Math 215 - Solutions to Midterm 1 Review

October 4, 2018

1. Give a truth table for each of the following propositional forms:

- (a) $P \to (P \lor Q)$
- (b) $P \land (P \leftrightarrow \neg Q)$
- (c) $(P \lor Q) \to \neg R$

Are any of these tautologies? Contradictions?

(a) is a tautology; (b) and (c) are neither tautologies nor contradictions.

2. Prove by contradiction that if xy is even, then x is even or y is even.

Suppose not. Then xy is even, but both x and y are odd. Let a, b be integers such that x = 2a + 1 and y = 2b + 1. Then

$$xy = (2a+1)(2b+1) = 4ab + 2a + 2b + 1 = 2(2ab + a + b) + 1.$$

So xy = 2k + 1 with x = 2ab + a + b; then xy is odd. This contradicts our assumption that xy is even.

3. Show that if $x \in \mathbb{R}$ with $x \geq -1$, then for all $n \in \mathbb{N}$,

$$1 + nx \le (1+x)^n.$$

Where did you use the assumption that $x \ge -1$?

We prove this by induction on n.

Our base case is n = 0. Then 1 + nx = 1 + 0x = 1 and $(1 + x)^n = (1 + x)^0 = 1$. So we have the base case.

Suppose inductively that we have some $k \in \mathbb{N}$ with $(1+kx) \leq (1+x)^k$. We now use the fact that $x \geq -1$: This gives $1+x \geq 0$. Thus we can multiply through without changing the direction of the inequality:

$$(1+kx)(1+x) \le (1+x)^{k+1}$$

The left hand side is equal to $1 + (k+1)x + kx^2$. Since $kx^2 \ge 0$, we have

$$1 + (k+1)x \le 1 + (k+1)x + kx^2 = (1+kx)(1+x) \le (1+x)^{k+1}.$$

Thus (by transitivity of \leq) we have the inequality in the case n = k + 1.

By the principle of induction, we have $1 + nx \leq (1 + x)^n$ for all $x \geq -1$ and $n \in \mathbb{N}$.

4. Show that for all integers $n \ge 1$:

$$\sum_{i=1}^n 2i - 1 = n^2$$

Proof. By induction. Base case: n = 1.

$$\sum_{i=1}^{1} 2i - 1 = 2 - 1 = 1 = 1^{2}.$$

For the inductive step, assume for some $k \ge 1$:

$$\sum_{i=1}^{k} 2i - 1 = k^2$$

Then:

$$\sum_{i=1}^{k+1} 2i - 1 = \left(\sum_{i=1}^{k} 2i - 1\right) + 2(k+1) - 1 \text{ (definition of sum)} \\ = k^2 + 2(k+1) - 1 \text{ (inductive hypothesis)} \\ = (k+1)^2$$

as needed. By the principle of induction, we have the identity for all $n \ge 1$.

5. Show that for all sets A, B, if $A \subseteq B$ then $B^c \subseteq A^c$.

Assume A, B are sets with $A \subseteq B$. That is, for all $x, x \in A$ implies $x \in B$. We need to show $B^c \subseteq A^c$. So suppose $x \in B^c$, that is, $x \notin B$. By contrapositive, we have $x \notin A$, that is, $x \in A^c$. This shows $B^c \subseteq A^c$ as claimed.

6. Let A_1, A_2, A_3 be sets. Show there are sets B_1, B_2, B_3 such that for i with $1 \le i \le 3$, we have $B_i \subseteq A_i$, $A_1 \cup A_2 \cup A_3 = B_1 \cup B_2 \cup B_3$ and the B_i are *disjoint*: that is, $B_i \cap B_j = \emptyset$ whenever $i \ne j$.

We define $B_1 = A_1$, $B_2 = A_2 - A_1$, and $B_3 = A_3 - (A_1 \cup A_2)$. Clearly if $x \in B_i$ we must have $x \in A_i$, by definition of set difference; so $B_i \subseteq A_i$ for $i \in \{1, 2, 3\}$.

We need to show we obtain the same union. $B_1 \cup B_2 \cup B_3 \subseteq A_1 \cup A_2 \cup A_3$, since by the previous paragraph, each A_i is a subset of B_i . We need to show the reverse inclusion.

Suppose $x \in A_1 \cup A_2 \cup A_3$. We have several cases.

If $x \in A_1$, clearly $x \in B_1$, hence $x \in B_1 \cup B_2 \cup B_3$.

So suppose $x \notin A_1$; then $x \in A_2 \cup A_3$. If $x \in A_2$, then $x \in A_2 - A_1 = B_2 \subseteq B_1 \cup B_2 \cup B_3$ as needed. Finally, suppose $x \notin A_1$ and $x \notin A_2$; that is, $x \notin A_1 \cup A_2$. We must have $x \in A_3$. Hence $x \in A_3 - (A_1 \cup A_2) = B_3 \subseteq B_1 \cup B_2 \cup B_3$.

This completes the proof that $A_1 \cup A_2 \cup A_3 = B_1 \cup B_2 \cup B_3$.

All that is left to show is that the sets are disjoint. If $x \in B_3$, then $x \notin A_1 \cup A_2$, and so $x \notin B_1 \cup B_2$ (since $B_i \subseteq A_i$ means $x \notin A_i$ implies $x \notin B_i$). So the sets $B_1 \cap B_3$ or $B_2 \cap B_3$ are empty. Similarly, if $x \in B_2$, then $x \notin A_1 = B_1$; so $B_1 \cap B_2 = \emptyset$ as needed. Since these are all possible pairs of the sets B_1, B_2, B_3 , we have shown these are pairwise disjoint.

7. Give a translation of each of the following in plain English; determine whether each is true or false.

- (a) $\forall x \in \mathbb{R} \exists y \in \mathbb{N} x < y$
- (b) $\exists y \in \mathbb{Z} \ \forall z \in \mathbb{R} \ y < z \cdot z$
- (c) $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ y \neq 0 \land x + y = x$
- (d) $\forall x \in \mathbb{N} \ \forall y \in \mathbb{N} \ \exists z \in \mathbb{N} \ x < y \rightarrow (x < z \land z < y)$

(a): "For all reals x, there is a natural number y greater than x." This is true; if x < 0 then y = 0 works, and if $x \ge 0$ then there is some natural number $y \in (x, x + 1]$, so x < y.

(b): "There is an integer y that is less than z^2 , for all reals z." This is true, since $-1 < 0 \le z^2$ for all reals z.

(c): "There are reals x, y such that y is nonzero and x + y = x." This is false; if we had x + y = x for any reals x, y, then subtracting x on both sides gives us y = 0.

(d): "For all pairs of naturals x, y, there exists some natural z so that if x < y, we have x < z < y." Or: "For naturals x < y, there exists a third natural z strictly between them." It's false: x = 0, y = 1 gives a counterexample.

8. Using mathematical symbols $(+, \cdot, \text{ quantifiers, etc.})$ only, give a definition of the predicate P(n): "n is prime."

n is prime iff it has exactly two divisors, 1 and n. To avoid the case n = 1, we can say: n is prime iff n > 1 and whenever $k \in \mathbb{N}$ divides n, either k = 1 or k = n. We just need to expand the definition of "k divides n": $\exists m \in \mathbb{N} \ m \cdot k = n$. Putting all this together:

$$n > 1 \land \forall k \in \mathbb{N} \ \forall m \in \mathbb{N} \ m \cdot k = n \to (k = 1 \lor k = n).$$

Why are both of these quantifiers universal? Note that if we just plugged in the definition of "k divides n" in our definition of primeness above, we'd get

$$n > 1 \land \forall k \in \mathbb{N} (\exists m \in \mathbb{N} \ m \cdot k = n) \to (k = 1 \lor k = n).$$

(Note the parentheses.) Since $P \to Q$ is the same as $\neg P \lor Q$, this is equivalent to

$$n > 1 \land \forall k \in \mathbb{N} \neg (\exists m \in \mathbb{N} \ m \cdot k = n) \lor (k = 1 \lor k = n).$$

Applying the rules for negating quantifiers, and the tautology $(P \rightarrow Q) \leftrightarrow (\neg P \lor Q)$ again, gives our original answer above.

Note that replacing " $\forall m$ " by " $\exists m$ " in that original answer gives a predicate that is true for all n > 1 (and so does not define primeness); can you see why?

9. The twin prime conjecture states: "there are infinitely many primes p such that p + 2 is also prime."

Using symbols, give a statement of the twin prime conjecture. (You may use P(n) as an abbreviation for the predicate you gave in the previous problem.)

$$\forall x \in \mathbb{N} \exists p \in \mathbb{N} \ x$$

This is because "there are infinitely many" for naturals is the same as "there are arbitrarily large" ("for all x, there is some larger y..."