Applied Linear Algebra
Instructor: Hachtman
Quiz $10-3 / 31 / 17$

Name: \qquad

UIN:

This quiz has 2 pages, a front and a back! No notes, calculators, phones etc. are permitted. Show all your work.

1. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear transformation such that $T(\mathbf{v})$ is the result of rotating \mathbf{v} about the z-axis by an angle $\theta=\pi / 3$; let A be the matrix of T.
(a) (2 points) Find an eigenvector of A. What is the corresponding eigenvalue?

Solution: $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], 1$.
Explanation: An eigenvector of A is a vector $\mathbf{v} \in \mathbf{R}^{3}$ so that $A \mathbf{v}$ is a scalar multiple of \mathbf{v}. In particular, if \mathbf{v} is an eigenvector of A, then $T(\mathbf{v})=A \mathbf{v}$ is oriented in the same direction as \mathbf{v}. Here T is precisely a rotation of \mathbf{R}^{3} about the z-axis by angle $\pi / 3$. So the only vectors \mathbf{v} that can be eigenvectors are those along the z-axis. So any vector $\left[\begin{array}{l}0 \\ 0 \\ c\end{array}\right]$ with $c \neq 0$ is an eigenvector; clearly $T(\mathbf{v})=\mathbf{v}$ for all such \mathbf{v}, so the eigenvalue is 1 .
(b) (2 points) Is A diagonalizable? Explain your answer.

Solution: No, A is not diagonalizable. By the diagonalization theorem, A is diagonalizable iff there is a basis for \mathbf{R}^{3} consisting of eigenvectors for A. But this rotation changes the direction of any vector not along the z-axis, so A does not have any eigenvectors not along the z-axis, so there can be no such basis.
2. (3 points) Find an invertible matrix P and diagonal matrix D so that $A=P D P^{-1}$, where

$$
A=\left[\begin{array}{cc}
-2 & -5 \\
1 & 4
\end{array}\right]
$$

(The eigenvalues of A are $-1,3$.)
Solution: Let $D=\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]$. Then P can be any 2×2 matrix whose columns are eigenvectors for $-1,3$, respectively. So we find these:

$$
A-(-1) I=\left[\begin{array}{cc}
-1 & -5 \\
1 & 5
\end{array}\right]
$$

solving $-x_{1}-5 x_{2}=0$, we have $\left[\begin{array}{c}5 \\ -1\end{array}\right]$ is a -1 -eigenvector.
Next,

$$
A-3 I=\left[\begin{array}{cc}
-5 & -5 \\
1 & 1
\end{array}\right]
$$

and again solving the homogeneous system we get eigenvector $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is a 3-eigenvector.
So $D=\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right], P=\left[\begin{array}{cc}5 & 1 \\ -1 & -1\end{array}\right]$.
3. (3 points) The matrix $B=\left[\begin{array}{cc}3 & 1 \\ -2 & 1\end{array}\right]$ has complex eigenvalues. Find them.

Solution: The characteristic polynomial of B is $(3-\lambda)(1-\lambda)+2=\lambda^{2}-4 \lambda+5$. We use the quadratic formula to find the roots,

$$
\lambda=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{4 \pm \sqrt{16-20}}{2}=2 \pm i
$$

So the eigenvalues are $2+i$ and $2-i$.

