MATH 512 - HOMEWORK 2 DUE MONDAY, SEPTEMBER 19

PROBLEM 1. This problem outlines a proof of Gale-Stewart that doesn't use AC. Let T be a tree on a set X. We say a quasistrategy S for Player I (Player II) is winning in G(A;T) if $[S] \subseteq A$ ($[S] \cap A = \emptyset$).

Define an operator $F : \mathcal{P}(T) \to \mathcal{P}(T)$ by setting, for $R \subseteq T$,

 $F(R) = \{s \in T \mid |s| \text{ is even, and } (\forall x \in X) (\exists y \in X) s^{\frown} \langle x \rangle \in T \to s^{\frown} \langle x, y \rangle \in R\}.$

That is, F(R) is the set of positions where it is Player I's turn, so that Player II can always enter R on their next move. Inductively define $S_0 = \emptyset$, $S_\alpha = F(\bigcup_{\xi < \alpha} S_\xi)$.

- (a) Argue that the S_{α} are \subseteq -increasing, and so for some α , $S_{\alpha} = S_{\alpha+1} =: S_{\infty}$.
- (b) Show that if $\emptyset \in S_{\infty}$, then Player II has a winning quasistrategy in G([T]; T).
- (c) Show that if $\emptyset \notin S_{\infty}$, then Player I has a winning quasistrategy in G([T]; T).
- (d) Conclude that if X can be wellordered, then G([T]; T) is determined.

PROBLEM 2 (*). Show the Axiom of Choice is equivalent to the determinacy of all games on trees with height 2 ($T \subseteq X^{\leq 2}$ some X); in particular, AC is equivalent to the Gale-Stewart Theorem (for arbitrary trees) over ZF.

PROBLEM 3. Show, using the Axiom of Choice, that there is $A \subseteq \omega^{\omega}$ so that G(A) is not determined. (You shouldn't appeal to a fact/exercise unless it was proved in class, or you show it here!)

PROBLEM 4 (*). (Cantor-Bendixson.) Suppose $K \subseteq \omega^{\omega}$ is closed. Inductively define

- $K_0 = K$,
- $K_{\alpha+1} = K'_{\alpha} = \{x \in K_{\alpha} \mid x \text{ is a limit point of } K_{\alpha}\}, \text{ and}$
- $K_{\lambda} = \bigcap_{\alpha < \lambda} K_{\alpha}$ for limit ordinals λ .

Show there exists $\alpha < \omega_1$ so that $K_{\alpha+1} = K_{\alpha}$, and that this K_{α} is perfect.

Conclude $K = P \cup C$ with P perfect and C countable. In particular, K has the perfect set property.

PROBLEM 5. Fix $A \subseteq \omega^{\omega}$. The **perfect set game** $G_{\rm PS}(A)$ is played as follows:

Each $s_n^i \in \omega^{<\omega}$ and $i_n \in \omega$. Here are the rules: Player I plays s_0^0, s_0^1 with $s_0^0 \perp s_0^1$. Player II plays $i_n \in \{0,1\}$. Having fixed $s_n^{i_n}$, Player I must choose incompatible extensions s_{n+1}^0, s_{n+1}^1 of $s_n^{i_n}$; that is, $s_{n+1}^0, s_n^{i_n}$, and $s_{n+1}^0 \perp s_{n+1}^1$. A play of this game produces $x = \bigcup_{n \in \omega} s_n^{i_n}$. Player I wins if and only if $x \in A$.

- (a) Show Player I has a winning strategy in $G_{PS}(A)$ iff A has a non-empty perfect subset.
- (b) Show Player II has a winning strategy in $G_{PS}(A)$ iff A is countable.
- (c) Conclude that under AD, all sets of reals have the perfect set property.