$\begin{array}{c} \text{MATH 430} \\ \text{HOMEWORK 4: DUE FRIDAY FEB. 12} \end{array}$

From Enderton: Section 1.5 (p52): 1, 4. Section 1.7 (p65): 1, 4, 5.

- 1. Let \leq be a partial order defined on a *finite* set X. Show that there is a \leq -minimal element $m \in X$; that is, an $m \in X$ so that for all $x \neq m$ in $X, x \not\leq m$.
- 2. Suppose $\{S_n \mid n \in \mathbb{N}\}$ is a collection of *finite* subsets of \mathbb{N} , such that whenever $F \subseteq \mathbb{N}$ is finite, there is a set $K_F \subseteq \mathbb{N}$ so that $|K_F \cap S_n| = 1$ for all $n \in F$.
- (a) Show there is a set K so that $|K \cap S_n| = 1$ for all $n \in \mathbb{N}$. (Use compactness.)
- (b) Show that the conclusion in (a) can fail if we do not assume the sets S_n are finite.