and the second district	Solutions
Name (Print): _	
NetID: _	

Math 210: Introduction to Advanced Mathematics

Midterm #1

October 5, 2018: 10-10:50am

- This exam contains 7 pages and 9 problems worth a total of 100 points. Please check to make sure your exam contains all pages and problems!
- No notes, books, calculators or other electronic devices should be out at any point during the exam.
 Phones should be off and put away.
- Write all proofs in complete sentences. Be sure to define any notation you introduce if it wasn't used
 in class. If proving a statement by induction, carefully state what you are proving, and what your
 inductive hypothesis is. If necessary, draw a box around your proof to separate it from any scratch
 work.
- · Good luck!

 (10 points) Using the provided grid, give a truth table for the propositional form: $P \rightarrow (Q \rightarrow (P \land Q))$

+2 setup correct row

P	a	Phal	Q -> PAQ	P → (Q → (P , Q))
T	T	丁	T	丁
T	F	F	T	T
F	T	F	F	T
F	F	F '	T	T

Is this a tautology, contradiction, or neither?

+4,2 matches last whoman

2. (5 points) Fill in the set-builder notation below so that A is the set of rational roots of the polynomial $p(x) = 4x^3 - 3x^2 - 8x + 6$:

$$A = \{x \in \mathbb{Q} \mid 4x^3 - 3x^2 - 8x + 6 = 9\}$$

- (12 points) Give a complete definition of each of the following notions.
 - (a) B ⊆ C (give a definition, not just the word)

(b) additive inverse

The add the inverse of a is -a.

or:
For all
$$X$$
 there is a unique y s.t.
 $x+y=0$; y is additive muerse of x
(c) graph of $f:A \to B$

{ (x, f(x)) | x ∈ A }

- (12 points) Below are several claims with attempts at proofs. For each "proof", decide whether the argument is correct; if it is incorrect, say precisely what the error in reasoning is.
 - (a) Claim. For all sets a, Ø ⊆ a.

Proof. For all sets a, either $\varnothing \subseteq a$ or $\varnothing \not\subseteq a$. Suppose for a contradiction that $\varnothing \not\subseteq a$. Then there must exist some $x \in \emptyset - a$. In particular $x \in \emptyset$. But this contradicts the definition of \emptyset as the set with no elements.

Correct. west system at the

(b) Claim For all reals x, |x − 7| < x² − 7.

Proof. We have for x = 5, that $|5 - 7| = 2 < 18 = 5^2 - 7$. This proves the claim for reals x.

3

Incorrect. Proves existence of such an x, not that claim hold for all x.

(c) Claim. Let x ∈ N. If x + 13 is composite, then x is prime.

Proof. We show the contrapositive. So suppose x is prime. We have the cases x = 2 or $x \neq 2$. If x=2 then x+13=15, which is composite. If $x\neq 2$ then because x is prime, x is odd. So x+13is a sum of two odds, and so is even. This proves x + 13 is composite if x is prime.

Invorrect. The proof is of the converse. not the contrapositive.

(d) Claim. For all functions f : R → R, if f is differentiable, then f is continuous.

Proof. Suppose for a contradiction that for all functions $f: \mathbb{R} \to \mathbb{R}$, if f is differentiable then f is not continuous. But then we have that $f(x) = x^2$ is a function which is both differentiable and continuous, a contradiction. This contradiction gives us that all differentiable functions are continuous, as desired.

Incorrect

Desired claim: Yf (fdrf -> fcts) Negation would be: If (f dif 1 7 (f cts)) But the "proof" gives 4f 7 (fdot - fcts) as the negation.

5. (20 points) Show for all naturals $n \ge 7$ that $n^2 + 4 > 7n$.

Proof: We show this by induction.

Base case: n=7.

Then $n^2 + 4 = 49 + 4 = 53 > 49 = 7n$.

This shows the base case.

For the inductive step, we may assume: $k^2 + 4 > 7k$ for some $k \ge 7$, $k \in IN$.

We have:

 $(k^2+4)>7k$

 $\Rightarrow k^2 + 2k + 1 + 4 > 7k + 2k + 1$

 $\Rightarrow (k+1)^2 + 4 > 9k + 1$

9k + 1 = 7k + 1 + 2k; smce k=7, 1+2k=7.

So 9k+1>7k+7=7(k+1).

Putting these together:

 $(k+1)^2 + 4 > 7(k+1)$.

This completes the inductive step.

claim for all naturals n27.

(14 points) (a) Show {12x − 3 | x ∈ Z} ⊆ {n ∈ Z | 3 divides n}.

We need to show: if n=12x-3 with x & I, then n B a multiple of 3. something

Suppose n= 112x-3. Then n=3(4x-1). Since 4x-1 ∈ Z, we have that 3 divides n as needed.

(b) Show that part (a) is false if the inclusion "⊆" is replaced with "=".

For the equality to hold we would just need "?" So we just need that & in the above. That is: there is n durable by 3, that is not of the form 12x-3 for any $x \in \mathbb{Z}$. So take n=6. Then if

have $12x-9 \Rightarrow x=\frac{4}{3} \notin \mathbb{Z}$.

So 6 Bin 2nd set, not in first.

- (12 points) In each part of this problem, you are given an attempted definition of a function. For each attempt, determine whether or not it yields a well-defined function. If it does not, explain why not.
 - (a) $f : \mathbb{R} \to \mathbb{R}$, f(x) = the least $y \in \mathbb{N}$ such that x < y.

2 Well-defined. I de statement to

(b) $g : \mathbb{R} \to \mathbb{R}$, $g(x) = \text{some } n \in \mathbb{Z} \text{ with } n < x < n + 1$.

4 Not well-defined. There is no such in when x is an integer.

(2 for explanation)

(c) $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $h(x, y) = x^y$.

Not-well-defined. If $(x_iy) = (2,-1)$, then $xy = 2^{-1} = \frac{1}{2}$, $(2 \text{ for which } B \text{ not in the codomain } \mathbb{Z}$.

(d) $i: \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$, $i(x, y) = \text{some } n \in \mathbb{N} \text{ with } x - y = n \text{ or } y - x = n$.

This is well-defined.

If x=y then x-y=y-x=0 ∈N;

If x<y then y-x ∈N, and x-y≠N.

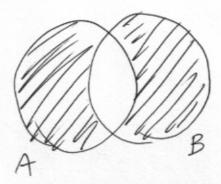
If y<x, x-y ∈N y-x≠N.

So output is unique for all pairs of integers x,y.

For the next two problems, define the symmetric difference of sets A and B, written $A \Delta B$,

$$A \Delta B := (A - B) \cup (B - A).$$

8. (3 points) Draw a Venn diagram of A and B, with $A \Delta B$ shaded in.



- 9. (12 points) Decide whether each stated relationship is true for all sets A, B or not:
 - (a) $\forall x \in A \ (x \in B \rightarrow x \notin A \Delta B)$

Each.

True.

(b) $A \in A \Delta B$

False.

(c) $(A \Delta B) \cap (B - A) = \emptyset$

False.

(d) $(A - B) \subseteq A \Delta B$

True.

(e) $A \Delta B \subseteq A^c \cap B^c$

False

(f) $A \Delta B = (A \cup B) - (A \cap B)$

True