
Math 215 - Solutions to Midterm 1 Review

October 4, 2018

1. Give a truth table for each of the following propositional forms:

(a) P → (P ∨Q)

(b) P ∧ (P ↔ ¬Q)

(c) (P ∨Q)→ ¬R

Are any of these tautologies? Contradictions?

(a)

P Q P ∨Q P → (P ∨Q)
T T T T
T F T T
F T T T
F F F T

(b)

P Q P ↔ ¬Q P ∧ (P ↔ ¬Q)
T T F F
T F T T
F T T F
F F F F

(c)

P Q R (P ∨Q) ¬R (P ∨Q)→ ¬R
T T T T F F
T T F T T T
T F T T F F
T F F T T T
F T T T F F
F T F T T T
F F T F F T
F F F F T T

(a) is a tautology; (b) and (c) are neither tautologies nor contradictions.

2. Prove by contradiction that if xy is even, then x is even or y is even.

Suppose not. Then xy is even, but both x and y are odd. Let a, b be integers such that x = 2a + 1 and
y = 2b + 1. Then

xy = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 = 2(2ab + a + b) + 1.

So xy = 2k + 1 with x = 2ab + a + b; then xy is odd. This contradicts our assumption that xy is even.

3. Show that if x ∈ R with x ≥ −1, then for all n ∈ N,

1 + nx ≤ (1 + x)n.

Where did you use the assumption that x ≥ −1?

We prove this by induction on n.
Our base case is n = 0. Then 1 + nx = 1 + 0x = 1 and (1 + x)n = (1 + x)0 = 1. So we have the base

case.
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Suppose inductively that we have some k ∈ N with (1+kx) ≤ (1+x)k. We now use the fact that x ≥ −1:
This gives 1 + x ≥ 0. Thus we can multiply through without changing the direction of the inequality:

(1 + kx)(1 + x) ≤ (1 + x)k+1

The left hand side is equal to 1 + (k + 1)x + kx2. Since kx2 ≥ 0, we have

1 + (k + 1)x ≤ 1 + (k + 1)x + kx2 = (1 + kx)(1 + x) ≤ (1 + x)k+1.

Thus (by transitivity of ≤) we have the inequality in the case n = k + 1.
By the principle of induction, we have 1 + nx ≤ (1 + x)n for all x ≥ −1 and n ∈ N.

4. Show that for all integers n ≥ 1:
n∑

i=1

2i− 1 = n2.

Proof. By induction. Base case: n = 1.

1∑
i=1

2i− 1 = 2− 1 = 1 = 12.

For the inductive step, assume for some k ≥ 1:

k∑
i=1

2i− 1 = k2.

Then: ∑k+1
i=1 2i− 1 =

(∑k
i=1 2i− 1

)
+ 2(k + 1)− 1 (definition of sum)

= k2 + 2(k + 1)− 1 (inductive hypothesis)
= (k + 1)2

as needed. By the principle of induction, we have the identity for all n ≥ 1.

5. Show that for all sets A,B, if A ⊆ B then Bc ⊆ Ac.

Assume A,B are sets with A ⊆ B. That is, for all x, x ∈ A implies x ∈ B. We need to show Bc ⊆ Ac.
So suppose x ∈ Bc, that is, x /∈ B. By contrapositive, we have x /∈ A, that is, x ∈ Ac. This shows Bc ⊆ Ac

as claimed.

6. Let A1, A2, A3 be sets. Show there are sets B1, B2, B3 such that for i with 1 ≤ i ≤ 3, we have Bi ⊆ Ai,
A1 ∪A2 ∪A3 = B1 ∪B2 ∪B3 and the Bi are disjoint : that is, Bi ∩Bj = ∅ whenever i 6= j.

We define B1 = A1, B2 = A2 −A1, and B3 = A3 − (A1 ∪A2). Clearly if x ∈ Bi we must have x ∈ Ai,
by definition of set difference; so Bi ⊆ Ai for i ∈ {1, 2, 3}.

We need to show we obtain the same union. B1∪B2∪B3 ⊆ A1∪A2∪A3, since by the previous paragraph,
each Ai is a subset of Bi. We need to show the reverse inclusion.

Suppose x ∈ A1 ∪A2 ∪A3. We have several cases.
If x ∈ A1, clearly x ∈ B1, hence x ∈ B1 ∪B2 ∪B3.
So suppose x /∈ A1; then x ∈ A2 ∪A3. If x ∈ A2, then x ∈ A2 −A1 = B2 ⊆ B1 ∪B2 ∪B3 as needed.
Finally, suppose x /∈ A1 and x /∈ A2; that is, x /∈ A1 ∪ A2. We must have x ∈ A3. Hence x ∈

A3 − (A1 ∪A2) = B3 ⊆ B1 ∪B2 ∪B3.
This completes the proof that A1 ∪A2 ∪A3 = B1 ∪B2 ∪B3.
All that is left to show is that the sets are disjoint. If x ∈ B3, then x /∈ A1∪A2, and so x /∈ B1∪B2 (since

Bi ⊆ Ai means x /∈ Ai implies x /∈ Bi). So the sets B1 ∩B3 or B2 ∩B3 are empty. Similarly, if x ∈ B2, then
x /∈ A1 = B1; so B1 ∩ B2 = ∅ as needed. Since these are all possible pairs of the sets B1, B2, B3, we have
shown these are pairwise disjoint.
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7. Give a translation of each of the following in plain English; determine whether each is true or false.

(a) ∀x ∈ R ∃y ∈ N x < y

(b) ∃y ∈ Z ∀z ∈ R y < z · z

(c) ∃x ∈ R ∃y ∈ R y 6= 0 ∧ x + y = x

(d) ∀x ∈ N ∀y ∈ N ∃z ∈ N x < y → (x < z ∧ z < y)

(a): “For all reals x, there is a natural number y greater than x.” This is true; if x < 0 then y = 0 works,
and if x ≥ 0 then there is some natural number y ∈ (x, x + 1], so x < y.

(b): “There is an integer y that is less than z2, for all reals z.” This is true, since −1 < 0 ≤ z2 for all
reals z.

(c): “There are reals x, y such that y is nonzero and x + y = x.” This is false; if we had x + y = x for
any reals x, y, then subtracting x on both sides gives us y = 0.

(d): “For all pairs of naturals x, y, there exists some natural z so that if x < y, we have x < z < y.” Or:
“For naturals x < y, there exists a third natural z strictly between them.” It’s false: x = 0, y = 1 gives a
counterexample.

8. Using mathematical symbols (+, ·, quantifiers, etc.) only, give a definition of the predicate P (n): “n
is prime.”

n is prime iff it has exactly two divisors, 1 and n. To avoid the case n = 1, we can say: n is prime iff
n > 1 and whenever k ∈ N divides n, either k = 1 or k = n. We just need to expand the definition of “k
divides n”: ∃m ∈ N m · k = n. Putting all this together:

n > 1 ∧ ∀k ∈ N ∀m ∈ N m · k = n→ (k = 1 ∨ k = n).

Why are both of these quantifiers universal? Note that if we just plugged in the definition of “k divides n” in
our definition of primeness above, we’d get

n > 1 ∧ ∀k ∈ N(∃m ∈ N m · k = n)→ (k = 1 ∨ k = n).

(Note the parentheses.) Since P → Q is the same as ¬P ∨Q, this is equivalent to

n > 1 ∧ ∀k ∈ N¬(∃m ∈ N m · k = n) ∨ (k = 1 ∨ k = n).

Applying the rules for negating quantifiers, and the tautology (P → Q)↔ (¬P ∨Q) again, gives our original
answer above.

Note that replacing “∀m” by “∃m” in that original answer gives a predicate that is true for all n > 1 (and
so does not define primeness); can you see why?

9. The twin prime conjecture states: “there are infinitely many primes p such that p + 2 is also prime.”
Using symbols, give a statement of the twin prime conjecture. (You may use P (n) as an abbreviation

for the predicate you gave in the previous problem.)

∀x ∈ N ∃p ∈ N x < p ∧ P (p) ∧ P (p + 2).

This is because “there are infinitely many” for naturals is the same as “there are arbitrarily large” (“for all x,
there is some larger y...”
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