Math 215 - Review for Midterm 1

September 27, 2018

1. Give a truth table for each of the following propositional forms:

- (a) $P \to (P \lor Q)$
- (b) $P \land (P \leftrightarrow \neg Q)$
- (c) $(P \lor Q) \to \neg R$

Are any of these tautologies? Contradictions?

- **2.** Prove by contradiction that if xy is even, then x is even or y is even.
- **3.** Show that if $x \in \mathbb{R}$ with $x \ge -1$, then for all $n \in \mathbb{N}$,

$$1 + nx \le (1+x)^n.$$

Where did you use the assumption that $x \ge -1$?

4. Show that for all integers $n \ge 1$:

$$\sum_{i=1}^{n} 2i - 1 = n^2.$$

5. Show that for all sets A, B, if $A \subseteq B$ then $B^c \subseteq A^c$.

6. Let A_1, A_2, A_3 be sets. Show there are sets B_1, B_2, B_3 such that for i with $1 \le i \le 3$, we have $B_i \subseteq A_i$, $A_1 \cup A_2 \cup A_3 = B_1 \cup B_2 \cup B_3$ and the B_i are *disjoint*: that is, $B_i \cap B_j = \emptyset$ whenever $i \ne j$.

7. Give a translation of each of the following in plain English; determine whether each is true or false.

- (a) $\forall x \in \mathbb{R} \exists y \in \mathbb{N} x < y$
- (b) $\exists y \in \mathbb{Z} \ \forall z \in \mathbb{R} \ y < z \cdot z$
- (c) $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ y \neq 0 \land x + y = x$
- (d) $\forall x \in \mathbb{N} \ \forall y \in \mathbb{N} \ \exists z \in \mathbb{N} \ x < y \rightarrow (x < z \land z < y)$

8. Using mathematical symbols $(+, \cdot, \text{ quantifiers, etc.})$ only, give a definition of the predicate P(n): "n is prime."

9. The twin prime conjecture states: "there are infinitely many primes p such that p + 2 is also prime." Using symbols, give a statement of the twin prime conjecture. (You may use P(n) as an abbreviation

for the predicate you gave in the previous problem.)