Math 215 - Solutions to Midterm 1 Review

October 4, 2018

1. Give a truth table for each of the following propositional forms:
(a) P = (PVQ)
(b) PA(P ¢ =Q)
(c) (PVQ)— R

Are any of these tautologies? Contradictions?

PlQ|PVQ|P—(PVQ) PlQ|Ps—-Q|PAP Q)
T[T T T TIT| F F
() T|F| T T b) T|F| T T
F|T| T T F|T T F
F|F| F T F|F| F F
PlQ|R|(PVQ)|-R|(PVQ)—-R
T|T|T| T F F
TIT|F| T T T
T|F|T| T F F
() T|F|F| T T T
F|T|T| T F F
F|T|F| T T T
F|F|T| F F T
F|F|F| F T T

(a) is a tautology; (b) and (c) are neither tautologies nor contradictions.
2. Prove by contradiction that if xy is even, then x is even or y is even.

Suppose not. Then zy is even, but both x and y are odd. Let a,b be integers such that x = 2a + 1 and
y=2b+1. Then

xy=(2a+1)(2b+1)=4ab+2a+2b+1=2(2ab+a+0b)+ 1.

So zy = 2k + 1 with = 2ab + a + b; then xy is odd. This contradicts our assumption that zy is even.

3. Show that if x € R with > —1, then for all n € N,
1+ne<(1+z)".
Where did you use the assumption that x > —17

We prove this by induction on n.
Our base case isn = 0. Then 1+ nz =1+0z =1 and (1 +2)" = (1 +2)° = 1. So we have the base
case.



Suppose inductively that we have some k € N with (1+kz) < (1+z)*. We now use the fact that z > —1:
This gives 1 + x > 0. Thus we can multiply through without changing the direction of the inequality:

(1+kx)(1+2z) < (14 2)k!
The left hand side is equal to 1 + (k + 1)z + kz?. Since kx? > 0, we have
T4+ (k+Dz <1+ (k+Da+ke? =1 +kx)(1+z) < (1+a)"h

Thus (by transitivity of <) we have the inequality in the case n =k + 1.
By the principle of induction, we have 1 + nz < (14 z)"™ for all x > —1 and n € N.

4. Show that for all integers n > 1:
> 2i-1=n’
i=1

Proof. By induction. Base case: n = 1.

1
}:m—1:2—1:1:1?
=1

For the inductive step, assume for some k > 1:

k
}:m—1:k?
i=1

Then:
Zf:ll 2i—1 = (Zle 2i— 1) +2(k+ 1) — 1 (definition of sum)
= k% +2(k + 1) — 1 (inductive hypothesis)
= (k+1)?
as needed. By the principle of induction, we have the identity for all n > 1. O

5. Show that for all sets A, B, if A C B then B¢ C A°.

Assume A, B are sets with A C B. That is, for all z, z € A implies x € B. We need to show B¢ C A€,
So suppose x € B¢, that is, © ¢ B. By contrapositive, we have x ¢ A, that is, x € A°. This shows B® C A°
as claimed.

6. Let A1, As, A3 be sets. Show there are sets By, By, B3 such that for ¢ with 1 < ¢ < 3, we have B; C A;,
A1 UAy U Az = By UByU Bs and the B; are disjoint: that is, B; N B; = @ whenever i # j.

We define By = Ay, By = Ay — A1, and B3 = A3 — (A1 U As). Clearly if x € B, we must have z € A;,
by definition of set difference; so B; C A; for i € {1,2,3}.

We need to show we obtain the same union. B;UB>UB3 C A;UA3UAg, since by the previous paragraph,
each A; is a subset of B;. We need to show the reverse inclusion.

Suppose z € A3 U A; U As. We have several cases.

If z € Ay, clearly z € By, hence x € By U By U Bs.

So suppose x ¢ Ap; then € As U As. If & € Ag, then 2 € Ay — A} = By C By U By U Bj as needed.

Finally, suppose © ¢ A; and = ¢ As; thatis, x ¢ A; U Ay. We must have © € Az. Hence z €
Ag* (A1UA2) :Bg Q Bl UBQUBg.

This completes the proof that A1 U Ay U A3 = B; U By U Bg.

All that is left to show is that the sets are disjoint. If © € B3, then « ¢ Ay U A, and so z ¢ By U Bs (since
B; C A; means x ¢ A; implies « ¢ B;). So the sets B; N B3 or By N By are empty. Similarly, if © € By, then
x ¢ Ay = By; so By N By = & as needed. Since these are all possible pairs of the sets By, By, B3, we have
shown these are pairwise disjoint.



7. Give a translation of each of the following in plain English; determine whether each is true or false.

b

(a) VeR3IyeNz <y
(b) yeZVzeRy<z-2

)
)
(c) IxreRIyeRy#0Nz+y==2

)

(d) VceNVyeNTzeNa<y— (z<zAz<y)

(a): “For all reals z, there is a natural number y greater than z." This is true; if x < 0 then y = 0 works,
and if z > 0 then there is some natural number y € (z,2 + 1], so = < y.

(b): “There is an integer y that is less than 22, for all reals z." This is true, since —1 < 0 < 22 for all
reals z.

(c): “There are reals z,y such that y is nonzero and  +y = z." This is false; if we had x + y = z for
any reals z,y, then subtracting = on both sides gives us y = 0.

(d): "For all pairs of naturals ,y, there exists some natural z so that if x < y, we have z < z < y.” Or:
“For naturals & < y, there exists a third natural z strictly between them.” It's false: x = 0,y = 1 gives a
counterexample.

8. Using mathematical symbols (+, -, quantifiers, etc.) only, give a definition of the predicate P(n): “n
is prime.”

n is prime iff it has exactly two divisors, 1 and n. To avoid the case n = 1, we can say: n is prime iff
n > 1 and whenever k € N divides n, either kK = 1 or k = n. We just need to expand the definition of "k
divides n": 3m € Nm - k = n. Putting all this together:

n>1AVkeNVmeNm-k=n— (k=1Vk=n).

Why are both of these quantifiers universal? Note that if we just plugged in the definition of “k divides n" in
our definition of primeness above, we'd get

n>1AVkeNEBmeNm-k=n)— (k=1Vk=n).
(Note the parentheses.) Since P — @ is the same as =P V @, this is equivalent to
n>1AVEeN-(IGmeNm-k=n)V(k=1Vk=n).

Applying the rules for negating quantifiers, and the tautology (P — Q) < (=P V Q) again, gives our original
answer above.

Note that replacing “vm" by “Im” in that original answer gives a predicate that is true for all n > 1 (and
so does not define primeness); can you see why?

9. The twin prime conjecture states: “there are infinitely many primes p such that p + 2 is also prime.”
Using symbols, give a statement of the twin prime conjecture. (You may use P(n) as an abbreviation
for the predicate you gave in the previous problem.)

VeeNIpeNz<pAPp)APp+2).

This is because “there are infinitely many” for naturals is the same as “there are arbitrarily large” (“for all z,
there is some larger y..."



