Applied Linear Algebra Instructor: Hachtman Quiz 1 - 1/12/17

Name:

UIN:

This quiz has 2 pages, a front and a back! No notes, calculators, phones etc. are permitted.

- 1. (2 points) Let $A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 3 & 1 \end{bmatrix}$. Circle the matrices that can be obtained from A using a single elementary row operation.

 - (a) $\begin{vmatrix} 2 & 0 & -1 \\ 0 & 0 & 0 \end{vmatrix}$ (b) $\begin{vmatrix} 2 & 0 & -1 \\ 0 & 3 & \frac{3}{2} \end{vmatrix}$

 - (c) $\begin{bmatrix} 2 & -1 & 0 \\ 1 & 1 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 1 & 3 & 1 \end{bmatrix}$

Solution: (b) and (d).

- (a) could have only been gotten from multiplying R1 by 0, which is not a row operation.
- (b) is obtained by adding $-\frac{1}{2} \cdot R1$ to R2.
- (c) is obtained by switching two columns, which is not a row operation.
- (d) is obtained by multiplying R1 by $\frac{1}{2}$.
- 2. (3 points) Find all solutions to the linear system:

$$4x_1 + 2x_3 = 1$$
$$8x_1 + x_2 + 3x_3 = 1$$
$$4x_2 - 3x_3 = -2$$

Solution: The system is represented by the augmented matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 8 & 1 & 3 & 1 \\ 0 & 4 & -3 & -2 \end{bmatrix}$.

We can put this into RREF as follows:

Multiply R1 by $\frac{1}{4}$: $\begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{4} \\ 8 & 1 & 3 & 1 \\ 0 & 4 & -3 & -2 \end{bmatrix}$; add (-8)R1 to R2: $\begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{4} \\ 0 & 1 & -1 & -1 \\ 0 & 4 & -3 & -2 \end{bmatrix}$;

add (-4)R2 to R3: $\begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{4} \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$; add $(-\frac{1}{2})R3$ to R1: $\begin{bmatrix} 1 & 0 & 0 & -\frac{3}{4} \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$;

and add R3 to R2: $\begin{bmatrix} 1 & 0 & 0 & \frac{1}{4} \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$.

We thus have an equivalent matrix corresponding to the linear system $x_1 = -\frac{3}{4}$, $x_2 = 1$, $x_3 = 2$. The unique solution is $\left(-\frac{3}{4}, 1, 2\right)$.

3. (2 points) Determine all values of h for which the augmented matrix $\begin{bmatrix} 2 & h & 1 \\ 6 & 2 & -1 \end{bmatrix}$ corresponds to a consistent linear system.

Solution: Adding (-3)R1 to R2 gives the matrix $\begin{bmatrix} 2 & h & 1 \\ 0 & 2-3h & -4 \end{bmatrix}$. This is in echelon form; and it corresponds to a consistent linear system if and only if there is no row of all zeroes except for a nonzero rightmost entry. So for the system to be consistent we just need $2-3h \neq 0$. Therefore the system is consistent as long as $h \neq 2/3$.

4. (3 points) Find the reduced row echelon form of the matrix $\begin{bmatrix} 0 & 1 & 3 & -1 & 1 \\ 1 & 0 & 2 & -1 & -2 \\ 2 & -1 & 1 & 0 & 0 \end{bmatrix}$.

Solution: We row reduce, one step at a time.

Swap
$$R1$$
 and $R2$:
$$\begin{bmatrix} 1 & 0 & 2 & -1 & -2 \\ 0 & 1 & 3 & -1 & 1 \\ 2 & -1 & 1 & 0 & 0 \end{bmatrix};$$

Add
$$(-2)R1$$
 to $R3$:
$$\begin{bmatrix} 1 & 0 & 2 & -1 & -2 \\ 0 & 1 & 3 & -1 & 1 \\ 0 & -1 & -3 & 2 & 4 \end{bmatrix}$$
;

Add
$$R2$$
 to $R3$:
$$\begin{bmatrix} 1 & 0 & 2 & -1 & -2 \\ 0 & 1 & 3 & -1 & 1 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix};$$

Note this is in row echelon form but *not* in *reduced* row echelon form since there are nonzero entries above the pivot 1 in the 4th column.

Add
$$R3$$
 to $R1$:
$$\begin{bmatrix} 1 & 0 & 2 & 0 & 3 \\ 0 & 1 & 3 & -1 & 1 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix};$$

Add
$$R3$$
 to $R2$:
$$\begin{bmatrix} 1 & 0 & 2 & 0 & 3 \\ 0 & 1 & 3 & 0 & 6 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix}.$$