MATH 430 REVIEW FOR FINAL EXAM

- 1. Explain the difference (if any) between the sets:
 - (a) \varnothing and $\{\varnothing\}$;
 - (b) $\{n \in \mathbb{N} \mid n \text{ is even}\}\$ and $\{2n\}_{n \in \mathbb{N}};$
 - (c) $\{3,7\}$ and (3,7);
 - (d) $\{1,3,5\}$ and $\{5,5,1,3\}$.
- 2. (a) Show $\{\leftrightarrow, \land, \lor\}$ is not a complete set of connectives.
 - (b) Let \sqcup denote "exclusive or"; that is, $\alpha \sqcup \beta$ is equivalent to $(\alpha \lor \beta) \land \neg(\alpha \land \beta)$. Show $\{\neg, \sqcup\}$ is a complete set of connectives.
- 3. Consider a language \mathcal{L} with a single binary relation symbol R. Show for \mathcal{L} -structures $\mathfrak{A}, \mathfrak{B}$ that if \mathfrak{A} and \mathfrak{B} are isomorphic, then \mathfrak{A} and \mathfrak{B} are elementarily equivalent. Show the converse needn't hold, even if we assume \mathfrak{A} and \mathfrak{B} are both countable.
- 4. (a) Show that if Σ is a set of formulas in which the variable x doesn't appear free, then $\Sigma \models \psi$ implies $\Sigma \models \forall \psi$.
 - (b) Give an example of a formula ψ so that $\psi \to \forall x \psi$ is not logically valid.
- 5. Consider the structure $\mathfrak{A} = (\mathbb{Z}; <)$ of integers with order.
 - (a) Show the graph of the successor function, $\{\langle n, n+1 \rangle \mid n \in \mathbb{Z}\}$, is a definable relation in \mathfrak{A} .
 - (b) Similarly, show $\{\langle n, n+4 \rangle \mid n \in \mathbb{Z}\}$ is definable in \mathfrak{A} .
 - (c) Show that the only definable subsets of $\mathbb Z$ in $\mathfrak A$ are \varnothing and $\mathbb Z$. (Hint: Given $R\subseteq \mathbb Z$ nontrivial, find an automorphism of $\mathfrak A$ that doesn't fix R.)
- 6. Consider the first order language with a single binary relation symbol, E. Let $\mathfrak{M} = (|\mathfrak{M}|; E^{\mathfrak{M}})$ be a structure so that $|\mathfrak{M}|$ is an infinite set, and $E^{\mathfrak{M}}$ is an equivalence relation on \mathfrak{M} with precisely two classes, both of which are infinite.
 - (a) Show Th \mathfrak{M} is \aleph_0 -categorical, but not κ -categorical for some uncountable κ .
 - (b) Is $Th \mathfrak{M}$ finitely axiomatizable?
- 7. Consider a language \mathcal{L} with a binary relation symbol E and unary relation symbols R_1, \ldots, R_k .
 - (a) Give an example of a set Σ of \mathcal{L} -formulas so that for \mathcal{L} -structures \mathfrak{A} , we have $\mathfrak{A} \models \Sigma$ iff $(|\mathfrak{A}|; E^{\mathfrak{A}})$ is a graph and $\{\langle a, i \rangle \mid a \in |\mathfrak{A}| \text{ and } a \in R_i^{\mathfrak{A}}\}$ is a k-coloring of this graph.
 - (b) Use the compactness theorem for first order logic to show that a graph is k-colorable if all of its finite subgraphs are. (Hint: You may need to adjoin constants for elements of the graph you are dealing with.)
- 8. We say a linear order (L;<) is a well-order if any non-empty subset $A\subseteq L$ has a <-least element.
 - Show being a well-order is not axiomatizable: Namely, show that whenever Σ is a set of $\{<\}$ -sentences so that $(L;<) \models \Sigma$ for every well-order (L;<), there is a model of Σ that is *not* a well-order. (This uses compactness—try adding infinitely many constants to the language.)
- 9. Show Th(\mathbb{Z} ; <) is not \aleph_0 -categorical.

- 10. (a) Define what it means for a theory T to admit quantifier elimination.
 - (b) Let T be the theory of the structure ($|\mathfrak{A}|$; $P^{\mathfrak{A}}$), where $P^{\mathfrak{A}}$ is an infinite set with infinite complement in $|\mathfrak{A}|$. Show T admits quantifier elimination.
- 11. Show the theory of $\mathfrak{R}_{\sin} = (\mathbb{R}; 0, 1, +, \cdot, \sin)$ is not decidable. (It is a theorem of Tarski that $(\mathbb{R}; 0, 1, +, \cdot)$ is decidable. The idea is that the function $\sin(x)$ lets you define \mathfrak{R} inside \mathfrak{R}_{\sin} ; appeal to Gödel's incompleteness theorem.)
- 12. (Challenge problem.) Show that for any effectively enumerable set A of sentences with $A \subseteq \text{Th } \mathfrak{N}$, there is a *complete* consistent theory $T \supseteq A$ so that

$$#T = \{ \#\sigma \mid \sigma \in T \}$$

is a definable set in \mathfrak{N} . (Note that by Gödel's incompleteness theorem, #T cannot be recursive; and by Tarski's theorem on non-definability of truth, $T \neq \operatorname{Th} \mathfrak{N}$.)