## MATH 512 – HOMEWORK 6 DUE FRIDAY NOVEMBER 18

PROBLEM 1. Show the random real forcing  $\mathbb{B}$  has the countable chain condition.

PROBLEM 2. Let M be a transitive ZFC model. Show  $x \in 2^{\omega}$  is Cohen over M iff  $x \in A^c$  for all Borel codes  $c \in M$  such that  $A^c$  is comeager.

PROBLEM 3 (\*). A map  $e: \mathbb{P} \to \mathbb{Q}$  between posets is an **embedding** if  $p \leq p'$  implies  $e(p) \leq e(p')$ , and  $p \perp p'$  implies  $e(p) \perp e(p')$ . It is **complete** if whenever A is a maximal antichain in  $\mathbb{P}$ , the pointwise image e[A] is a maximal antichain in  $\mathbb{Q}$ . It is **dense** if its range  $e[\mathbb{P}]$  is dense in  $\mathbb{Q}$ . Let  $e: \mathbb{P} \to \mathbb{Q}$  be an embedding in a transitive ZFC model M.

- a) If e is complete, then for all M-generic  $H\subseteq \mathbb{Q}, \ i^{-1}[H]\subseteq \mathbb{P}$  is M-generic.
- b) If e is dense, then whenever  $G \subseteq \mathbb{P}$  is an M-generic filter, then  $i^{\uparrow}[G] \subseteq \mathbb{Q}$  is an M-generic filter, where here  $i^{\uparrow}[X] := \{q \in \mathbb{Q} \mid (\exists p \in X) e(p) \leq q\}.$

PROBLEM 4 (\*). A poset  $\mathbb{P}$  is **separative** if whenever  $p \not\leq q$ , then there is some  $r \leq p$  such that  $r \perp q$ . Suppose generic filters containing p exist for all  $p \in \mathbb{P}$ . Show:

- a)  $\mathbb{P}$  is separative iff for all  $p, q \in \mathbb{P}$ ,  $p \leq q \iff p \Vdash \check{q} \in \dot{G}$ .
- b) For all  $\mathbb{P}$ , there is a separative  $\mathbb{Q}$  and a surjective (hence dense and complete) embedding  $\pi : \mathbb{P} \to \mathbb{Q}$ .

PROBLEM 5 (Feferman-Levy). Let G be  $\operatorname{Col}(\omega, <\aleph_{\omega})$ -generic over V. Show there is a model N of  $\mathsf{ZF}$ ,  $V \subseteq N \subseteq V[G]$ , such that  $\operatorname{cf}(\aleph_1) = \omega$  in N.

The next two problems outline an argument due to A. Miller of the relative consistency of  $\mathsf{ZF} + V = L(\mathbb{R}) + \neg \mathsf{AC}$ . See Kunen Classic Ch. VII Exercise (E3-4) for more hints.

PROBLEM 6. Let  $\kappa \leq \lambda$  be uncountable. Show, for all formulas  $\phi$  and ordinals  $\alpha$ ,

$$\mathbb{1} \Vdash_{\mathrm{Add}(\kappa,\omega)} \phi(\check{\alpha})^{L(\mathbb{R})} \quad \text{iff} \quad \mathbb{1} \Vdash_{\mathrm{Add}(\lambda,\omega)} \phi(\check{\alpha})^{L(\mathbb{R})}.$$

(Hint: This is clear if  $|\kappa| = |\lambda|$ . So note that if G is V-generic for  $\operatorname{Col}(\kappa, \lambda)$  and H is V[G]-generic for  $\operatorname{Add}(\kappa, \omega)$ , then H is V-generic also, and  $\mathbb{R}^{V[G][H]} = \mathbb{R}^{V[H]}$ . Use weak homogeneity to conclude  $\mathbb{I} \Vdash^{V}_{\operatorname{Add}(\kappa,\omega)} \phi(\check{\alpha})^{L(\mathbb{R})}$  iff  $\mathbb{I} \Vdash^{V[G]}_{\operatorname{Add}(\kappa,\omega)} \phi(\check{\alpha})^{L(\mathbb{R})}$ ; similarly for  $\lambda$ .)

PROBLEM 7. Show that if G is  $\mathrm{Add}(\aleph_1,\omega)$ -generic, then there is no wellorder of  $\mathbb R$  in  $L(\mathbb R)^{V[G]}$ . (Hint: Otherwise there is a bijection  $f:\mathbb R\to\alpha$  in  $L(\mathbb R)^{V[G]}$  for some ordinal  $\alpha$ . Use the previous problem with sufficiently large  $\lambda$ .)

PROBLEM 8 (\*). Recall  $A \subseteq^* B$  iff  $A \setminus B$  is finite. A sequence  $\langle A_{\alpha} \rangle_{\alpha < \kappa} \subseteq [\omega]^{\omega}$  is a **tower** if  $A_{\beta} \subseteq^* A_{\alpha}$  whenever  $\alpha < \beta < \kappa$ , and there is no **pseudointersection** for  $\langle A_{\alpha} \rangle_{\alpha < \kappa}$ , that is, for no infinite  $B \subseteq \omega$  do we have  $B \subseteq^* A_{\alpha}$  for all  $\alpha$ . The **tower number** t is the least length of a tower. Show:

- a)  $\mathfrak{t}$  is a regular cardinal and  $\omega < \mathfrak{t} \leq 2^{\omega}$ .
- b) If  $\omega \leq \kappa < \mathfrak{t}$ , then  $2^{\kappa} = 2^{\aleph_0}$ . (Hint: Embed a tall binary tree into  $([\omega]^{\omega}, \supseteq^*)$ .)
- c)  $\mathfrak{t} \leq \mathrm{cf}(2^{\aleph_0})$ .
- d) Under MA,  $\mathfrak{t} = 2^{\aleph_0}$ .