MATH 512 – HOMEWORK 4 DUE WEDNESDAY OCTOBER 19

PROBLEM 1. Show that if V = L, then there is a Δ_2^1 set that is not Lebesgue measurable. (Hint: You can assume Fubini's Theorem.)

PROBLEM 2. Recall $H(\aleph_1)$ denotes the set of **hereditarily countable sets**, i.e., the collection of sets whose transitive closure is countable. Show a set $A \subseteq \omega^{\omega}$ is Σ_2^1 iff it is Σ_1 -definable (with parameters) over $(H(\aleph_1); \in)$.

PROBLEM 3 (*). Assume there is a transitive model of ZFC. Show there is a Σ_2^1 statement that is not downwards absolute to all transitive models of ZFC.

PROBLEM 4 (*). Show, in ZF, that the Axiom of Choice is equivalent to the statement that for all ordinals α , $\mathcal{P}(\alpha)$ can be wellordered.

PROBLEM 5. Suppose $j: M \to N$ is a non-trivial elementary embedding of transitive ZFC-models. Show there is an ordinal $\alpha \in M$ so that $j(\alpha) \neq \alpha$.

PROBLEM 6. Show an ultrafilter \mathcal{U} is countably complete iff $\text{Ult}(V,\mathcal{U})$ is wellfounded.

PROBLEM 7. Suppose \mathcal{U} is a normal ultrafilter. Show $\mathcal{U} \notin \text{Ult}(V, \mathcal{U})$.

PROBLEM 8. Suppose κ is the completeness of some countably complete ultrafilter \mathcal{U} (i.e., κ is least so that there is a sequence $\{A_{\xi} \mid \xi < \kappa\} \subset \mathcal{U}$ with $\bigcap_{\xi < \kappa} A_{\xi} \notin \mathcal{U}$). Show κ is measurable.