$\begin{array}{c} {\rm MATH~430} \\ {\rm HOMEWORK~11--~DUE~FRIDAY,~APRIL~29} \end{array}$

- 1. Show, for any finite $F \subseteq \operatorname{Th} \mathfrak{N}_S$, that $F \not\models \operatorname{Th} \mathfrak{N}_S$. (Recall here $\mathfrak{N}_S = (\mathbb{N}; 0, S)$. This uses compactness.)
- 2. Suppose T is a theory so that for any formula φ of the form $\exists x \theta$, with θ quantifier-free, there is a quantifier-free formula ψ so that $T \models \varphi \leftrightarrow \psi$.

Show (by an induction on formulas) that T admits quantifier elimination.

- 3. Show $Th(\mathbb{Q}; <)$ admits quantifier elimination. (Note the language has equality.)
- 4. Recall a model \mathfrak{M} of Th \mathfrak{N} is nonstandard if it is not isomorphic to \mathfrak{N} . In this problem you will show there are uncountably many countable nonstandard models of Th \mathfrak{N} .
- (a) Let $X \subseteq \mathbb{N}$ be arbitrary. Show there is a countable nonstandard model \mathfrak{M}_X of Th \mathfrak{N} so that for some $a \in |\mathfrak{M}_X|$, we have $X = \{n \in \mathbb{N} \mid \mathfrak{M}_X \models (\exists x)x \cdot S^{p_n}(0) = a\}$. (Here p_n is the n-th prime and $S^k(0)$ is the term for the k-th successor of 0.) (Hint: Expand the language with a constant c and use compactness.)
- (b) For each $X \subseteq \mathbb{N}$, choose a model \mathfrak{M}_X as in the previous part. Show the map $f: X \mapsto \mathfrak{M}_X$ is countable-to-one (that is, $f^{-1}(\mathfrak{M})$ is countable for all models \mathfrak{M}).
- (c) Use this to argue that there are uncountably many countable models of Th $\mathfrak N$ up to isomorphism.