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1. (10 points) Let L be a first-order language, and let A and B be L-structures.

(a) (4 points) What does it mean for a function h to be a homomorphism from A to B?

A homomorphism is a function h : |A| → |B| such that h preserves all of the interpretations of
the symbols of L; more precisely,

• if R is an n-ary relation symbol in L, then 〈a1, . . . , an〉 ∈ RA ⇐⇒ 〈h(a1), . . . , h(an)〉 ∈ RB,
for all a1, . . . , an ∈ |A|;
• if f is an n-ary function symbol in L, then h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)), for all
a1, . . . , an ∈ |A|;
• if c is a constant symbol in L, then h(cA) = cB.

(b) (6 points) Prove that if A and B are isomorphic, then they are elementarily equivalent.

This is by induction on formula complexity. We show the stronger statement that whenever s is
a variable assignment and φ is a formula, then A |= φ[s] iff B |= φ[h ◦ s].
Stepping stone: for any term t, h(s̄(t)) = h ◦ s(t).
Well, supposing we have this, then for atomic formulas, we have

A; s |= t1 = t2 ⇐⇒ s̄(t1) = s̄(t2)

⇐⇒ h(s̄(t1)) = h(s̄(t2)) (by the assumption that h is one-to-one)

⇐⇒ h ◦ s(t1) = h ◦ s(t2)
⇐⇒ B;h ◦ s |= t1 = t2.

The same argument gives it for atomic formulas of the form R(t1, . . . , tn), using the assumption
that h is a homomorphism.

Now suppose inductively that we’ve proved it for formulas ψ, φ; we need to show it for ψ → φ,
for ¬φ, and for ∀xφ.

ψ → φ:

A; s |= ψ → φ ⇐⇒ A; s 6|= ψ or A; s |= φ

⇐⇒ B;h ◦ s 6|= ψ or B;h ◦ s |= φ (by inductive hypothesis)

⇐⇒ B;h ◦ s |= ψ → φ.

¬φ:

A; s |= ¬φ ⇐⇒ A; s 6|= φ

⇐⇒ B;h ◦ s 6|= φ (by inductive hypothesis)

⇐⇒ B;h ◦ s |= ¬φ.

Finally, ∀xφ:

A; s |= ∀xφ ⇐⇒ for all a ∈ |A|, A; s(x|a) |= φ

⇐⇒ for all a ∈ |A|, B;h ◦ s(x|h(a)) |= φ (by inductive hypothesis)

⇐⇒ for all b ∈ |B|, B;h ◦ s(x|b) |= φ (by assumption that h is surjective)

⇐⇒ B;h ◦ s |= ∀xφ.
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2. (10 points) Suppose Γ is a set of sentences. Show that if Γ ` ϕ, then Γ ` ∀xϕ. (If you use any
theorems from class, you must state these precisely!)

There are two ways to do this. The first is probably easier, and uses the completeness and soundness
theorems, which taken together, state: For any set of wffs Γ and wff ψ, Γ |= ψ iff Γ ` ψ. In particular,
it’s sufficient to show that Γ |= φ implies Γ |= ∀xφ.

So suppose Γ |= φ. We want to conclude Γ |= ∀xφ; so suppose A; s is a structure and variable assignment
so that A; s |= Γ. To show A; s |= ∀xφ, it’s enough to show that for every a ∈ |A|, A; s(x|a) |= φ. Since
Γ has no free variables, we have that s(x|a) and s agree on all free variables appearing in Γ, so that
by a theorem from class, A; s(x|a) |= Γ. Then by our assumption that Γ |= φ, we have A; s(x|a) |= φ,
which is exactly what we needed.

We also could have proved this by induction on the length of the deduction of φ. Suppose φ is the last
formula in the deduction 〈α1, . . . , αn〉, and that inductively, we have the claim for all αi with i < n.
We have 3 cases:

1. φ ∈ Λ. Then since Λ is closed under generalization, also ∀xφ ∈ Λ.

2. φ ∈ Γ. Then φ is a sentence, and in particular, x does not occur free in φ. “φ→ ∀xφ” is then a
logical axiom, so we may apply modus ponens to deduce ∀xφ from Γ.

3. αi is αj → φ for some i, j < n. By our inductive hypothesis, ∀xαi, which is ∀x(αj → φ), and
∀xαj , are both provable from Γ. Now

∀x(αj → φ)→ ∀xαj → ∀xφ

is a logical axiom. Applying modus ponens twice to this formula, we obtain a deduction of ∀xφ.



Math 430: Formal Logic. Solutions to Midterm #2 Page 4 of 6

3. (10 points) For each of the following sets, decide whether it is definable in the structure (Z; +); you
must prove your answer.

(a) {0}
Yes, it’s defined by the wff “∀v2v1 + v2 = v2”.

(b) {1}
No. Consider the map h : Z → Z defined by h(n) = −n. This is a homomorphism, since
h(n+m) = −(n+m) = −n−m = h(n) + h(m); and is obviously 1-1 and onto. But h(1) 6= 1, so
{1} could not possibly be definable since definable sets are fixed by automorphisms.

(c) {〈x, y〉 ∈ Z2 | x < y}
The same automorphism as in part (b) witnesses that this set is not definable, since we have x < y
iff h(y) < h(x), for all x, y ∈ Z.

(d) {〈x, y〉 ∈ Z2 | x = −y}
Yes, this is definable: in brief, we can say “v1 + v2 = 0”, or, in full, (∃v3)((∀v2)(v3 + v2 =
v2) ∧ v1 + v2 = v3).

(e) {〈x, y, z〉 ∈ Z3 | x · y = z}
No, not. And the same automorphism works: 〈1, 1, 1〉 is in this set, but its pointwise image under
h, 〈−1,−1,−1〉, is not.



Math 430: Formal Logic. Solutions to Midterm #2 Page 5 of 6

4. (10 points) Let L be the language with equality plus a single binary relation symbol, E. We say a graph
G = (X;EG) is connected if whenever x, y ∈ X are distinct, there is a finite sequence 〈x1, x2, . . . , xn〉
so that x1 = x, xn = y, and 〈xi, xi+1〉 ∈ EG for all 1 ≤ i < n.

(a) (4 points) Write down an L-sentence that is not satisfied by any connected graph.

For example: “∃v1∃v2(v1 6= v2 ∧ ∀v3(¬Ev1v3))” works: This says that there are at least two
vertices, but there is some vertex who has no edge-neighbor.

(b) (6 points) Show there is no set Σ of L-sentences such that: G |= Σ iff G is a connected graph.

Expand the language by two constant symbols c, d and let θn be the sentence in the expanded
language that says c, d are not connected by any path of length n; this could be written

∀v1∀v2∀v3 . . . ∀vn(¬=v1c) ∨ (¬Ev1v2) ∨ (¬Ev2v3) ∨ · · · ∨ (¬Evn−1vn) ∨ (¬=vnd).

Now suppose towards a contradiction that Σ is a set of sentences satisfied by precisely the con-
nected graphs. We claim the theory Σ ∪ {θn}n∈N is satisfiable. By compactness, it is enough
to show that every finite subset is satisfiable; indeed, we show Σ ∪ {θn}n≤N is satisfiable, for
each natural number N . We let GN be the graph with N + 1 vertices, x1, . . . , xN+1, so that
〈xi, xi+1〉 ∈ EG for all i ≤ N ; we interpret cGN = x1 and dGN = xN+1. Since the shortest path
joining x1 and xN+1 has length N+1, this graph must model θi for all i ≤ N , and since the graph
is connected, it must satisfy Σ.

Now by compactness we get a model G∗ of Σ ∪ {θn}n∈ω. Regarding this as purely a graph (by
forgetting about the interpretations of c, d), this must be a connected graph, since it satisfies Σ.
Now cG

∗
and dG

∗
are vertices in |G∗|, so must be joined by a path; say this path has length k. But

this contradicts the fact that G∗ satisfies θk. This contradiction finishes the proof.
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5. (10 points) Let E be the set of even integers, {2n | n ∈ Z}. Show (R;E) and (Z;E), regarded as
structures in the language with a single unary predicate P , are elementarily equivalent.

By the downward Lowenheim Skolem theorem, there is a structure C that is countable, and so that C
and (R;E) are elementarily equivalent.

Now for each n, (R;E) and (Z;E) both satisfy the sentence stating: “There are at least n distinct
objects x so that P (x) holds.” As well as: “There are at least n distinct objects so that P (x) fails.”
In particular, whatever C is, we have that |C| is a countably infinite set, and both P C and |C| \ P C are
countably infinite.

Since E and Z \ E are both countably infinite, we may then fix bijections h1 : P C → E and h2 :
|C| \ P C → Z \ E. Then h := h1 ∪ h2 is a bijection between |C| and Z, and what’s more, it is a
homomorphism of L-structures C and (Z;E).

So C and (Z;E) are isomorphic, hence by problem 1, are elementarily equivalent. By design, C and
(R;E) are elementarily equivalent. So by transitivity of elementarily equivalence, we have that (R;E)
and (Z;E) are elementarily equivalent.


