MATH 430 REVIEW FOR MIDTERM 1

- 1. (a) State the Cantor-Schroder-Bernstein Theorem.
- (b) Show the set $\{f \in \mathbb{N}^{\mathbb{N}} \mid f \text{ is a non-increasing function}\}$ is countable.

(c) Show $\mathbb{R} \sim \mathbb{R}^{\mathbb{N}}$.

- 2. (a) Define what it means for (A, \prec) to be a linear order.
- (b) Is $(\mathcal{P}(\mathbb{N}), \subseteq)$ a linear order?
- (c) Define a relation \leq on $\mathbb{N}^{\mathbb{N}}$ by letting $f \leq g$ iff f = g or, if n is least such that $f(n) \neq g(n)$, we have f(n) < g(n). Is $(\mathbb{N}^{\mathbb{N}}, \leq)$ a linear order?
- 3. (a) State the compactness theorem for propositional logic.
- (b) Prove that the compactness theorem is equivalent to the statement that $\Sigma \models \tau$ iff there is some finite subset $\Sigma_0 \subseteq \Sigma$ so that $\Sigma_0 \models \tau$.
- 4. Recall $\Sigma \vdash \tau$ means there is a deduction of τ from Σ .
- (a) Define "deduction of τ from Σ ."
- (b) Prove the soundness theorem: If $\Sigma \vdash \tau$, then $\Sigma \models \tau$.
- 5. Let \sqcup denote "exclusive or", that is,

$$A \sqcup B \iff (A \lor B) \land \neg (A \land B).$$

Is $\{\neg, \sqcup\}$ a complete set of connectives? Prove your answer.

6. Let G = (X, E) be a graph. We say that G is *bipartite* if there is a set $A \subseteq X$ so that vertices in A are only E-adjacent to vertices in $X \setminus A$, and vice versa; that is, xEy implies exactly one of x, y is in A, for all $x, y \in X$.

Let \mathcal{S} be a set of sentence symbols indexed by vertices in G, that is,

$$\mathcal{S} = \{A_x \mid x \in X\}.$$

Give an example of a set Σ of wffs that is satisfiable if and only if G is bipartite.