Applied Linear Algebra	Name:	
Instructor: Hachtman		
Quiz $12 - 4/21/17$	UIN:	

This quiz has 2 pages, a front and a back! No notes, calculators, phones etc. are permitted. Show all your work.

Recall: If $L = \operatorname{span}{\mathbf{u}}$, then $\operatorname{proj}_{L}(\mathbf{v}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{v}$.

1. (3 points) Fix a basis $\mathcal{B} = \left\{ \begin{bmatrix} 3\\-3\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\4 \end{bmatrix} \right\}$. Let $\mathbf{x} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Find $[\mathbf{x}]_{\mathcal{B}}$.

Solution: As usual, one could solve the equation $B\mathbf{y} = \mathbf{x}$ (where B is the matrix with columns the vectors of \mathcal{B} and $\mathbf{y} = [\mathbf{x}]_{\mathcal{B}}$), but it's quicker to notice that \mathcal{B} is an *orthogonal* basis, and therefore the entries y_i of the coordinate vector are

$$y_1 = \frac{\mathbf{x} \cdot \mathbf{b_1}}{\mathbf{b_1} \cdot \mathbf{b_1}} = \frac{0}{18} = 0$$
$$y_2 = \frac{\mathbf{x} \cdot \mathbf{b_2}}{\mathbf{b_2} \cdot \mathbf{b_2}} = \frac{3}{9} = 1/3$$
$$y_1 = \frac{\mathbf{x} \cdot \mathbf{b_3}}{\mathbf{b_3} \cdot \mathbf{b_3}} = \frac{6}{18} = 1/3$$

Hence $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 0\\ 1/3\\ 1/3 \end{bmatrix}$.

2. (4 points) Let $W = \operatorname{span} \left\{ \begin{bmatrix} 1\\3\\0\\3 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1\\0 \end{bmatrix} \right\}$. Find an orthogonal basis for W.

Solution: This is just Gram-Schmidt (and is really the easiest kind, since we just need to find a second vector orthogonal to the first but still in the span). Hence

•
$$\mathbf{u_1} = \mathbf{w_1} = \begin{bmatrix} 1\\3\\0\\3 \end{bmatrix}$$

• $\mathbf{u_2} = \mathbf{w_2} - \operatorname{proj}_{\operatorname{span}\{u_1\}}(\mathbf{w_2}) \begin{bmatrix} 2\\-1\\1\\0\\0 \end{bmatrix} - \frac{-1}{19} \begin{bmatrix} 1\\3\\0\\3\\0\\3 \end{bmatrix} = \frac{1}{19} \begin{bmatrix} 39\\-16\\19\\3\\3 \end{bmatrix}.$
So one orthogonal basis is $\left\{ \begin{bmatrix} 1\\3\\0\\3\\0\\3\\1 \end{bmatrix}, \begin{bmatrix} 39\\-16\\19\\3\\3\\1 \end{bmatrix} \right\}$ (note we made the answer slightly simpler

by scaling $\mathbf{u_2}$ by 19, since this doesn't change orthogonality or being in W).

3. (3 points) Find the least-squares solution to the equation

$$\begin{bmatrix} 1 & 3\\ 1 & -1\\ 1 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 5\\ 1\\ 0 \end{bmatrix}$$

(Recall least-squares solutions \mathbf{x} satisfy $A^T A \mathbf{x} = A^T \mathbf{b}$.) Solution: Computing $A^T A = \begin{bmatrix} 3 & 3 \\ 3 & 11 \end{bmatrix}$ and $A^T \mathbf{b} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$ we see that we must find solutions to $\begin{bmatrix} 3 & 3 \\ 3 & 11 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$ and a row reduction gives $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.