$\begin{array}{c} {\rm MATH} \ 430 \\ {\rm HOMEWORK} \ 10 \ - \ {\rm DUE} \ {\rm WEDNESDAY}, \ {\rm APRIL} \ 20 \end{array}$

1. Give an example of a dense linear order without endpoints that has the same cardinality as \mathbb{R} , but is not isomorphic to $(\mathbb{R}, <)$.

2. The complex conjugate \overline{z} of a number $z = a + bi \in \mathbb{C}$, where $a, b \in \mathbb{R}$, is defined by setting $\overline{z} = \overline{a + bi} = a - bi$. Is the map that sends z to \overline{z} a field automorphism of \mathbb{C} ? Prove your answer.

3. Show the field $(\mathbb{R}; 0, 1, +, \cdot)$ has nontrivial automorphisms, but the only automorphism of $(\mathbb{R}; 0, 1, +, \cdot, <)$ is the identity map.