MATH 512 – HOMEWORK 7 DUE DECEMBER 12, 2016

PROBLEM 1. Let $a \in \omega^{\omega}$. For x not random over L[a], let $\nu(x)$ be the height in $\leq_{L[a]}$ of the $\leq_{L[a]}$ -least Borel code $c \in L[a]$ such that $x \in A^c$ and $\mu(A^c) = 0$. Define a preorder \leq on \mathbb{R} by $x \leq y$ iff x, y are not random over L[a] and $\nu(x) \leq \nu(y)$. Show:

- (a) \leq is a $\Sigma_2^1(a)$ subset of $\mathbb{R} \times \mathbb{R}$.
- (b) For all x not random over L[a], $\mu(\{y \in \mathbb{R} \mid y \leq x\}) = 0$.
- (c) \leq is either nonmeasurable, or has measure zero. (Hint: Fubini.)
- (d) If \leq is measurable, then $\{x \in \mathbb{R} \mid x \text{ is not random over } L[a]\}$ is Lebesgue null.

PROBLEM 2. Suppose $a \in \omega^{\omega}$ is such that $\{x \in \mathbb{R} \mid x \text{ is not random over } L[a]\}$ is Lebesgue null; show all $\Sigma_2^1(a)$ sets are Lebesgue measurable. (Hint: Imitate Solovay's proof of Lebesgue measurability in $L(\mathbb{R})$.)

PROBLEM 3. For $f, g : \omega \to [\omega]^{<\omega}$, write $f \subseteq^* g$ iff $(\forall^{\infty} n) f(n) \subseteq g(n)$. Define

$$\mathcal{C} := \left\{ f : \omega \to [\omega]^{<\omega} \; \left| \; \sum_{n=1}^{\infty} \frac{|f(n)|}{n^2} < \infty \right. \right\}$$

Show the partial order $(\mathcal{C}, \subseteq^*)$ is countably directed: whenever $\langle f_i \rangle_{i \in \omega}$ is an ω -sequence in \mathcal{C} , there is an upper bound $g \in \mathcal{C}$, i.e. $f_i \subseteq^* g$ for all i.

PROBLEM 4. Suppose $M \subseteq V$ are models of ZFC. Show the following are equivalent:

- $(\exists \phi : \omega \to [\omega]^{<\omega})(\forall n)|\phi(n)| \le n \text{ and } (\forall x \in \omega^{\omega} \cap M)(\forall^{\infty}n)x(n) \in \phi(n).$
- $(\exists \phi : \omega \to [\omega]^{<\omega})$ the map $n \mapsto |\phi(n)|$ is in M, and $(\forall x \in \omega^{\omega} \cap M)(\forall^{\infty} n)x(n) \in \phi(n)$.
- There is $\phi \in \mathcal{C}$ such that $f \subseteq^* \phi$ for all $f \in \mathcal{C} \cap M$ (see Problem 3).

PROBLEM 5. Suppose $M \models \mathsf{ZFC}^-$ and $U \subseteq \mathcal{P}(\kappa) \cap M$ satisfies the definition of M-normal ultrafilter with the possible exception of weak amenability. Show U is weakly amenable iff $\mathcal{P}(\kappa)^M = \mathcal{P}(\kappa)^{\mathrm{Ult}(M,U)}$.

PROBLEM 6. Suppose U is an M-ultrafilter on κ and $i: M \to N = \text{Ult}(M, U)$ is the ultrapower map. Let $W \subseteq \mathcal{P}(i(\kappa)) \cap N$ be defined by $[f]_U \in W$ iff $\{\xi < \kappa \mid f(\xi) \in U\} \in U$. Show $W = \bigcup \{i(x \cap U) \mid x \in M \cap [M]^{\kappa}\}$.

PROBLEM 7. Suppose M is a transitive model of ZFC and for some $U \in M$, $M \models "U$ is a normal measure". Suppose $\langle M_{\alpha}, U_{\alpha}, i_{\alpha,\beta} \rangle_{\alpha \leq \beta \leq \theta}$ is an iteration of $\langle M, U \rangle$ and θ is least such that M_{θ} is illfounded. Show θ is a limit ordinal and $\operatorname{cf}(\theta) = \omega$.

PROBLEM 8. Let $M = \langle L_{\tau}, U \rangle$ be a mouse and suppose $\langle \kappa_i \rangle_{i \in \omega_1}$ is the critical sequence of the length ω_1 iteration of M. Show the κ_i are indiscernibles for L, i.e., for all formulas φ in the language of set theory and sequences $\alpha_1 < \cdots < \alpha_k$, $\beta_1 < \cdots < \beta_k$ in ω_1 ,

$$L \models \varphi(\kappa_{\alpha_1}, \dots, \kappa_{\alpha_k}) \iff L \models \varphi(\kappa_{\beta_1}, \dots, \kappa_{\beta_k}).$$

PROBLEM 9. Suppose $0^{\#}$ exists. Show for all uncountable cardinals κ that κ is inaccessible in L, and $\mathrm{cf}(\kappa^{+L}) = \omega$.