MATH 512 – HOMEWORK 1 DUE WEDNESDAY, SEPT. 7

PROBLEM 1. Suppose $m: \mathcal{P}(S) \to [0,1]$ is a measure over S, and that $\{X_{\alpha} \mid \alpha < \omega_1\}$ is a family of subsets of S with $m(X_{\alpha}) > 0$ for all $\alpha < \omega_1$. Show there exist $\alpha \neq \beta$ with $m(X_{\alpha} \cap X_{\beta}) > 0$.

PROBLEM 2. Suppose κ is least so that there exists a measure over κ . Show every measure over κ is κ -additive. (Hint: The previous problem may help.)

PROBLEM 3. Show $\mathsf{AC}_\omega(\mathbb{R})$ is equivalent to the following seemingly weaker principle: For all countable collections $\{A_n\}_{n\in\omega}$ of non-empty sets of reals, there is some infinite $I\subseteq\omega$ and $f:I\to\bigcup_{n\in I}A_n$ with $f(n)\in A_n$ for every $n\in I$.

PROBLEM 4. Show that there are only countably many clopen subsets of 2^{ω} . Is the same true for Baire space, ω^{ω} ?

PROBLEM 5. Show $\mathbb{R} = M \cup Z$ for some meager M and measure zero Z.

PROBLEM 6. Let $X \subseteq \omega^{\omega}$. Define X^* to be the collection

$$X^* = \{ y \in \omega^\omega \mid (\exists x \in X) (\exists N \in \omega) (\forall n \ge N) x(n) = y(n) \}.$$

That is, X^* consists of all y that agree with some $x \in X$ on a tail end. Show the following.

- 1. If X is meager, then so is X^* .
- 2. If X is meager, then there is a nowhere dense set C such that $X \subseteq C^*$.

PROBLEM 7. Show:

- 1. If Player I has a winning strategy in G(A), then $|A| = |2^{\omega}|$.
- 2. Suppose $A \subseteq \omega^{\omega}$, and there is no surjection $f: A \to \omega^{\omega}$. Show Player II has a winning strategy in G(A).

PROBLEM 8 (*). ω^{ω} is homeomorphic to $\mathbb{R} \setminus \mathbb{Q}$, but not to 2^{ω} .

PROBLEM 9 (*). Consider the following game, played between two players, I and II.

The players must maintain, for all n: $A_{n+1} \subset A_n$; and each $A_n \subset \mathbb{R}$ is uncountable. After ω moves, Player I wins if $\bigcap_{n \in \omega} A_n = \emptyset$; otherwise Player II wins.

Is this game determined? If so, which player has a winning strategy? (Hint: The answer depends on the Axiom of Choice, which you will want to assume!)