition f̄−1 ◦ g :
N→ R is a bijection. This contradicts the fact that R is uncountable.

3. Suppose there is a surjection f : N→ X. Show X is countable.

Proof. Let f,X be as described. We will be done if we can find an injection g : X → N, since
then X is in one-to-one correspondence with Im(g) which, being a subset of N, is countable. Our idea
is to try to “invert” f , though of course no two-sided inverse need exist since we do not assume f is
bijective.

For each a ∈ X, let Aa = {n ∈ N | f(n) = a} (this is the preimage of {a} under f). Since f
is surjective, we have for every a ∈ X that there exists n ∈ N with f(n) = a; in particular, Aa is
non-empty for each a ∈ X. So we can set

g(a) = minAa

For each a ∈ X. Then g : X → N is well-defined, since the minimum of a non-empty set of naturals
always exists.

We need to show that g is one-to-one. Suppose a, b are elements of X, and that g(a) = g(b); say
n is this value. Then n = g(a) = minAa = minAb = g(b). In particular, we have that n ∈ Aa ∩ Ab,
so that f(n) = a and f(n) = b. This shows a = b, so g is injective.

By the remarks above, we have that X is countable.

4. Show N<N is countable.

(Omitted as extra credit)

5. Use the Cantor-Shröder-Bernstein Theorem to show |R| = |{0, 1}N|.

The Cantor-Shröder-Bernstein Theorem says that if there are injections f : A→ B and g : B → A
(that is, |A| ≤ |B| and |B| ≤ |A|), then there is a bijection h : A→ B (that is, |A| = |B|). So to apply
this theorem, what we need to do is to show there are injections f : R→ {0, 1}N and g : {0, 1}N → R.

g is a bit easier, and there’s a sort of obvious example; since a decimal expansion is a sequence
integers, and we need to define g(s) where s = 〈sn〉n∈N, sn ∈ {0, 1} for all n. We can just take g(s)
to be the real whose decimal expansion is the entries of s. That is,

g(s) = 0.s0s1s2s3 · · · =
∞∑

n=1

sn
10n

.
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Then g is injective; indeed if n is least such that sn 6= tn for sequences s and t, then we will have
|g(s)− g(t)| ≥ 1

10n .
Remark: This doesn’t work if we had used binary expansions. For example, in binary, 0.1 = 0.01̄,

so 〈1, 0, 0, 0, 0...〉 and 〈0, 1, 1, 1, 1, 1, ...〉 define the same real number.
Defining the injection f is somewhat trickier, and there isn’t necessarily an obvious choice, since

now we must somehow encode real numbers as infinite binary sequences. One option is just to use
binary expansions. In some sense this is what computers do, and the same coding scheme can be
employed here (though computers, having finite memory, can really only work with rational numbers
up to some finite denominator); things get somewhat tricky, though, since we have to somehow encode
the power of 2 the expansion “starts at”, as well as distinguish negative and positive numbers.

Instead we state a somewhat less clever binary coding. Let f(x), for reals x, be a binary sequence
that records the decimal expansion

x = ±a0.a1a2a3a4 . . . an . . .

(where all ai ≥ 0) by listing the ai as i-length blocks of 1’s, separated by zeroes, and reserving the first
spot for “positive” or “negative”; say, f(x)(0) = 1 iff x ≥ 0. So

f(x) = 〈(sign of x), (a0-many 1’s), 0, (a1-many 1’s), 0, (a2-many 1’s), . . .〉

(one can define this somewhat more “rigorously” using finite sums, but it’s probably not worth it).
So for example,

f(π) = 〈1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, . . .〉

reflecting the fact that π = +3.14159 . . . . And

f(−2.003) = 〈0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .〉.

To ensure f is well-defined, note we must “avoid redundancy” in the decimal expansions by e.g. always
using the decimal expansion of x that isn’t eventually 9 as we did in class. It’s not too hard to see, but
useful to try and show, that this f is injective; but it’s not surjective (why not?).
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