MATH 430: FORMAL LOGIC SPRING 2018 HOMEWORK 2 SOLUTIONS

1. Let T be a first order theory and φ be a formula.

(a) Prove that $T \vdash \neg \varphi$ if and only if $T \cup \{\varphi\}$ is inconsistent.

(b) Prove that if T is inconsistent, then $T \vdash \psi$ for all formulas ψ .

(a) First suppose $T \vdash \neg \varphi$. If s is a deduction of $\neg \varphi$ from T, then we can extend s to a proof from $T \cup \{\varphi\}$, by the steps:

- $\neg \varphi \rightarrow (\varphi \rightarrow \varphi \land \neg \varphi)$ (tautology),
- $\varphi \to \varphi \land \neg \varphi$ (modus ponens from previous two lines),
- φ (assumption),
- $\varphi \wedge \neg \varphi$ (modus ponens from previous two lines).

This shows $T \cup \{\varphi\}$ is inconsistent.

Suppose $T \cup \{\varphi\}$ is inconsistent. By definition, $T \cup \{\varphi\} \vdash \psi \land \neg \psi$ for some formula ψ . By the deduction theorem, we have $T \vdash (\varphi \to (\psi \land \neg \psi))$. Let s be a deduction witnessing this. Now

$$(\varphi \to (\psi \land \neg \psi)) \to \neg \varphi$$

is a tautology. Therefore we can add two steps to the deduction s: the displayed tautology, followed by $\neg \varphi$ (by an application of Modus Ponens). This is then a deduction of $\neg \varphi$ from T.

(b) Notice $(\varphi \land \neg \varphi) \to \psi$ is a tautology for any choice of formulas φ, ψ . Using this it's easy to get a proof of ψ from an inconsistent theory, for any formula ψ .

2. Write down a deduction witnessing $\emptyset \vdash \forall x \varphi \rightarrow \exists x \varphi$.

- (1) $(\forall x \varphi \to \varphi) \to ((\varphi \to \exists x \varphi) \to (\forall x \varphi \to \exists x \varphi))$ (Tautology)
- (2) $\forall x \varphi \to \varphi$ (Axiom 2)
- (3) $(\varphi \to \exists x \varphi) \to (\forall x \varphi \to \exists x \varphi)$ (Modus ponens, lines 1 and 2)
- (4) $(\forall x \neg \varphi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \neg \forall x \neg \varphi)$ (Tautology)
- (5) $\forall x \neg \varphi \rightarrow \neg \varphi \text{ (Axiom 2)}$
- (6) $\varphi \to \neg \forall x \neg \varphi$ (Modus ponens, lines 4 and 5)
- (7) $(\varphi \to \neg \forall x \neg \varphi) \to ((\exists x \varphi \leftrightarrow \neg \forall x \neg \varphi) \to (\varphi \to \exists x \varphi))$ (Tautology)
- (8) $(\exists x \varphi \leftrightarrow \neg \forall x \neg \varphi) \rightarrow (\varphi \rightarrow \exists x \varphi)$ (Modus ponens, lines 6 and 7)
- (9) $\exists x \varphi \leftrightarrow \neg \forall x \neg \varphi \text{ (Axiom 5)}$
- (10) $\varphi \to \exists x \varphi$ (Modus ponens, lines 8 and 9)
- (11) $\forall x \varphi \rightarrow \exists x \varphi$ (Modus ponens, lines 3 and 10)

The most subtle point in this deduction is the use of Axiom 2, applied to each of the formulas φ , $\neg \varphi$. Recall Axiom 2 says $\forall x P(x) \rightarrow P(t)$ is an axiom, whenever t is a term such that no free variable in t is bound by a quantifier of P(t); recall P(t) is obtained by replacing all free occurrences of x in P(x) by t. In line 2 of the above deduction, we are taking P to be φ , and the term t to just be x. And x is always a term t with the

property just mentioned—we're just replacing *free* occurrences of x by t = x, so no such "replacement" results in x being bound!

You should convince yourself, also, that all of the lines listed as tautologies really are: For example, the first line has the form $(P \to Q) \to ((Q \to R) \to (P \to R))$.

3. Show that no one of the following sentences is logically implied by the other two.

(a) $\forall x \forall y \forall z (P(x, y) \rightarrow (P(y, z) \rightarrow P(x, z)))$

(b) $\forall x \forall y (P(x, y) \rightarrow (P(y, x) \rightarrow x = y))$

(c) $\forall x \exists y P(x, y) \rightarrow \exists y \forall x P(x, y)$

For each part we give a structure that does not model that part, but does satisfy the other two.

(a) $(\{0, 1, 2\}, R)$, where $\langle i, j \rangle \in R$ iff j = i + 1. (b) $(\{0, 1\}, \{0, 1\} \times \{0, 1\})$.

(c)
$$(\mathbb{N}, \leq)$$

4. Prove $T \models \varphi \land \neg \varphi$ if and only if T is unsatisfiable.

For the forward direction, we prove the contrapositive. Suppose T is satisfiable, so there are a structure \mathcal{A} and assignment $s: V \to A$ so that $\mathcal{A} \models T[s]$. It's not too hard to see $\mathcal{A} \not\models (\varphi \land \neg \varphi)[s]$, since by the inductive definition of satisfaction, $\mathcal{A} \models (\neg \varphi)[s]$ iff $\mathcal{A} \not\models \varphi[s]$. So \mathcal{A}, s witness that $T \not\models \varphi \land \neg \varphi$.

Conversely, suppose T is unsatisfiable. Then every model of T is a model of $\varphi \wedge \neg \varphi$, since there *aren't any* models of T—that is, we have $T \models \varphi \wedge \neg \varphi$ vacuously.