MATH 430: FORMAL LOGIC SPRING 2018 HOMEWORK 1

Due Friday, February 2.

1. Write out the truth tables for the following statements:

- (a) $P \lor Q \land \neg (Q \to P)$
- (b) $(P \lor Q) \leftrightarrow \neg (Q \land R)$

For each of these, find a statement in disjunctive normal form which is propositionally equivalent to it.

2. Recall a natural number $p \neq 1$ is prime if its only divisors are 1 and itself. Two primes p and q are called *twin primes* if |p - q| = 2.

- (a) Write down a formula P(n) in the language of arithmetic expressing the property "n is prime."
- (b) Write down a sentence expressing the *twin prime conjecture*: "there are infinitely many pairs of twin primes." (You're not meant to write out your formula from part (a), but instead to write P(n) as an abbreviation for it.)

3. Define a binary relation \square on the natural numbers \mathbb{N} by setting $m \square n$ iff m is even and n is odd, or m and n are both odd and m < n, or m and n are both even and m < n.

Find a sentence in the language \mathcal{L} with one binary relation symbol that is true in the structure (\mathbb{N}, \Box) , but false in the structure $(\mathbb{N}, <)$. (Hint: Start by trying to draw a picture of the order \Box . You should explain why your answer works!)

4. (Extra Credit.) You find yourself in a distant land on your way to deliver a message to the castle. In this land there are three sorts of people: *workers* (who always tell the truth), *businessmen* (who always lie), and *students* (who sometimes lie, and sometimes tell the truth). You come to a fork in the road, near which are standing a worker, a student, and a businessman—but you can't tell which is which. By asking two yes-or-no questions (which you can put to any two of the three individuals), find which path leads to the castle.