Name (Print): Solutions

NetID:

NE ASIDERTNOS

Math 210: Introduction to Advanced Mathematics
Midterm #1

October 5, 2018: 4-4:50pm

box OCX SI sales

- This exam contains 7 pages and 9 problems worth a total of 100 points. Please check to make sure your exam contains all pages and problems!
- No notes, books, calculators or other electronic devices should be out at any point during the exam.
 Phones should be off and put away.
- Write all proofs in complete sentences. Be sure to define any notation you introduce if it wasn't used
 in class. If proving a statement by induction, carefully state what you are proving, and what your
 inductive hypothesis is. If necessary, draw a box around your proof to separate it from any scratch
 work.
- · Good luck!

 (10 points) Using the provided grid, give a truth table for the propositional form: $Q \wedge (P \leftrightarrow (\neg P \wedge Q))$

+1 each fully correct row	P	10	7P	Q 7PAQ	P (- PAQ)	Q1(P=0(-P1Q))
	T	Т	F	F	F	F
	T	F	F	F	F	F
	F	T	Т	T	F	F
	F	F	Т	F	T	F

Is this a tautology, contradiction, or neither?

14 if matches final column, above

contradiction

2. (5 points) Fill in the set-builder notation below so that A is the set of positive real roots of the polynomial $p(x) = 4x^3 - 3x^2 - 8x + 6$:

$$A = \{x \in \frac{|R| \times 0 \text{ and } p(x) = 0}{|R|^{2}}\}$$
or:
$$\frac{|R|^{2}}{|R|^{2}} p(x) = 0, \quad \text{etc.}$$
3. (12 points) Give a complete definition of each of the following notions.

- - (a) B × C (give a definition, not just the word)

Cartesian product of B and C:

$$B \times C = \{(b,c) | b \in B \text{ and } c \in C\}$$

(b) additive identity

or: the unique
$$x$$
 such that for all reals a , $a+x=a=x+a$

(c) range of $f: A \to B$

{yeB|y=f(x) for some
$$x \in A$$
}

or {f(x) | $x \in A$ }

- 4. (12 points) Below are several claims with attempts at proofs. For each "proof", decide whether the argument is correct; if it is incorrect, say precisely what the error in reasoning is.
 - (a) Claim. For all sets $a, \varnothing \subseteq a$.

false

Proof. Fix a set a. Clearly we have either $\varnothing \subseteq a$ or $a \subseteq \varnothing$. By the definition of \varnothing as the empty set, we have $a \notin \varnothing$, therefore $a \not\subseteq \varnothing$. By cases, we conclude that $\varnothing \subseteq a$.

3 Incorrect.

3

(b) Claim. For all integers x, if x = 10k - 5, then 5 divides x.

Proof. Suppose x is an integer such that x = 10k - 5 for some $k \in \mathbb{Z}$. Then x = 5(2k - 1), and it follows that 5 divides x, completing the proof.

Correct

(c) Claim For all reals x, $|x-7| < x^2 - 7$.

Proof. We have the cases $x \ge 7$ and x < 7. If $x \ge 7$ then $7x \le x^2$, and we have $|x - 7| = x - 7 < 7x - 7 \le x^2 - 7$. In the other case that x < 7, we have x - 7 < 0 and since $x^2 > 0$, we get $|x - 7| < x^2 - 7$. In either case we obtain the desired inequality.

Incorrect. The underlined inference does not follow from previous inequalities.

(d) Claim. For all functions f : R → R, if f is differentiable, then f is continuous.

Proof. Suppose for a contradiction that for all functions $f: \mathbb{R} \to \mathbb{R}$, if f is differentiable then f is not continuous. But then we have that $f(x) = x^2$ is a function which is both differentiable and continuous, a contradiction. This contradiction gives us that all differentiable functions are continuous, as desired.

Incorrect.

Desired claim: If fdif & fcts Negated, this is:

If fort 17 (fcts) so the assumption for a contradiction is not actually the negation of the claim.

5. (20 points) Show for all naturals $n \ge 4$ that $3^n > 2n^2 + 3n$.

We prove this by induction. In the base case, n=4. We have $3^n=3^4=81$ $2n^2+3n=44$ Since 81>44, we have base case.

For the inductive step, we assume that $3^k > 2k^2 + 3k$ for some $k \in \mathbb{N}$ with $k \ge 4$. Our goal is to show $3^{k+1} > 2(k+1)^2 + 3(k+1)$ $= 2k^2 + 4k + 2 + 3k + 3$ $= 2k^2 + 7k + 4k \cdot 5$

So we multiply our inductive hypothesis by 3, and obtain

 $3.3^{k} > 6k^{2} + 9k$ $\rightarrow 3^{k+1} > (2k^{2} + 7k + 7k) + 4k^{2} + 2k - 7k + 5$ $\rightarrow 3^{k+1} > 2(k+1)^{2} + 444 + 44k^{2} + 2k - 5$ Since $k \ge 4$, we have $3(k+1) + (4k^{2} + 2k - 5)$

4k2+2k-5> 64+8-5>0,

so we have shown

 $3^{k+1} > 2(k+1)^2 + 3(k+1)$.

By induction, we have shown the claim for all her

6. (14 points) (a) Show $\{x+13 \mid x \text{ is prime}\} \subseteq \{n \in \mathbb{N} \mid n \text{ is composite}\}.$

We just need to show; if n = x+13 with x prime, then n is composite.

Case 1: x=2. Then n=x+13=2+13=15, which is composed: x=2. Then x prime means x=3 odd, x>2. Then x=x+13=(odd+odd), so n=3 even and greater than 2. So we have n=2k some k>1, and n=3 composite.

(b) Show that part (a) is false if the inclusion "⊆" is replaced with "=".

TW3 is the same as showing that # "2" does not hold. That is, there is some composite in that is not equal to x+13 for any prime x.

For example: if n=21, then n=3.7 is com But if x+13=21, then x=8 which is not prime.

E.S. & (xix) = (AR)/M

there is no n with 12n n <-1

7. (12 points) In each part of this problem, you are given an attempted definition of a function. For each attempt, determine whether or not it yields a well-defined function. If it does not, explain why not.

(a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \text{the largest } y \in \mathbb{N} \text{ such that } y < x$.

(2 for explanation)

Not well-defined.

If $x \le 0$, then there is not any $y \in \mathbb{N}$ with y < x.

(b) $g : \mathbb{R} \to \mathbb{Z}$, g(x) = n such that $n \le x < n + 1$.

2

(every real x is in [n, n+1) for some unique integer, n.)

(c) $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, h(x,y) = |x-y|.

Well-defined.

2

(d) $i : \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$, i(x, y) =the least n with x < n and n < y.

(2 for explanation)

Not well-defined.

There needn't be any such n.

E.g. if (x cy) = (AMA)

(1,-1)

there is no n with I < n, n <-1.

For the next two problems, define the symmetric difference of sets A and B, written $A \triangle B$,

$$A \Delta B := (A \cup B) - (A \cap B)$$

8. (3 points) Draw a Venn diagram of A and B, with $A \Delta B$ shaded in.

9. (12 points) Decide whether each stated relationship is true for all sets A, B or not:

(a)
$$\exists x \in A (x \notin A \Delta B)$$

False. (could have
$$AnB = \emptyset$$
.)

(b)
$$A \Delta B = B \Delta A$$

True.

(c)
$$(A \Delta B) \cap (A \cap B) = \emptyset$$

True.

(d)
$$(A - B) \subseteq A \Delta B$$

True.

(e) $A \triangle B \subseteq A^c \cap B^c$

False.

(f)
$$A \Delta B = (A - B) \cup (B - A)$$
.

True.