Math 430: Formal Logic	Name (Print):	

Midterm #2

April 13, 2018

- This exam contains 6 pages and 7 problems worth a total of 100 points. Please check to make sure your exam contains all pages and problems!
- No notes, books, calculators or other electronic devices should be out at any point during the exam. Phones should be off and put away.
- Write all proofs in complete sentences. Be sure to define any notation you introduce if it wasn't used in class. If proving a statement by induction, carefully state what you are proving, and what your inductive hypothesis is.
- Good luck!

(12 points) Give the full definition or statement of each of the following.
 (a) ordinal

(b) transitive set

- (c) Completeness Theorem
- (d) complete theory
- 2. (9 points) For each of the following sentences in the language with one binary relation symbol <, give a translation into English that makes the meaning (in the context of strict linear orders) clear.
 - (a) $\forall x (\exists y \ y < x)$

(b)
$$\exists x \exists y (x < y \land \forall z \neg (x < z \land z < y))$$

- (c) $\forall x [(\exists y \ y < x) \rightarrow \exists y (y < x \land \forall z (z < x \rightarrow (z < y \lor z = y)))]$
- 3. (12 points) Fill in the table below with "TRUE" or "FALSE" to indicate whether the corresponding sentence from Problem 2 is satisfied by that row's structure.

	(a)	(b)	(c)
$(\mathbb{Z};<)$			
([0,1);<)			
$(\mathbb{N}^2;<_{\mathrm{Lex}})$			
$(\omega+1;\in)$			

4. (20 points) In the following table, the first row gives three structures with universe \mathbb{R} ; the symbols $<, +, \cdot$ are interpreted as usual. The first column gives three subsets of the reals.

_	$(\mathbb{R};<)$	$(\mathbb{R};+)$	$(\mathbb{R};\cdot)$
[0,1]	1	2	3
$(-\infty, 0]$	(4)	5	6
$\mathbb{R}\setminus\mathbb{Q}$	(7)	8	9

(a) For each of the 9 cells, write "yes" if the subset of ℝ in its row is the universe of a substructure of the structure heading its column. In the other cells, write an equation or expression that witnesses that it isn't a substructure.

(b) Of those cells in which you wrote "yes," exactly one should be an elementary substructure. Which is it? How do you know?

(c) For the remaining (non-elementary) substructures, write down a formula witnessing that the substructure is not elementary.

- 5. (15 points) Let \mathcal{E} be the class of structures $(A; \approx)$ so that \approx is an equivalence relation on A with infinitely many classes.
 - (a) Show \mathcal{E} is axiomatizable.

We must show that there is some collection Σ of sentences so that $(A; \approx) \in \mathcal{E}$ if and only if $(A; \approx) \models \Sigma$. Σ must include the axioms for an equivalence relation: . . .

Now $(A; \approx)$ is an equivalence relation, then it has infinitely many equivalence classes if and only if for each n, there are at least n elements of A, $x_1, \ldots, x_n \in A$, so that $x_i \not\approx x_j$ whenever $i \neq j$. So let σ_n be the sentence. . .

(b) Show \mathcal{E} is not finitely axiomatizable.

Suppose towards a contradiction that \mathcal{E} is finitely axiomatizable. Then there is a single sentence σ so that $(A; \approx) \models \sigma$ if and only if $(A; \approx) \in \mathcal{E}$. In particular, if Σ is as in part (a), then $\Sigma \models \sigma$. By compactness . . .

(c) Show \mathcal{E} is not ω -categorical.

We must find two structures $\mathfrak{A}, \mathfrak{B}$, both countable and in \mathcal{E} , that are not isomorphic. Note that if \mathfrak{A} and \mathfrak{B} are isomorphic equivalence relations, then every equivalence class of \mathfrak{A} is in one-to-one correspondence with some class of \mathfrak{B} , and vice versa. . .

6. (18 points) If G = (V; E) is a graph, we say vertices $x, y \in V$ are *joined by a path* (of length $n \ge 1$) if there are $z_1, z_2, \ldots, z_n \in V$ so that $xEz_1, y = z_n$, and z_iEz_{i+1} for all $1 \le i < n$.

A graph is *connected* if any two distinct vertices are joined by a path.

(a) Consider the language of graphs expanded by two constant symbols, L = {E, c, d}. Give an L-sentence σ_n expressing "c and d are not joined by a path of length n."
(Your answer should use only the logical symbols ∧, ∨, →, ↔, ¬, ∀, ∃, x, y, v_i, x_i, etc., and the non-logical symbols E, c, d of the language L; you may use abbreviations for finite conjunctions, ∧_{1≤i<j≤n}, also.)

(b) Suppose T is a theory in the language of graphs that is satisfied by every connected graph. Show $T \cup \{\sigma_n \mid n \in \mathbb{N}, n \ge 1\}$ is satisfiable. By the Compactness Theorem, it is enough to show $T \cup \{\sigma_n \mid n \in \mathbb{N}, n \ge 1\}$ is finitely satisfiable. So let Σ_0 be a finite subset of this theory. Let n be largest natural number with $\sigma_n \in \Sigma_0$.

(c) Show the class of connected graphs is not axiomatizable.

Suppose towards a contradiction that T is a theory so that $(V; E) \models T$ if and only if V is a connected graph. By the previous part, there is a model $\mathcal{G}^* = (V; E, c^{\mathcal{G}^*}, d^{\mathcal{G}^*})$ of . . .

7. (14 points) Suppose $\mathfrak{A} = (A; <)$ is a (strict) linear order, and that every countable elementary substructure of \mathfrak{A} is a wellorder. Show \mathfrak{A} is a wellorder.

Suppose \mathfrak{A} is not a wellorder. Then there is a subset $B \subseteq A$ with no <-least element. By downward Lowenheim-Skolem, there is . . .