MATH 512 – HOMEWORK 5 DUE MONDAY NOVEMBER 7

Throughout, $M \models \mathsf{ZFC}$ is transitive, and \mathbb{P} is a poset (and in M, where applicable).

PROBLEM 1 (*). Show the following are equivalent for a filter G:

- 1. G is \mathbb{P} -generic over M.
- 2. $G \cap D \neq \emptyset$ for every open dense $D \in M$.
- 3. $G \cap A \neq \emptyset$ for every maximal antichain $A \in M$.
- 4. $G \cap E \neq \emptyset$ for every predense $E \in M$. (E is **predense** if $(\forall p \in \mathbb{P})(\exists q \in E)p || q$.)

PROBLEM 2 (Maximality of the Forcing Language). Show if $p \Vdash^M (\exists x) \phi(x, \tau_1, \ldots, \tau_n)$, there is a name $\sigma \in M^{\mathbb{P}}$ such that $p \Vdash^M \phi(\sigma, \tau_1, \ldots, \tau_n)$.

PROBLEM 3. Let $i : \mathbb{P} \to \mathbb{P}$ be an automorphism, and let $\tau_1, \ldots, \tau_n \in M^{\mathbb{P}}$. Prove $p \Vdash \phi(\tau_1, \ldots, \tau_n)$ iff $i(p) \Vdash \phi(i^*(\tau_1), \ldots, i^*(\tau_n))$.

PROBLEM 4. A poset \mathbb{P} is weakly homogeneous if for all $p, q \in \mathbb{P}$, there is an automorphism $i : \mathbb{P} \to \mathbb{P}$ such that i(p) || q. Show

- (a) For any cardinals δ, κ with κ infinite, Add (δ, κ) is weakly homogeneous.
- (b) If \mathbb{P} is weakly homogeneous and $x_1, \ldots, x_n \in V$, then for any formula ϕ with n free variables, either $\mathbb{1}_{\mathbb{P}} \Vdash \phi(\check{x}_1, \ldots, \check{x}_n)$ or $\mathbb{1}_{\mathbb{P}} \Vdash \neg \phi(\check{x}_1, \ldots, \check{x}_n)$.

PROBLEM 5. We say a real $x \in 2^{\omega}$ is **Cohen over** M if $x = \bigcup G$ for some Add $(1, \omega)$ -generic G over M.

- (a) If $g = g_1 \oplus g_2 := \langle g_1(0), g_2(0), g_1(1), g_2(1), \ldots \rangle$ is Cohen over M, then g_1, g_2 are both Cohen over M.
- (b) (*) There are reals g_1, g_2 , each Cohen over M, so that $g_1 \oplus g_2$ is not; indeed, so that there is no transitive model N of ZFC with $ON \cap M = ON \cap N$ and $g_1, g_2 \in N$.

PROBLEM 6 (*). A chopped real is a pair (x, Π) where $x \in 2^{\omega}$ and $\Pi = \{I_n \mid n \in \omega\}$ is partition of ω into finite intervals. Say a real **matches** a chopped real (x, Π) if $x \upharpoonright I_n = y \upharpoonright I_n$ for infinitely many $I_n \in \Pi$. Show a real g is Cohen over M iff it matches every chopped real in M.

PROBLEM 7. Suppose G is \mathbb{P} -generic over M, where \mathbb{P} is countable (in M). Show that if A is an uncountable set of ordinals in M[G], then there is $B \subseteq A$, also uncountable (in M[G]), with $B \in M$.

PROBLEM 8. Suppose $x \subset M$ satisfies $x \in M[G]$ for all *M*-generic filters $G \subseteq \mathbb{P}$. Show $x \in M$.

PROBLEM 9 (*). Show there is an almost disjoint family $\mathcal{A} \subseteq [\omega]^{\omega}$ of size 2^{\aleph_0} .

PROBLEM 10. Recall we say a set \mathcal{X} generates an ultrafilter on X if the smallest filter containing \mathcal{X} is an ultrafilter. We define the **ultrafilter number** \mathfrak{u} to be the smallest size of a generating set for a *nonprincipal* ultrafilter on ω .

- (a) Show that $\omega < \mathfrak{u} \leq 2^{\omega}$.
- (b) Show that MA implies $\mathfrak{u} = 2^{\omega}$.