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10. Boundary slopes and genera: Neuwirth and Poincaré Conjectures . . . . . . . . . . . . . . . . . . . 89
10.1. A lower bound for the diameter of the boundary slopes . . . . . . . . . . . . . . . . . . . . . 90
10.2. Some related results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

11. R-trees and degenerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Representations of 3-manifold groups 3

The phrase “representations of 3-manifold groups” is likely to suggest different
things to different people. When I was asked to write a chapter for this handbook
on this subject, I thought it would be wise to focus on something I knew about, and
I therefore decided to concentrate on the interaction between two kinds of repre-
sentations of fundamental groups of 3-manifolds: representations by 2×2 matrices,
and representations by automorphisms of trees. Representations of the first kind
are related to hyperbolic structures on 3-manifolds, while those of the second kind
are related to surfaces in 3-manifolds. The interaction between these two kinds
of representations therefore provides a link between what are probably the two
most useful kinds of structures on 3-manifolds, whence the utility of this theory in
studying group actions, Dehn surgery, surfaces in knot exteriors, and degeneration
of hyperbolic structures.
The core of this chapter is an attempt to present—with the necessary

background—some of the content of a series of joint papers [17], [18], [19], —by
Marc Culler and myself, and of the first chapter of our paper [15] with Cameron
Gordon and John Luecke. I have been able to give only the briefest hints about
the remarkable developments in the area that have been made by Steven Boyer
and Xingru Zhang in [5], [6] and [7], by Daryl Cooper and Darren Long and their
co-authors in [11], [13], and other papers—see [14] for a survey—and by Nathan
Dunfield in [22] and [23]. I have been even briefer about my closely related joint
work with John Morgan in [42], [43] and [44], and the subsequent breakthrough
by Rips and the developments in geometry group theory that it has led to. To do
justice to this material would have made the chapter twice as long, but of course
the point of this enterprise is to try to inspire you to read all these papers. By and
large the material that I have discussed in detail is prerequisite for the material
that I have touched on lightly, and naturally it’s material that I know well.
The chapter is meant to be organized rather as if it were the notes for a course,

and I’ve tried to keep the informal tone of a course or lecture series, as I did in
my survey articles [57] and [58]. As the main topic of the chapter involves tying
together ideas from several areas of mathematics other than topology, I have tried
to provide reasonable introductions to the relevant ideas from these other areas.
In some case this has meant not just introducing statements or even just proofs of
relevant theorems, but trying to provide some real context by showing how these
ideas are used within the areas from which they’re borrowed. That’s why you’ll find
little sections about topics like Ihara’s theorem on discrete subgroups of SL(2,Qp)
and Lagrange’s theorem that every positive integer is a sum of four squares.
The different sections are meant to be read in order, but in case you don’t like

being kept in suspense, I’ll give a very quick outline of what’s going to happen.
(Of course I’ll have to use some terms that may not mean much until you’ve read
the relevant sections, but sometimes just seeing key words can be of value.) In
Section 1 I’ll present some generalities about group actions, particularly actions
of fundamental groups, and I show how surfaces and hyperbolic structures lead
naturally to actions on trees and representations in SL(2,C). In Section 2 I’ll present
a construction that goes the opposite way—starting with an action of π1 of a 3-
manifold on a tree, you can get a surface in the manifold. This idea is basically due
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to Stallings, and has lots of direct applications to 3-manifold theory, of which I’ll
do some samples.
Section 3 will be basically a mini-course on the tree for SL2, which is a special

case of the Bruhat-Tits building of an algebraic group that was given an elegant
self-contained treatment by Serre. Like Serre, in his longer course [55], I’ll assume
only the most elementary algebra. This section provides the germ of the connection
between matrix representations and representations by tree automorphisms. Before
Culler and I wrote [17], this material had already been applied to 3-manifold the-
ory via Bass’s GL2 subgroup theorem [3]. The applications in [17] and the papers
depending on it differ from this first application in that they involve considering
entire families of representations, which form algebraic varieties. In Section 4 I’ll do
a little rudimentary algebraic geometry, referring you to standard texts for some
of the harder results, and I’ll introduce varieties of representations of groups, and
the varieties of characters that are closely related to them. I’ll say a bit about what
these things look like for the case of fundamental groups of hyperbolic 3-manifolds.
In Section 5 I’ll present the basic theory that Culler and I developed in [17], tying

together the material from Sections 3 and 4. In the last subsection of Section 5, and
in Section 6, I’ll do a first application to topology—the existence of an essential
separating surface in the complement of a nontrivial knot, first conjectured by
Neuwirth. A second application, in Section 7, is a proof of the Smith Conjecture
about periodic tame homeomorphisms of S3 with 1-dimensional fixed point set.
(I’ll talk a bit about the history of this when the time comes.) In Chapter 8 I’ll
introduce some machinery that’s needed for the applications to Dehn surgery that
I’ll talk about in Chapter 9, and for studying more refined questions related to the
Neuwirth Conjecture in Section 10. In Section 11 I’ll give a hint about how the
techniques are related to geometric questions about degenerations of hyperbolic
structures.
I’m very grateful to Marc Culler for helping talk me through some difficult spots

in the writing. (Of course, if Marc hadn’t done all this joint work with me I wouldn’t
have anything to write about.) I’m very grateful to Benson Farb and Bob Daverman
for reading the entire manuscript and making a huge number of helpful comments.
I’d also like to thank Jeremy Teitelbaum for trying to make sure I didn’t say any-
thing too silly in the passages about p-adic numbers.
Although this chapter is something very different from what I had in mind when

I sat down to write it, I hope it may prove useful.

1. Some basic concepts and examples

1.1. Representations and actions

Recall that an action of a group Γ on a set X is a function · : Γ × X → X that
satisfies the identities 1 · x = x and (γδ) · x = γ · (δ · x). There is a lot of structure
associated in an elementary way with an action, such as the partition of X into
orbits: two elements x and y are in the same orbit if and only if γ · x = y for some
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γ ∈ Γ. The stabilizer of an element x ∈ X , often denoted Γx, is the subgroup of
Γ consisting of all γ ∈ Γ such that γ · x = x. For any x ∈ X , the map Γ → X
defined by γ → γ · x induces a bijection between the set of cosets of the form γΓx,
for γ ∈ Γ, and the orbit Γ · x of x. A set S ⊂ X is invariant under the action if it
is a union of orbits, i.e. if γ · x ∈ S whenever x ∈ S and γ ∈ Γ. An element of X is
said to be fixed by Γ if {x} is invariant, i.e. is an entire orbit. The action is free if
the stabilizer of every element of X is the trivial subgroup of Γ.
There’s a natural bijective correspondence between actions of Γ on X and repre-

sentations of Γ in the symmetric group S(X), i.e. homomorphisms ρ : Γ→ S(X). If
· is an action, the corresponding representation sends γ to the element s 7→ γ · s of
S(X). I’ll generally be talking about sets X that have some extra structure, and fo-
cusing on actions which preserve this structure in the sense that the corresponding
representations take values in the automorphism group Aut(X). Thus X may be a
vector space over some fieldK, in which case Aut(X) is the group of linear automor-
phisms; in terms of the action this means that the identities γ·(x+y) = γ·x+γ·y and
γ · (ax) = aγ ·x hold when x, y ∈ X and a ∈ K. So we can talk about linear actions
and linear representations, and the difference between the two is purely notational.
Similarly we can talk about topological actions, or actions by homeomorphisms, of
Γ on a topological space X ; simplicial actions on a simplicial complex; and so forth.
A representation Γ → Aut(X) is termed faithful if it is an injective homomor-

phism. An action is said to be effective if it corresponds to a faithful representation.
Thus Γ acts effectively on X if and only if for every γ ∈ Γ− {1} there is an x ∈ X
with γ · x 6= x.
Suppose that we are given actions of a group Γ on two sets X and Y . A map

of sets f : X → Y is said to be Γ-equivariant if we have f(γ · x) = γ · f(y) for
every x ∈ X . For any group Γ, there is a category in which the objects are sets
equipped with actions of Γ and the morphisms are Γ-equivariant maps. By giving the
sets, actions and maps extra structure, one can define many natural subcategories.
For example, one can require the sets to be vector spaces, or topological spaces, or
simplicial complexes, and require both actions and maps to be linear, or continuous,
or simplicial. There are natural terms to designate isomorphisms in these categories:
Γ-equivariant linear isomorphisms, Γ-equivariant homeomorphisms, Γ-equivariant
simplicial isomorphisms and so on.
Of course, we think of two actions as being “the same” if we have an isomorphism

(in the appropriate category) between the sets in question which is equivariant
with respect to the given actions. I’ll express this by saying that the actions—or
the corresponding representations—are equivalent. (This is the classical term in
the case of linear representations). In more direct terms, ρ : Γ → Aut(X) and
ρ′ : Γ → Aut(Y ) are equivalent if and only if there is an isomorphism φ : X → Y
such that φ ◦ ρ = ρ′ ◦ φ.
By an invariant of a representation one means any sort of datum associated with

the representation which depends only on its equivalence class. I’ll illustrate the
idea by talking briefly about invariants of linear representations, which, besides
being a very classical thing to look at, will be especially important in this chapter.
The most obvious invariant of a linear representation ρ : Γ → Aut(V ), where V
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is a vector space over some given field, is the dimension of V , which is often called
the dimension of the representation. It’s just about obvious that any n-dimensional
representation is equivalent to a representation in Aut(Cn) = GLn(C), and that
two representations ρ, ρ′ : Γ → GLn(C) are equivalent if and only if ρ′ = iA ◦ ρ
for some matrix A ∈ GLn(C); here I am denoting by iA the inner automorphism
X 7→ AXA−1 of GLn(C). In particular, the property of being unimodular, i.e. of
sending the entire group Γ into SLn(C), depends only on the equivalence class of a
representation ρ : Γ→ GLn(C).
Let me now specialize to the case of unimodular representations of dimension

2; this is the case that will be important in this chapter, and, conveniently, the
case that I am competent to discuss. By far the most important invariant of such
a representation is its character. The character of ρ : Γ → GLn(C) is the function
χ : Γ → C defined by χ(γ) = trace ρ(γ). It is very nearly true that the character
is a complete invariant, which would mean that 2-dimensional unimodular repre-
sentations with the same character were always equivalent. To see that this is not
quite true, note, for example, any homomorphism of Γ into the group of matri-

ces of the form

(

1 λ
0 1

)

has the same character as the trivial representation that

sends the entire group to the identity matrix. It turns out that the only bad exam-
ples of this sort involve reducible representations. A representation of Γ in SL(2,C)
is said to be reducible if it is equivalent to a representation by upper triangular
matrices; in terms of the corresponding action of Γ on C2, this means that some
1-dimensional subspace is invariant under the action. You will find a proof of the
following elementary result in [17]:

Proposition 1.1.1. Let Γ be any finitely generated group. If two unimodular rep-
resentations ρ and ρ′ of Γ in SL(2,C) have the same character, then either ρ and
ρ′ are equivalent or they are both reducible.

There is presumably a similar result about GLn(C), but one probably has to be
more careful about the statement.

1.2. A word about base points

This chapter is about representations (or actions) of fundamental groups of con-
nected 3-manifolds. (Incidentally, when I say “manifold” I always mean “manifold
with (possibly empty) boundary.” This seems to be the modern convention among
topologists. A manifold is closed if it is compact and has empty boundary.)
In dealing with fundamental groups it is always necessary to decide what to do

about base points. In many situations I will be talking about equivalence classes
of representations (or actions) of the fundamental group of a connected manifold.
The point I would like to make here is that in these situations, there is a strong
sense in which the choice of a base point is irrelevant. To see why this is so, let’s
consider two points x and w in the connected manifold M . Any path α from x to
w defines an isomorphism Iα : π1(X,w) → π1(X, x): for any loop γ based at w we
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have Iα([γ]) = [α ∗ γ ∗ ᾱ]. If α and α′ are two paths from x to w, the composition
Iα′ ◦I−1α is the inner automorphism i[α′∗α] of π1(X, x). So although the isomorphism
between π1(X,w) and π1(X, x) is not canonical, it is canonical modulo composition
with inner automorphisms.
Now if we are given an action of π1(M,x) on a set X , and if ρ : π1(M,x) →

S(X) is the corresponding representation, then for any path α from x to w we
have a representation ρ ◦ Iα : π1(X,w) → S(X). If in place of α we consider
another path α′, we have Iα′ = igIα for some g ∈ π1(M), and hence ρ ◦ Iα′ =
iρ(g) ◦ ρ ◦ Iα. Since ρ ◦ Iα′ and ρ ◦ Iα differ by post-composition with an inner
automorphism, they are equivalent representations. So a representation of π1(M,x)
defines an equivalence class of representations of π1(M,w). It’s equally easy to
see that this equivalence class depends only on the equivalence class of the given
representation of π1(M,w), and that we get in this way an absolutely canonical
bijection between equivalence classes of representations of π1(M,x) and equivalence
classes of representations of π1(M,w). So one can talk without ambiguity about
equivalence classes of representations or actions of π1(M), without specifying a
base point.
There will be various other kinds of situations in this chapter where base points

will be suppressed for a very similar reason. I will give a hint here and there to
remind you of what is going on.

1.3. The universal covering

If M is a connected manifold of any dimension n, and x is a base point in M , the
most basic example of an action of π1(M,x) is the usual action by homeomorphisms
on the universal covering space M̃ . The uniqueness theorem for the universal cover-
ing tells us that this action is well-defined up to equivalence. (Here the underlying
category is that of topological spaces. Thus two actions on spaces are equivalent
if and only if there is an equivariant homeomorphism between the spaces.) Fol-
lowing the convention I’ve just explained, I will say—without mentioning a base
point—that the action of π1(M) on M̃ is canonically defined up to equivalence.
If M is given a triangulation, then M̃ inherits a triangulation, and we can then
interpret the action of π1(M) as a simplicial action, defined up to equivalence in
the simplicial category.
Giving other kinds of structure in the connected manifold M often leads to new

actions of π1(M) that are induced by its action on M̃ .

1.4. The tree associated with a hypersurface

As one nice example, suppose that we are given a hypersurface in M , i.e. a
codimension-1 submanifold F of M , not necessarily connected. In this section I
will be assuming that F admits a bicollaring, i.e. a homeomorphism h of F × [−1, 1]
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onto a neighborhood of F in M such that F (x, 0) = x for every x ∈ F and
h(F × [−1, 1]) ∩ ∂M = h(∂F × [−1, 1]). We can use a bicollaring h to define a
partition of the space M into disjoint subsets. The subsets are of two types: the
components of M −h(F × (−1, 1)), and the sets of the form Fi×{t}, where Fi is a
component of F and t ∈ (0, 1). We can regard the sets in this partition as forming
a topological space with the quotient topology, and you will see easily that it is
a graph, i.e. a 1-dimensional CW complex, which has one edge for every compo-
nent of F and one vertex for every component of M − F . Note that h defines an
identification of each edge of G with the interval [−1, 1].
By construction there is a natural map r : M → G, but it is also very easy to

construct a map i : G → M such that the composition r ◦ i maps each edge and
each vertex of G into itself. In particular r ◦ i is homotopic to the identity map
of G, from which it follows that G is connected and that π1(G) is isomorphic to a
retract (hence both a subgroup and a quotient) of π1(M). The graph G is often
called the dual graph of F in M . (Since regular neighborhood theory tells us that
the bicollaring h is unique up to ambient isotopy, the graph is well-defined up to
simplicial isomorphism, and even the map r is well-defined in a sense that’s easy
to work out.)
Now consider the universal covering (M̃, p) of M . Given the bicollaring h of F ,

it’s a simple exercise in covering space theory to show that F̃ = p−1(F ) has a unique
bicollaring h̃ in M such that p(h̃(x, t)) = h(p(x), t) for all x ∈ F̃ , t ∈ [0, 1]. Let T
denote the dual graph of F̃ in M̃ defined in terms of this induced bicollaring h̃.
Then T is simply connected since π1(T ) is a retract of π1(M̃) = {1}; that is, T is a
tree. Now the sets that make up the partition defining T are the components of the
sets of the form p−1(A), where A ranges over the sets in the partition defining the
dual graph G. So the partition defining T is invariant under the action of π1(M), in
the sense that each element of π1(M) maps each set in the partition onto a possibly
different set in the partition. Hence the action of π1(M) on M̃ induces an action
on T . In fact, this induced action is the unique action that makes the quotient map
M̃ → T equivariant.
Since T is the dual graph of G defined by the bicollaring h̃, each closed edge

e of T comes equipped with an identification with [−1, 1], i.e. a homeomorphism
ηe : [−1, 1]→ e. Since T is simply connected, and therefore has no multiple edges,
the identification of the edges of T with linear intervals give T the structure of
a simplicial complex. Because of the precise way in which h̃ is induced from the
bicollaring h of M , it’s easy to check that for each element γ ∈ π1(M) and each
edge e of T , and each t ∈ [−1, 1], we have γ · ηe(t) = ηγ·e(t). This implies that the
action of π1(M) on T is simplicial, but it also shows a little more—namely, that
if an element γ ∈ π1(M) leaves an edge e of T invariant, then it actually fixes the
edge pointwise. This property is expressed by saying that π1(M) acts on T without
inversions. A simplicial automorphism of a tree is called an inversion if it leaves
some edge invariant but interchanges its endpoints.
Because the bicollaring h is unique up to ambient isotopy, the tree T is well-

defined up to simplicial equivalence once the hypersurface F is given.
It’s easy to describe the stabilizers of the vertices and edges of T under the action
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of π1(M). Each vertex s of T corresponds to a component K̃ of M̃− h̃((−1, 1)), and
it follows from the construction that the stabilizer π1(M)s of s coincides with the
stabilizer π1(M)K̃ of K̃. But K̃ is a component of p−1(Kj) for some component Kj

of M − h((−1, 1)), and from covering space theory one knows that the stabilizers
of the various components of p−1(Kj) are precisely the conjugates of im(π1(Kj)→
π1(M)) in π1(M). (It follows from the kind of thing I talked about in Subsection 1.2
that the subgroup im(π1(Kj)→ π1(M)) of π1(M) is well-defined up to conjugacy,
so it makes sense to talk about “conjugates of im(π1(Kj) → π1(M)) in π1(M).”)
Furthermore, we have im(π1(Kj) → π1(M)) = im(π1(Cj) → π1(M)), where Cj
is the component of M − F containing Kj . So we see that the stabilizers of the
vertices of T are precisely the conjugates of the subgroups im(π1(Cj)→ π1(M)) in
π1(M), where Cj ranges over the components of M−F . Similarly, the stabilizers of
the edges of T are precisely the conjugates of the subgroups im(π1(Fi) → π1(M))
in π1(M), where Fi ranges over the components of F .
The picture of the action is especially nice in the case where the inclusion homo-

morphism π1(Fi)→ π1(M) is injective for every component Fi of F . For one thing,
the stabilizer of an edge of T is then actually isomorphic to Fi, the isomorphism be-
ing canonical up to composition with an inner automorphism. We have a similarly
nice situation with regard to the vertex stabilizers. This is because the injectivity
of the inclusion homomorphisms π1(Fi)→ π1(M) implies that for every component
Cj of M − F , the inclusion homomorphism π1(Cj) → π1(M) is injective. You can

see this very neatly in terms of the above discussion of M̃ : the injectivity of the
homomorphisms π1(Cj) → π1(M) is equivalent to the assertion that the compo-

nents of M̃ − F̃ are simply connected. But the injectivity of the π1(Fi) → π1(M)
implies that the components of F̃ are simply connected, and since M̃ is simply con-
nected as well, the simple connectivity of the components of M̃ − F̃ follows from
van Kampen’s theorem. Now, from the injectivity of the π1(Cj)→ π1(M) and the
general discussion above, we see that the stabilizers in π1(M) of the vertices of
T are isomorphic to the groups π1(Cj) for components Cj of M − F . Again the
isomorphisms are canonical up to composition with inner automorphisms.
Having shown how a bicollared hypersurface gives rise to an action on a tree,

I should say a word about why the condition that a hypersurface be bicollared is
a natural one. The obvious necessary conditions for a hypersurface F of M to be
bicollared are that F be properly embedded and two-sided. To say that F is properly
embedded in M means that F is a closed subset of M and that F ∩ ∂M = ∂F . To
say that a properly embedded hypersurface F is two-sided (or “locally separating”)
means that the complement of F relative to any sufficiently small neighborhood of
F is disconnected. (For simplicity, or out of habit, I will be talking mostly about
orientable manifolds in this chapter. If M is orientable then a properly embedded
hypersurface F ⊂ M is two-sided if and only if it is orientable—which means, if
you like, that each component is orientable.)
Conversely, any halfway-reasonable properly embedded orientable hypersurface

in M is bicollared: for example, if M comes with a smooth or piecewise-linear
structure then any smooth or PL hypersurface inM which is orientable or properly
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embedded is bicollared. (If you don’t make some assumption about the surface
then you can run into weird examples like the Alexander horned sphere [39].) For
technical reasons it is not always convenient to be working with a smooth or PL
structure, so I’ll often just make it a hypothesis that the surfaces I talk about are
bicollared.

1.5. The three-dimensional case: essential surfaces

The construction I described in the last subsection is especially useful in the case
n = 3. Before making a few simple comments about this case I need to make some
basic definitions and remarks about surfaces in 3-manifolds which are important
for everything I’ll be talking about in this chapter.
A 3-manifold M is said to be irreducible if M is connected and every bicollared

2-sphere in M is the boundary of a 3-ball contained in M . A bicollared surface
F ⊂M is said to be boundary-parallel if F is the frontier of a set P ⊂M such that
the pair (P, F ) is homeomorphic to (F × [0, 1], F × {1}). (The frontier of a set is
the intersection of its closure with the closure of its complement; I am reserving the
term boundary for the intrinsic sense, as in “manifold with boundary.” Note that in
the definition I’ve just given, the homeomorphism of P onto F × [0, 1] has to map
P ∩ ∂M onto (∂F × [0, 1] ∪ (F × {0}).)

Definition 1.5.1. For most of this chapter I’ll be using the following definition. A
surface F in a compact, irreducible, orientable 3-manifold is said to be essential if
it has the following properties:

(i) F is bicollared;
(ii) the inclusion homomorphism π1(Fi)→ π1(M) is injective for every compo-

nent Fi of F ;
(iii) no component of F is a 2-sphere;
(iv) no component of F is boundary-parallel; and
(v) F is nonempty.

Condition 1.5.1(ii) has a beautiful geometric interpretation. One situation in
which the condition obviously fails to hold is the one in which there is a diskD ⊂M
such that (a) D∩F = ∂D, and (b) the simple closed ∂D is homotopically nontrivial
in F—which by elementary surface topology (see [26], Theorem I.7) is the same as
saying that it doesn’t bound a disk in F . In this case, ∂D clearly defines (up to
conjugation and inversion) a nontrivial element of ker(π1(Fi)→ π1(M)), where Fi
is the component of F containing ∂D. Now, conversely, it is a fundamental principle
in 3-manifold theory ([31], proof of Lemma 6.1), which is easily deduced from two
results due to Papakyriakopoulos, the Dehn Lemma and the Loop Theorem, that
if a bicollared surface F fails to satisfy Condition 1.5.1(ii), then there is a disk D
satisfying (a) and (b).
Property (a) of the diskD says it can be thought of as a properly embedded disk in

the manifoldM ′ obtained by splitting M along F . The proof of Papakyriaokoulos’s
theorem is usually done in the PL category, and gives the additional conclusion



Representations of 3-manifold groups 11

that (c) D is bicollared in M ′. A disk satisfying (a), (b) and (c) is often called
a compressing disk for F . Thus, for a bicollared surface F , Condition 1.5.1(ii) is
equivalent to the condition that F there is no compressing disk for F .
The properties that I have included in the definition of an “essential surface”

are very similar to those that people typically include in the definition of an “in-
compressible surface.” However, Haken’s term “incompressible” has been used in
so many ways in recent years that there are now almost as many definitions as
there are 3-manifold topologists, and—to make matters worse—people get emo-
tional about the issue of what the term should mean. That’s why I am avoiding it
in this chapter.
According to the discussion at the end of Subsection 1.4, Condition 1.5.1(i) im-

plies that the stabilizer of each edge of T is isomorphic to the fundamental group
of some component Fi of F , and that the stabilizer in π1(M) of each vertex of T is
isomorphic to the fundamental group of some components Cj of M − F ; and that
these isomorphisms are canonical up to composition with inner automorphisms.
Conditions 1.5.1(ii)—(iv) in the definition of an essential surface also give nice

information about the action associated to the surface. A (simplicial) action (with-
out inversions) of a group Γ on a tree T is said to be trivial if there is a vertex of
T which is fixed by the entire group Γ.

Proposition 1.5.2. Let F be an essential surface in a compact, connected, ori-
entable, irreducible 3-manifold M . Then the action on a tree associated to F is
nontrivial.

Proof. I’ll call the tree T . Assume that the action is trivial, so that the stabilizer
of some vertex of T is all of π1(M). This translates into saying that for some
component C of M − F , the injection π1(C) → π1(M) is an isomorphism (as in
“isomorphism onto”).
By Condition 1.5.1(iv) we have F 6= ∅. Let F0 be a component of F . Since

F0 ∩ C = ∅, there is some component C0 of M − F0 such that the inclusion homo-
morphism π1(C0) → π1(M) is surjective. This gives a contradiction right off the
bat if F0 doesn’t separate M , i.e. if C0 is the only component of M − F0, because
then even H1(M − F0)→ H1(M) fails to be surjective. Suppose now that M − F0
has a second component C1. Consider the dual tree T ′ to the connected essential
surface F0. If e is any edge of T ′, one endpoint s0 of e, corresponding to a com-
ponent of p−1(C0), is stabilized by all of π1(M). The other endpoint s1 of e has
stabilizer π1(M)s1 = π1(M)s1 ∩ π1(M)s0 = π1(M)e. This means that the inclusion
homomorphism π1(F )→ π1(C1) is an isomorphism.
We also know that the Ci are irreducible; otherwise, since M is irreducible, F0

would be contained in a ball, and would not be essential. Now the main point is
to apply a theorem due to Stallings, for which the best reference is Brown and
Crowell’s paper [8] in which a stronger theorem is proved: Stallings’s theorem says
that if K is a compact, connected, orientable, irreducible 3-manifold and F ⊂ K is
a connected 2-manifold such that π1(F )→ π1(K) is an isomorphism, then either K
is a ball and F = ∂K, or the pair (K,F ) is homeomorphic to (F × [0, 1], F × {1}).
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We can apply this with F0 and C1 in place of F and K, and we get a contradiction
to either 1.5.1(ii) or 1.5.1(iii).

So an essential surface in M gives rise to a nontrivial action (defined up to
equivalence) of π1(M) on a tree. In Section 2 we’ll see how to go the other way—to
start with an action of π1(M) on a tree and use it to construct, in a noncanonical
but ultimately very useful way, an essential surface in M .

1.6. The action associated to a hyperbolic structure

Another kind of structure in a connected manifold M (of dimension n > 2) that
leads to an action of the fundamental group is a (complete) hyperbolic structure. I
will refer you to Bonahon’s chapter in this volume for an introduction to hyperbolic
geometry, which plays an important role in most of the topics I will be covering
in this chapter. If we are given a hyperbolic structure on M , we can identify the
universal covering of M̃ with the hyperbolic space Hn by some isometry. The nat-
ural action of π1(M) then becomes an action by isometries on Hn—or, in slightly
different language, a representation ρ0 of π1(M) in the isometry group Isom(Hn).
The representation that we get in this way is well-defined up to equivalence once we
have specified a hyperbolic structure onM . The representation is readily seen to be
faithful, and to be discrete in the sense that ρ0(π1(M)) is a discrete subgroup of the
topological group Isom(Hn). If M is orientable then ρ0 takes values in the group
Isom+(Hn) of orientation-preserving isometries, but it is still well-defined only up
to conjugation in Isom(Hn). Thus in general there may be two inequivalent repre-
sentations in Isom+(Hn) associated to a given hyperbolic structure onM , and they
will differ by conjugation by an orientation-reversing involution J ∈ Isom+(Hn), a
reflection about a hyperplane.
In the three-dimensional case, Isom(H3) may be identified isomorphically with

PSL(2,C). The identification is canonical modulo inner automorphisms. An element

of PSL(2,C) is a coset modulo ±I of a matrix

(

a b
c d

)

. I’ll denote this coset by
[

a b
c d

]

. We may choose the orientation-reversing involution J so that the group-

theoretical conjugation A→ AJ is realized by complex conjugation of matrices:

[

a b
c d

]

7−→
[

ā b̄
c̄ d̄

]

.

Thus the two equivalence classes of representations in PSL(2,C) associated with a
given hyperbolic structure differ from each other by a complex conjugation.
Sometimes it’s more convenient to work with representations in SL(2,C) instead

of PSL(2,C). For this purpose, it is useful to have the following result of Thurston’s:
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Proposition 1.6.1. Let M be a (connected) orientable hyperbolic 3-manifold, and
let ρ0 : π1(M) → PSL(2,C) be a representation associated to the hyperbolic struc-
ture. (So ρ0 belongs to one of the two equivalence classes discussed above.) Then
there is a lift of ρ0 to SL(2,C), i.e. a representation ρ̃0 : π1(M) → SL(2,C) such
that pρ̃0 = ρ0, where p : SL(2,C)→ PSL(2,C) is the quotient projection.

The representation ρ̃0 : π1(M)→ SL(2,C) is even less canonical than the repre-
sentation ρ0. Whereas there are in general two choices for ρ0 in terms of a given hy-
perbolic structure onM , it is a simple exercise, given Proposition 1.6.1, to show that
when π1(M) is finitely generated, the number of lifts of a given ρ0 is |H1(M ;Z2)|.
However, a lift of ρ0, being a linear representation, is a pretty down-to-earth kind
of object, and one from which the hyperbolic structure itself can be recovered. For
these reasons, having Proposition 1.6.1 is often very convenient in applications, as
we shall see.

2. Actions of 3-manifold groups on trees

The ideas in this section are mostly due to Stallings, who developed them in a series
of papers beginning with [61], and presented some of them in his book [62]. I’ll be
presenting them from a point of view which is fairly close to the one that was used
in [44] and, a little later, in [15]. This point of view is influenced by Serre’s book
[55].
In this section, M will denote a compact, orientable, irreducible 3-manifold. In

Subsection 1.4 I described how an essential surface in M gives rise to a nontrivial
(simplicial) action, without inversions, of π1(M) on a tree. The construction of
the action from the surface is canonical up to equivalence. It is far from being
true that every nontrivial action without inversions of π1(M) on a tree arises from
this construction. Indeed, I pointed out that under the action associated with an
essential surface F , the stabilizer of each edge or vertex of the tree is isomorphic to
the fundamental group of a component of F or of M − F . By contrast, I will point
out in Subsection 2.3 below that for many reasonable choices of M there are very
simple and natural examples of nontrivial actions without inversions of π1(M) on
trees for which the edge and vertex stabilizers are not even finitely generated!
Nevertheless, it turns out that with every nontrivial action without inversions of

π1(M) on a tree one can “associate,” in an interesting way, an essential surface in
M . I’ve used quotation marks here because the construction of the surface from
the action is far from being canonical, as it depends on many choices. Further-
more, one cannot in general reconstruct an action from a surface “associated” to
it. Nevertheless, such a surface contains important information about the action.
In this section I will describe the construction of a surface associated to an action,
talk a little about the extent to which this construction behaves like an inverse to
the construction of 1.4, and give some important applications. These are only first
applications, though, because everything I will be talking about in the rest of the
chapter depends on the construction I’ll describe here.
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2.1. Constructing an equivariant map

Suppose, then, that we’re given a simplicial action · of π1(M) on a tree T . (Even-
tually it will matter that the action is nontrivial and without inversions; I’ll point
out where these hypotheses come up.) The first step in constructing an essential
surface associated with the action is to construct a (continuous) π1(M)-equivariant
map f̃ : M̃ → T .
Let’s fix a triangulation for M , and give M̃ the induced triangulation. The strat-

egy for constructing f̃ is to construct (continuous) maps f̃ (i) from the i-skeleta
M̃ (i) of M̃ to T for i = 0, 1, 2, 3; each f̃ (i) will be π1(M)-equivariant, and f̃ (i) will
extend f̃i−1 for i = 1, 2, 3. Of course we’ll define f̃ to be f̃3.
To construct f̃ (0) we first pick a complete system of orbit representatives for the

action of π1(M) on M (0), i.e. a set S(0) ⊂ M (0) such every orbit for the action of
π1(M) on M (0) meets S(0) in exactly one point. Now, using the fact that π1(M)
acts freely on M—and hence on M (0)—we can see that if h(0) is any map whatever
from S(0) to the vertex set T (0) of T then h(0) has one and only one extension
f̃ (0) : M̃ (0) which is π1(M)-equivariant. Uniqueness is clear, since any such map
must in particular satisfy

f̃ (0)(γ · s) = γ · h(0)(s) for all s ∈ S(0) and γ ∈ π1(M). (2.1.1)

To get existence we notice that (2.1.1) makes sense as a definition of f̃ (0) because
every vertex in M (0) can be expressed in exactly one way in the form γ · s with
γ ∈ π1(M). The point here is that if γ · s = γ ′ · s then s is a fixed point of γ−1γ′,
and since the action is free we must have γ = γ ′. Now that we know the definition
2.1.1 makes sense, there is no problem checking that the map f̃ (0) is equivariant.
It’s significant that we could have started with any map h : S(0) → T (0) for this

step. (Actually at this stage we don’t even need h to map S(0) into T (0), but that
will be nice to know later.) This illustrates how far our construction is from being
canonical. The flexibility in the definition of f̃ turns out to be very useful; I’ll return
to this issue later in this section.
Now suppose that f̃ (i) has been constructed for a given i with 0 6 i 6 2. Let

us pick a complete system of orbit representatives S(i+1) for the action of π1(M)
on the set of all i + 1-simplices of M̃ . For any simplex σ ∈ S(i+1) we have a map
f̃ (i)|∂σ : ∂σ → T . Since T is contractible, this map can be extended to a map
f̃σ : σ → T . Now there is a unique continuous, π1(M)-equivariant map f̃ (i+1) :
M (i+1) → T which restricts to hσ on each σ ∈ S(i+1). Indeed, such a map must
obviously be given by

f̃ (i+1)(γ · x) = γ · hτ (x) for all τ ∈ S(0), x ∈ τ and γ ∈ π1(M).

We can show, almost exactly as in the construction of f̃ (0), that the map given by
this formula is well-defined and equivariant. Continuity is then easy.
It’s easy to adapt this construction so as to guarantee that the map f̃ is simplicial

with respect to some π1(M)-invariant triangulation of M̃ (and a given triangulation
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of T ). All that we have to notice is that the in the induction step, the map f̃ (i)|∂σ
can be extended to a simplicial map f̃σ : σ → T ; this follows from the simplicial
approximation theorem for pairs (see [59], Chapter 3, Section 4, Theorem 8 and
Lemma 1).

2.2. Constructing a surface

Now, fixing a π1(M)-invariant triangulation of M̃ in which f̃ is simplicial, let’s
consider a point x of T which is not a vertex. Consider the subset P = f̃−1(x) of
M̃ , and for any i-simplex σ of M̃ consider the subset P ∩σ of σ. If f̃ does not map
σ onto the edge e of T containing x then P ∩ σ = ∅. (This is always the case if
i = 0.) If f̃ does map σ onto e, then since no vertex of σ is mapped to x, the set
P ∩σ is an (i−1)-cell properly embedded in σ: if we think of the simplex σ as being
embedded in an affine space, P ∩σ is the intersection of σ with a hyperplane missing
the vertices of σ. Now since P meets every simplex of M̃ either in the empty set or
in a properly embedded codimension-1 cell, it’s easy to see that P is a 2-manifold,
properly embedded in M̃ .
(The most interesting point is checking that P is locally Euclidean at any point

z where it meets a 1-simplex τ of M̃ . The 2-simplices incident to τ look like the
pages of a cyclic book with τ as binding. The set P meets each page in a 1-cell
which has an endpoint at z and is otherwise disjoint from τ . Since P meets each
3-simplex in a 2-cell, we can recover its whole intersection with the open star of τ
by connecting every two successive 1-cells with a 2-cell, giving an open 2-disk.)
The basic idea for associating surfaces in M with actions of π1(M) on trees is

now easy to explain. Let’s denote by E the set of all midpoints of edges of the tree
T . Since, by the discussion above, f̃−1(x) is a properly embedded 2-manifold in M̃
for each x ∈ E, the set F̃ = f̃−1(E) is a properly embedded 2-manifold in M̃ . On
the other hand, since E is clearly π1(M)-invariant and f̃ is π1(M)-equivariant, F̃
is invariant under the action of π1(M) on M̃ . So F̃ is the inverse image, under the
covering projection, of some properly embedded 2-manifold in F ⊂M .
In Subsection 2.4 I will show how to modify the map f̃ so that the surface F ⊂M

that it defines is essential. Before doing this I need to deal with a small technical
point, and make some definitions and remarks.
The technical point involves a slightly stronger version of the condition that F̃

be a 2-manifold, which makes life much simpler when we are worrying about such
things as making F essential. Let E ⊂ T be a discrete set containing no vertices
of T . A continuous map f̃ : M̃ → T is said to be transverse to X if each point
z ∈ f̃−1(X) has a neighborhood U with a homeomorphism h : U → V × (0, 1), for
some open subset V of R2, such that f̃ |U = j ◦q◦h, where q : (0, 1)×(0, 1)→ (0, 1)
is the projection to the second factor, and j is some homeomorphism of (0, 1) onto
an open interval in some edge of T . It’s immediate that if f̃ is transverse to X then
f̃−1(X) is a bicollared 2-manifold in M . On the other hand, if you examine the
proof that I gave above that, for the equivariant map f̃ that I constructed, f̃−1(E)
is a properly embedded 2-manifold, you will have no trouble obtaining the stronger
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conclusion that this map f̃ is transverse to E.
It follows from the discussion I gave above that if f̃ : M̃ → T is a π1(M)-

equivariant map transverse to E, then f̃−1(E) is the inverse image under the cover-
ing projection of a properly embedded surface F in M . This surface is well-defined
once we have fixed the map f̃ . I’ll say that a bicollared surface F ⊂ M is dual
to the given action of π1(M) on T if it arises via this construction from some
π1(M)-equivariant map transverse to E.

2.3. Remarks on dual surfaces

When the fundamental group of a compact, orientable, irreducible 3-manifold M
acts simplicially on a tree T , properties of the action are reflected in the behavior
of surfaces dual to the action. The following statement covers a lot of applications:

2.3.1. If F is a dual surface to an action of π1(M) on a tree T , then:
(i) for each component Ci of M−F , the subgroup im(π1(Ci)→ π1(M)) of π1(M)

is contained in the stabilizer of some vertex of T ; and
(ii) for each component Fj of F , the subgroup im(π1(Fj)→ π1(M)) of π1(M) is

contained in the stabilizer of some edge of T .

(Of course, as I mentioned in Subsection 1.2, the subgroup im(π1(Ci)→ π1(M))
is defined only up to conjugacy in π1(M), but statement (i) makes sense because
the conjugate of a vertex stabilizer is still the stabilizer of a (probably different)
vertex. Likewise for (ii).)
Properties 2.3.1(i) and (ii) are just about immediate from the definition of a dual

surface. If F is defined by an equivariant map f̃ : M̃ → T , transvserse to the set
E of midpoints of edges of T , then for any component Ci of M − F , the subgroup
Γi = im(π1(Ci) → π1(M)) is the stabilizer of a component C̃ of M − F̃ , where
F = f−1(E). (Varying Γi within its conjugacy class just replaces C̃ by another
component of M − F̃ .) Now F̃ maps C̃ into a component S of T − T 0, where T 0

denotes the set of vertices of T . The equivariance of F̃ implies that Γ0 stabilizes S.
But S is just the open star, relative to the first barycentric subdvision of T , of a
vertex s of T ; and since the action of π1(M) is simplicial, the stabilizer of S is the
same as the stabilizer of s. This proves (i), and (ii) is even easier.

By the way, if you feel that the inclusions of subgroups given by 2.3.1 really ought
to be equalities, you should have a look at the end of this section.
If we are in the really stupid case where the dual surface F is empty, then the

only component of M − F is the whole manifold M , and it follows from 2.3.1(ii)
that π1(M) fixes a vertex of T . Remember that we express this by saying that the
action of π1(M) on T is trivial. So:

2.3.2. If π1(M) acts nontrivially on T then any surface dual to the action is
nonempty.
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Sometimes it’s useful to think of a dual surface F ⊂ M in terms of a map of
M into a graph, i.e. a 1-dimensional CW-complex. In fact, since Γ is assumed to
act on T without inversions, the orbit space G = T/Γ has the structure of a graph
in a natural way, the open 1-cells being the homeomorphic images of edges of T .
(The presence of inversions would make certain edges get folded in two.) Now if
f̃ : M̃ → T is a π1(M)-equivariant map transverse to E, there is a unique map
f :M → G such that the diagram

M̃
f̃

−−−−−−−−−→ T






y







y

M
f

−−−−−−−−−→ G

commutes. We clearly have F = f−1(Ē), where Ē is the image of E in G; you
may think of E as the set of midpoints of edges of G. If there were a simple char-
acterization of maps f : M → G that are induced by equivariant maps from M̃
to T , this would give a simplified definition of dual surfaces, but the fact is that
characterizing such maps is pretty messy. Still, this way of looking at a dual surface
is sometimes useful. For one thing, since f is itself transverse to Ē (in essentially
the same sense as before), and since each point of Ē is two-sided in G, it’s an easy
exercise to conclude that each component of F is two-sided in M . So:

2.3.3. If π1(M) acts on T without inversions then the components of any dual
surface are two-sided.

(Since we’ve assumed M to be orientable, 2.3.3 is the same as saying that F is
orientable, but 2.3.3 would be true even without this assumption.)
By and large, the dual surfaces that I will be working with in this chapter will

be piecewise linear with respect to some triangulation of the ambient manifold.
As I mentioned at the end of Section 1.4, a two-sided, properly embedded PL
hypersurface in a PL manifold is always bicollared. However, one can show without
ever mentioning a PL structure on M , or putting any additional restrictions on the
surface, that:

2.3.4. Any surface that’s dual to an action of π1(M) on a tree is bicollared.

The point is that the condition that f : M → G is transverse to Ē immediately
implies that the surface F = f−1(Ē) = f̃−1(E) is locally flat: this simply means
that every point x ∈ F̃ has a neighborhood V in M̃ which can be mapped home-
omorphically onto R3 in such a way that F̃ ∩ V is mapped onto R2. And it is a
theorem of Morton Brown’s [9] that a locally flat, two-sided, properly embedded
hypersurface in an n-manifold is always bicollared.
Now let’s turn to the question of how the notion of dual surface is related to the

construction described in Subsection 1.4 that associates a tree with a surface. If
F is a bicollared surface in M , and if T is the tree, on which π1(M) acts without
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inversions, which is given by the construction of 1.4, then since T is by definition a
quotient of the universal covering M̃ , we have a natural map M̃ → T . It’s straight-
forward to check that this map is equivariant and transverse to the midpoints of
edges of T , and that F is the dual surface it defines.
The situation is more subtle if we begin with an action of π1(M) without inver-

sions on a tree T , choose a dual surface F to the action, and compare the given
action of π1(M) on T with its action on the tree T ′ which is associated with F by
the construction of Subsection 1.4. This construction does make sense here, since
we just saw that F is bicollared. It’s natural to wonder whether T ′ and T are
equivariantly isomorphic. This would mean that the inclusions given by 2.3.1 were
equalities.
But this is false. In fact, there are perfectly reasonable examples in which the

fundamental group of a compact, irreducible, orientable 3-manifold M acts on a
tree T in such a way that the stabilizers of all the edges and vertices of T in π1(M)
are infinitely generated. This means that we can never have equality in 2.3.1(i) or
(ii), regardless of which dual surface we choose.
We can see this phenomenon by using an especially simple example of a tree:

the real line R, triangulated with a vertex at each integer point. The action of the
group Z on R by translations is a simplicial action. Now if Γ is any group and
φ : Γ → Z is a homomorphism, pulling back the standard action of Z on R via φ
gives an action of Γ on R, which is nontrivial if and only if the homomorphism φ
is nontrivial. The stabilizer of any edge or vertex is simply the kernel of φ. Now
Stallings’s fibration theorem [60], [31] asserts that if M is a compact, irreducible,
orientable 3-manifold, and φ : π1(M)→ Z is a homomorphism, then K = kerφ can
be finitely generated only if M is a locally trivial fiber bundle over S1 and φ is the
homomorphism induced by the bundle map. In this case K is just the image of the
fundamental group of a fiber F , and it’s easy to see that F is just a dual surface;
this gives a class of examples where we do have T ′ = T .
In general, however, there is no reason why a homomorphism π1(M)→ Z should

be realized by a bundle map to S1. Among 3-manifolds which have positive first
betti number, and whose fundamental groups therefore admit homomorphisms onto
Z, there are certainly plenty of examples—my unjustified intuition says they are a
majority—which cannot be fibered over S1 at all. You can get a sense of the issues
involved by looking at [63].
Still, it is not hard to understand the relationship between the trees T and T ′

in general. By fiddling a little you should be able to show that with a little care
in choosing the bicollaring of the dual surface F which is used in constructing the
tree T ′, we can guarantee that the equivariant map f̃ : M̃ → T , which defined
F , factors through a π1(M)-equivariant map T ′ → T . Although I won’t be using
this equivariant map in this chapter, it certainly gives a nice picture. For example,
you can read off the inclusions 2.3.1(i) and (ii) from the existence of this map,
since equivariance implies that every edge or vertex stabilizer of T ′ is contained in
an edge or vertex stabilizer of T . This is presumably the way that mathematical
aristocrats—to borrow a phrase of Raoul Bott’s—think about 2.3.1. Personally I
have the soul of a petty bourgeois. Otherwise I would never have finished this
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chapter by the deadline.

2.4. Making a dual surface essential

Now I’ll indicate how, given a compact, irreducible 3-manifold M and an action of
π1(M) on a tree T , you can construct an essential surface in M that’s dual to the
given action. We saw in the last section that there is some bicollared surface dual
to the action. What I’ll give here is a construction that can be carried out whenever
a given surface F , dual to the action, is not essential. This construction replaces F
by a new surface F ′, also dual to the action. I will then point out that F ′ is always
“simpler” than F in a suitable sense that I’ll make precise; this will imply that by
repeating the construction a finite number of times we always arrive at an essential
surface.
The most important part of the definition of an essential surface is the π1-

injectivity condition 1.5.1(i). The heart of the matter is therefore to give a con-
struction for simplifying F in the case where 1.5.1(i) fails to hold; by the discussion
following Definition 1.5.1, this is the case in which there is a compressing disk D
for F . In this situation there is a natural operation, called a compression, by which
you can replace F by a new surface F ′: you remove from F an annular neighbor-
hood A of the simple closed curve ∂D, and to the resulting surface you attach two
parallel copies of D, say D1 and D2, whose boundaries are the two components of
∂A. (Defining “parallel” here involves part (c) of the definition of a compressing
disk given in Subsection 1.5, and it’s easy to show that F ′ is bicollared.) A little
later I will point out a precise and useful sense in which F ′ is “simpler” than F .
Right now let me point out why the surface F ′ is dual to the action of π1(M) on
T .
Since F is dual to the action, there is a π1(M)-equivariant map f̃ : M̃ → T ,

transverse to E, such that f−1(E) = p−1(F ), where p : M̃ → M is the covering
projection. We are required to find another π1(M)-equivariant map f̃ ′ : M̃ → T ,
transverse to E, such that (f ′)−1(E) = p−1(F ). Let’s choose a nice neighborhood
B of D in M , so that B is homeomorphic to a ball and meets F in the annulus A,
which is properly embedded in B. Then B is the union of a ball X+ and a solid
torus X−, where X+ ∩X− = A; we may take the disks D1 and D2 to be contained
in X+, and properly embedded in X−. (Formal proofs of things like this can be
given by using regular neighborhood theory. See [32].)
Now let B̃ be a component of p−1(B), so that p maps B̃ homeomorphically onto

B, and let Ã, D̃1, D̃2, X̃
+ and X̃− denote the inverse images in B̃ of A, D1, D2,

X+ and X−. Since f̃ is transverse to E and Ã = B̃ ∩f−1(E), and since T is a tree,
f̃ must map X+ and X− to the closures of different components of T −E, say Y +

and Y −. Let h denote the map from ∂B̃ ∪D1∪D2 to T which agrees with f̃ on ∂B̃
and maps D1 and D2 to the point p(A) of E. Then h can be extended to a map
g : B̃ → T such that g−1(E) = D1 ∪D2. To see this, note that D1 and D2 divide B
into three balls. If C is any of these balls, h maps ∂C to the closure of either Y + or
Y −; this makes it possible to extend h|∂C to a map from C to the closure or Y +
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or Y − in such a way that the interior of C is mapped to either Y + or Y −.
Now g admits a unique extension to a π1(M)-equivariant map f̃ ′B : p−1(B)→ T ,

since each component of p−1(B) is the image of B̃ under a unique element of π1(M).
If we define f̃ ′ to agree with f ′B on its domain and with f̃ on the rest of M̃ , it is

clear that f̃ ′ is continuous and π1(M)-equivariant, and that (f̃ ′)−1(E) = p−1(F ′).
You should convince yourself that with just a little more care in the construction
of the extension g of h, we can guarantee that f̃ ′ is actually transverse to E. This
shows that the surface F ′ is dual to the action.
(One comment that’s worth making about the map f̃ ′ that’s been constructed

here is that even if f̃ were simplicial with respect to some subdivision of M̃ and
the given triangulation of T—as was the case with the map f̃ that I constructed
in Subsection 2.1—it’s almost certainly necessary to subdivide T before f̃ ′ can be
made simplicial.)
In the other cases where F fails to be essential, the construction of F ′ is sig-

nificantly easier. We saw in Subsection 2.3 that F can’t fail to satisfy Condition
1.5.1(iv). If F satisfies Condition (i) of 1.5.1 but does not satisfy both Conditions
(ii) and (iii), it has a component F0 which is either a 2-sphere or a boundary-parallel
surface. If F0 is a 2-sphere, then sinceM is irreducible, F0 bounds a ball B0; we may
assume F0 to be chosen so that B0 doesn’t contain any other 2-sphere component
of F . Since F already satisfies 1.5.1(i), this implies that B0 contains no component
of F whatever.
It’s not hard to see that F ′ = F − F0 is again a dual surface. For example,

in the case where F0 is boundary-parallel, there’s a submanifold M ′ which is a
deformation-retract of M , such that M ′ ∩ F = F ′. If we think of a deformation-
retraction from M to M ′ as a map ρ : M → M , then ρ is covered by a π1(M)-
equivariant map ρ̃ : M̃ → M̃ . If f̃ : M̃ → T is a π1(M)-equivariant map, transverse
to E, with f̃−1(E) = p−1(F ), then f̃ ′ = f̃ ◦ ρ̃ is also π1(M)-equivariant map and
transverse to E, and we have f̃−1(E) = p−1(F ′). I’ll let you work out the case
where F0 is a 2-sphere.
Now we need to address the sense in which F ′ is “simpler” than F . For any

compact 2-manifold F , let me define the complexity of F to be the nonnegative
integer

c(F ) =
∑

(2− χ(Fi))
2, (2.4.1)

where Fi ranges over the components of F and χ denotes the Euler characteris-
tic. Since a compact, connected 2-manifold has Euler characteristic at most 2, the
expressions whose squares appear in the sum (2.4.1) are always nonnegative.
The reason this complexity is useful is that the operations I’ve described above,

which replace a nonessential dual surface by a new dual surface, usually decrease
the complexity. Specifically, this is always true of the first operation I described,
the compression, which can be carried out when the given dual surface F fails to
satisfy Condition (i) of Definition 1.5.1. To see this, notice that if F ′ is obtained
by a compression from F , we have F ′ = (F − intA) ∪ D1 ∪ D2, where A is an
annulus in F whose core curve doesn’t bound a disk in F , and D1 and D2 are
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disks with (D1 ∪ D2) ∩ F = ∂D1 ∪ ∂D2 = ∂A. If F0 denotes the component of
F containing A, then F ′ is obtained from F by replacing F0 by the 2-manifold
F ′
0 = (F0 − intA) ∪D1 ∪D2, which has either one or two components. Now when

we form the union of two surfaces that meet along a collection of common boundary
curves, the Euler characteristic of the union is the sum of the Euler characteristics
of the two pieces; hence

χ(F ′
0) = (χ(F0)− χ(A)) + (χ(D1) + χ(D2)) = χ(F0) + 2.

Now there are two cases. If F ′
0 is connected, the effect of our operation on the sum

(2.4.1) is to replace the term 2− χ(F0))
2 by the term the term 2− χ(F ′

0))
2, where

χ(F ′
0) = χ(F0) + 2 6 2, so it’s clear that c(F ′) < c(F ).

If F ′
0 has two components, say F ′

α and F ′
β , then neither F ′

α nor F ′
β is a sphere;

this is because the core curve of A did not bound a disk in F . Hence if we set
a = 2− χ(F ′

α) and b = 2− χ(F ′
β), then a and b are both strictly positive. Now we

have

2− χ(F0) = 4− χ(F ′
0) = 4− (χ(F ′

α) + χ(F ′
β)− 2) = a+ b.

So the effect of our operation on the sum (2.4.1) is to replace the term (a + b)2

by the term a2+ b2. Since a and b are strictly positive, we again have c(F ′) < c(F ).
The other operations on F that I described, for the cases where Condition (ii)

or (iii) of Definition 1.5.1 fails, amount to discarding a component. This cannot
increase the complexity of F , although it may keep it the same if the component
in question is a sphere. It’s now pretty clear how to get an essential surface which
is dual to the given action. We choose a surface F whose complexity is minimal
among all dual surfaces; and among those dual surfaces having minimal complexity,
we choose F so as to have the smallest possible number of components. If F were
not essential, one of our operations would produce either a dual surface of strictly
smaller complexity, or one having the same complexity but fewer components, and
in either case we’d have a contradiction.

2.5. Applications, I: Nonseparating surfaces

The simplest consequence of the constructions described in this section is that if M
is a compact, orientable, irreducible 3-manifold such that π1(M) admits a nontrivial
action on a tree, then M contains an essential surface. Conversely according to
Proposition 1.5.2, ifM contains an essential surface then π1(M) admits a nontrivial
action on a tree.
In Subsection 2.3 I already mentioned an especially simple way of constructing an

action of π1(M) on a tree: pull back the action of Z on R by translations, via some
homomorphism from π1(M) to Z. Such homomorphisms are in canonical bijective
correspondence with elements of H1(M ;Z). So the general construction described
in this section allows one to associate (noncanonically) an essential surface F with
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any nontrivial element c ∈ H1(M ;Z). It’s a good exercise to show that the image
in H1(M,∂M ;Z) of the fundamental class [F ] of F is the Poincaré dual of c. (To
make this precise, we need to orient the components of F so that [F ] will be well
defined; choosing the right orientations is part of the exercise. Here’s a hint: the
equivariant map f̃ : M̃ → R from which F is constructed induces a map from M
to S1.)
Since [F ] 6= 0, there is at least one component F0 of F such that [F0] 6= 0, which

is tantamount to saying that F does not separate M . In particular:

Proposition 2.5.1. If M is a compact, orientable, irreducible 3-manifold with pos-
itive first betti number, then M contains a nonseparating essential surface.

This particular result is fundamental in 3-manifold theory. A Haken manifold is
defined to be a compact, orientable, irreducible 3-manifold which is either homeo-
morphic to a ball or contains an essential surface. If M is a compact, orientable,
irreducible 3-manifold with nonempty boundary, then either ∂M has a 2-sphere
component, in which the irreducibility of M implies that M is a ball, or some com-
ponent of ∂M has genus > 0, in which case an elementary application of Poincaré
duality (see for example the proof of Lemma 4.9 in [31]) shows that M has posi-
tive first betti number, so that M contains an incompressible surface according to
Proposition 2.5.1. So we may state the

Corollary 2.5.2. Every compact, orientable, irreducible 3-manifold with nonempty
boundary is a Haken manifold.

Now suppose that M is a Haken manifold not homeomorphic to a ball. If we
choose an essential surface F ⊂M , then splittingM along F gives a new—possibly
disconnected—manifoldM ′, each component of which has nonempty boundary, and
it’s not hard to conclude from the irreducibility of M and the essentiality of F that
each component ofM ′ is irreducible. So each component ofM ′ is a Haken manifold.
If some component of M ′ is not a ball, it follows that there is an essential surface
F ′ in some component of M ′, and we can split M ′ along F ′ to get a manifold M ′′,
each component of which is a Haken manifold. It was first shown by Haken—see
[31], pp. 140–142 for a simplified proof—that if the surfaces F ′ are chosen with a
little care then this process must terminate; that is, there is some n > 0 such that
every component of M (n) is a ball. The finite sequence M,M ′, . . .M (n) is called a
hierarchy for the manifold M .
Some of the deepest results in 3-manifold theory are theorems about Haken man-

ifolds that are proved by induction on the length of a hierarchy. To prove such a
theorem we need only prove that it is true for a given manifold M whenever it
is true for each component of the manifold M ′ obtained by splitting M along an
essential surface. The first results of this type were obtained by Waldhausen; for
the special case of a closed Haken manifold M his results imply that every irre-
ducible 3-manifold M1 with π1(M1) ∼= π1(M) is homeomorphic to M , that every
outer automorphism of π1(M) is induced by a self-homeomorphism of M , and that
self-homeorphisms of M which induce the same outer automorphism are isotopic.
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Another particularly famous example is Thurston’s theorem characterizing those
Haken manifolds which admit hyperbolic metrics of finite volume.
Corollary 2.5.2 applies in particular when M is the exterior of a tame knot in a

closed, orientable 3-manifold Σ. By a knot in M I mean a subset K homeomorphic
to S1; to say that M is tame means that it has a tubular neighborhood—that is,
a neighborhood V which can be mapped homeomorphically to S1 ×D2 in such a
way that K is mapped onto S1 × {0}. (Every smooth or piecewise linear knot is
automatically tame.) The exterior of K is the closure of Σ− V . If Σ is a homology
3-sphere (for example S3), there is a stronger version of Corollary 2.5.2. The proof
of the corollary gave a nonseparating essential surface F in M , but I claim we can
take F to have a connected boundary. This is an easy consequence of a relative
version of the main construction of this section; since I’ll need the relative version
elsewhere in the chapter, I will spell out the conclusion:

Proposition 2.5.3. Let M be a compact, orientable, irreducible 3-manifold, and
suppose that we are given a nontrivial action of π1(M) on a tree T . Let B1, . . . , Bk ⊂
∂M be disjoint (compact) subpolyhedra, and consider the action of each π1(Bi) on
T obtained by pulling back the action of π1(M) via the inclusion homomorphism
π1(Bi)→ π1(M). (These actions are well-defined up to equivalence; see Subsection
1.2.) Suppose that for i = 1, . . . , k we are given a π1(Bi)-equivariant map g̃i : B̃i →
T , where B̃i denotes the universal covering space of B, and suppose that each g̃i
is transverse to the set E of all midpoints of edges of T , so that g̃−1i (E) is the
pre-image of a unique closed 1-manifold Ci ⊂ B. Then there is a dual surface F to
the action of π1(M) on T such that Bi ∩ ∂F ⊂ Ci for i = 1, . . . , k.

After a few preliminaries, proving this is just a matter of carrying out the con-
structions described in Subsections 2.1, 2.2 and 2.4 with a little care. Working out
the details is a perfect exercise in understanding these constructions. One uses the
equivariance property of g̃i to show that g̃i factors through a map g̃′i : B̃i/Ni to
T , where Ni is the kernel of the inclusion homomorphism π1(Bi) → π1(M). The
quotient surface B̃i/Ni can be identified with a boundary component of the uni-
versal cover M̃ of M . Let’s define g̃′ : (B̃1/N1) ∪ . . . (B̃k/Nk) → T to be the map
which restricts to g̃′i on each B̃i/Ni. There is a unique extension of g̃ to a π1(M)-
equivariant map f̃∂ : p−1(B) → T , where p : M̃ → M is the covering projection
and B = B1 ∪ · · ·Bk.
If one begins with a triangulation of M in which B is a subcomplex, then in

carrying out the inductive construction given in Subsection 2.1 for the π1(M)-
equivariant map f̃ , simplicial with respect to some π1(M)-equivariant subdivision
of M̃ and the given triangulation of T , one can make the choices of extensions f̃σ in
such a way that for each simplex σ ⊂ p−1(B) we have f̃σ = f̃∂|σ. According to the

discussion in Subsections 2.2 and 2.3, f̃ is transverse to E ⊂ T . The dual surface
defined by f̃—let’s call it F0—has the property that Bi ∩ F0 = Ci for i = 1, . . . , k.
The arguments of Subsection 2.4 show that by a finite sequence of modifications
we can replace F0 by an essential surface dual to the action. If you examine the
effect of these operations on the boundary, you will find that ∂F ⊂ ∂F0, so that
Bi ∩ ∂F ⊂ Ci for i = 1, . . . , k, as asserted in Proposition 2.5.3.
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Now, as I was saying, Proposition 2.5.3 can be used to show that ifM is the exte-
rior of a knot K in a homology 3-sphere Σ, then there is an essential nonseparating
surface F ⊂ M with connected boundary. To see this, first notice that H1(M ;Z),
which is the abelianization of π1(M), is infinite cyclic and generated by the merid-
ian class, as is easily deduced from the Mayer-Vietoris theorem. Hence, up to sign,
there’s a unique homomorphism φ : π1(M)→ Z, and φ maps the conjugacy class λ
defined by the longitude of K to 0, and maps the conjugacy class µ defined by the
meridian of K to a generator of Z. (See Boyer’s chapter for terminology concerning
meridians and longitudes.) If we identify ∂M with S1 × S1 so that S1 × {point}
is a meridian and {point} × S1 is a longitude, then the universal cover of ∂M be-
comes identified with R ×R. The hypotheses of Proposition 2.5.3 now hold if we
set T = R and B = ∂M , let π1(M) act on R by the pullback via φ of the action
of Z on R by translations, and define g̃ : R×R → R to be the projection to the
first factor. The 1-manifold C described in the statement of Proposition 2.5.3 has
the form {point}× S1 and is therefore a longitude. Hence Proposition gives a dual
surface F whose boundary is either a longitude or the empty set. But if ∂F = ∅
then the equivariant map defining F maps the boundary of M̃ into the complement
of the set E of midpoints of edges of R, hence into an interval [n − 1

2 , n + 1
2 ]; by

equivariance, the vertex n of R is fixed by π1(∂M). This is absoid, since µ acts on
R by a unit translation.
So we do indeed have an essential surface F ⊂M whose boundary is connected,

and is in fact a longitude. It’s easy to see that in the tubular neighborhood V of K
whose interior was removed from Σ to getM , there is an annulus A whose boundary
curves are the knot K and a longitude, which we can take to be ∂F . So F+ = F ∪A
is an embedded (but not properly embedded) compact, orientable surface in Σ with
boundary F . Such a surface is called a Seifert surface. While Seifert surfaces are
great for making plastic models, properly embedded surfaces in knot exteriors are
generally more useful for theoretical work, as you will quickly discover if you try to
write down the properties of F+ that translate the condition that F is essential. Of
course, F is so closely related to F+ that one quickly slips into the habit of calling
F a Seifert surface.
One immediate consequence of the existence of an essential Seifert surface in a

knot K is that if K is nontrivial then the group of K, defined to be π1(Σ−K) ∼=
π1(M), has a nonabelian free subgroup. (To say that K is nontrivial means that
is doesn’t bound a disk in Σ. So a Seifert surface, which by definition is orientable
and has a connected boundary, must have genus > 0, so that π1(F ), which injects
into π1(M) by condition (i) of Definition 1.5.1, is a nonabelian free group.) This is
a simple illustration of how the study of essential surfaces gives information about
the structure of a knot group. I’ll give a fancier illustration of this in Subsection
5.6 and Section 6.
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2.6. Applications, II: Free products and stuff

It’s routine to show that if an irreducible 3-manifold M contains an essential (bi-
collared) disk D then π1(M) is either a nontrivial free product or an infinite cyclic
group. If D separates M then the irreducibility of M can be used to show that
neither component of M − D is simply connected, so that M is a nontrivial free
product by van Kampen’s theorem. If D doesn’t separate M , van Kampen’s theo-
rem exhibits π1(M) as a free product of Z with π1(M −D), which may or may not
be trivial; in either case we get the desired conclusion.
Conversely, if π1(M) is either a nontrivial free product or an infinite cyclic group,

then M contains an essential disk. To prove this from the point of view of this
section, the main thing you have to notice is that a group Γ which is either infinite
cyclic or a free product admits a nontrivial action on a tree T in which the stabilizer
of each edge is trivial. If Γ is infinite cyclic we can take T = R. If Γ is a nontrivial
free product, one can either construct the tree from the algebra of a free product—a
good exercise—or describe it topologically as follows. Think of Γ as the fundamental
group of a space X which is the union of two disjoint nonsimply connected spaces
A and B and a topological arc which meets each of A and B in a single point. If X̃
is the universal cover of X and p : X̃ → X is the covering projection, we can obtain
T as a quotient of X̃ by identifying each component of p−1(A∪B) to a point. The
usual action of π1(X) on X̃ induces an action on T with the required property.
Now if π1(M) acts on a tree with trivial edge stabilizers, then according to

the results of Subsections 2.2 and 2.4, there is an essential dual surface F to the
action; and according to 2.3.1(ii), the fundamental group of each component of F is
contained in the stabilizer of an edge of T and is therefore trivial. As my definition
of essential surface rules out 2-sphere components, the components of F must be
essential disks.
There is a useful generalization of the notion of a free product. Suppose we are

given groups A, B and C, and injective homomorphisms i : C → A and j : C → B.
The free product of A and B amalgamated over C, denoted rather vaguely by A?CB,
is defined to be quotient of the free product A?B obtained by adding the relations
i(c) = j(c) for all c ∈ C. It is a theorem, of which you will find an elegant account
in [37], that the natural homomorphisms from A and B (and hence from C) to
A ?C B are injective. One identifies A, B, and C with subgroups of A ?C B, and
one says that the amalgamated free product A ?C B is nontrivial if A and B are
proper subgroups of A ?C B.
Of course this comes up naturally in topology: if Z is, say, a connected bicollared

hypersurface in an n-manifold M such that M −Z has two connected components
X and Y , and if the inclusion homomorphism from π1(Z) to π1(M) happens to
be injective, then van Kampen’s theorem exhibits π1(M) as the amalgamated free
product π1(X)?π1(Z) π1(Y ). (Here we should choose a base point in Z and take the
homomorphisms i and j to be induced by inclusion.)
Generalizing the fact about free products which I talked about earlier in this

section, one can show that any amalgamated free product A ?C B acts on a tree in
such a way that the edge stabilizers are precisely the conjugates of C in A ?C B,
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and the vertex stabilizers are precisely the conjugates of A and B. You can do this
topologically by an argument very close to the one I gave for free products, or you
can work it out algebraically from the normal form for elements of an amalgamated
free product given in [37]. You can also find a proof in [55], about which I’ll be
saying more shortly. It’s clear from the definitions that the action on the tree is
nontrivial if and only if A ?C B is a nontrivial amalgamated free product.
If F is a separating, connected, essential surface in a closed, orientable, irre-

ducible 3-manifold then π1(M) is a nontrivial free product with amalgamation.
This amounts to saying that neither component of M − F can carry π1(M), a fact
which you can extract from the proof of 1.5.2 above, or deduce from the statement.
In the converse direction, if π1(M) is a nontrivial free product with amalgamation,

then since π1(M) admits a nontrivial action an a tree, M must contain an essential
surface. This is because π1(M) admits a nontrivial action on a tree, and you can
apply the very first sentence of Subsection 2.5. However, the surface we get this
way need not separate M . (Note that the dual surface to the action on the tree
could fail to be connected.)
It’s clear from these observations, together with the ones I made in Subsection 2.5,

that a compact, orientable, irreducible 3-manifold is a Haken manifold if and only
if either the first betti number of M is strictly positive or π1(M) is a nontrivial free
product with amalgamation. In [67], Waldhausen attributed this result to D.B.A.
Epstein.
Feustel [27] showed that if π1(M) ∼= A ?C B, where C is isomorphic to the

fundamental group of a closed, orientable surface of positive genus, then there is a
separating, closed, essential surface F ⊂M such that the inclusion homomorphisms
map π1(F ) onto C and map the fundamental groups of the components of M − F
onto A and B.
Of course there is no need to stop at free products with amalgamation. If Z is any

bicollared hypersurface in an n-manifoldM such that the inclusion homomorphism
from π1(Zi) is injective for each component Zi of Z, one can use van Kampen’s
theorem to compute π1(M) from the fundamental groups of the components of Z
and of M − Z. The appropriate structure was described elegantly in the work of
Bass and Serre presented in [55], who introduced the notion of the “fundamental
group of a graph of groups” as the relevant generalization of an amalgamated free
product. As you would expect, the fundamental group of a graph of groups has a
canonical action on a tree. What is more surprising is the converse: every action
of an arbitrary group Γ on a tree arises in an essentially unique way from an
isomorphism of Γ with the fundamental group of a graph of groups. There is also
a topological approach to this theory; see [53].
You can think of the material in this chapter as being vaguely analogous to the

Bass-Serre theory. If we start out, not with an abstract group but with the funda-
mental group of a (compact, irreducible, orientable) 3-manifold M , then we have
seen how construct, from an action of π1(M) on a tree, not just a group-theoretical
identification of π1(M) with the fundamental group of a graph of groups, but an
essential surface in M itself, from which such an identification can be constructed.
This construction is less canonical than the one given by the Bass-Serre theory,
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and the relationship between the dual surface and the action is less direct than the
connection between a general group action and the associated graph of groups. It’s
nevertheless a useful construction. I’ve given a few hints in this section and the last
one about why it’s useful. To exploit it further one needs to combine it with ideas
from algebra and geometry, which I’ll be presenting in the next three sections.

3. The tree for SL2

In the last two sections I illustrated how group actions on trees come up in 3-
manifold theory. Another subject in which such actions come up naturally is the
study of groups of 2 × 2 matrices with entries in a field: there is a natural way
of constructing actions of such groups on trees, and this provides a beautiful and
powerful way of analyzing the algebraic structure of these groups. In this section
I will be giving a brief introduction to the ideas involved, from a purely algebraic
point of view. In Section 5 I will explain the surprising interaction of these ideas
from algebra with the topological theory of 3-manifolds.
The classic work on the tree for SL2 is Serre’s book [55]. The construction of the

trees in question is a very special case of a construction due to Bruhat and Tits [10].
My aims here are to give a quick, self-contained account of enough of the material
to allow you to read the rest of this chapter, and to inspire you to read [55] and
perhaps [10].

3.1. Valuations

The starting point for this theory is the notion of a valuation. Valuations are objects
that come up naturally in both number theory and complex analysis—so naturally,
in fact, that anyone who has thought about the most elementary aspect of either
subject has really worked with valuations, whether consciously or not. To illus-
trate the number-theoretic aspect of the idea, consider a prime number p. Given
any integer a 6= 0, let us denote by v(a) = vp(a) > 0 the exponent of p in the
prime factorization of |a|. The fundamental theorem of arithmetic asserts that the
surjective map v : Z − {0} → N (where N denotes the set of nonnegative inte-
gers) is well-defined. The reason the theorem is so powerful is that once we know
v is well-defined, it follows immediately that it behaves well under addition and
multiplication: we have

v(ab) = v(a) + v(b) for all a, b 6= 0, (3.1.1)

and

v(a+ b) > min(v(a), v(b)) for all a, b such that a, b and a+ b are all nonzero.
(3.1.2)
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(The inequality (3.1.2) just says that if a power of p divides both a and b then it
divides a+ b.)
Now it is an elementary exercise to show that if a map v of an integral domain

R onto N satisfies (3.1.1) and (3.1.2), and if K denotes the field of fractions of R,
then v extends uniquely to a map v̄ of K onto Z satisfying the identities (3.1.1)
and (3.1.2). (Any such v̄ must satisfy v̄(a/b) = v(a) − v(b) for a, b ∈ R − {0}, and
you can check that this formula gives a well-defined extension with the required
properties. Surjectivity is clear.) Now if K is a field, a valuation of K is defined to
be a surjection v : K − {0} → Z that satisfies (3.1.1) and (3.1.2). (In the general
theory of such things, these are called discrete, rank-1 valuations, but as they are
the only kind of valuation I will be talking about for most of this chapter, I will
just call them valuations for now. I will have occasion to mention more general
valuations in Section 11.)

3.2. The p-adic valuation

So the map vp of Z extends to a valuation of Q. I’ll denote the extension by vp as
well; it’s called the p-adic valuation. If a/b ∈ Q is a fraction that has been written
in lowest terms, and if p appears with exponent r > 0 in the factorization of a, we
have vp(a/b) = r. We have vp(a/b) = −r if p appears with exponent r > 0 in the
factorization of b; and if p divides neither a nor b we have v(a/b) = 0.
As an illustration of how basic this is in number theory, consider the theorem,

which was beyond the reach of the ancient Greeks even for k = 2, that the k-th root
of a positive integer n is either an integer or an irrational. The point is that if the k-
th root—let’s call it α—is rational, then for every prime p we have vp(n) = kvp(α);
thus k|vp(n) for every p, and it follows from the definition of the vp that n is a k-th
power of an integer.

3.3. Fields of meromorphic functions

To illustrate the relevance of valuations to complex analysis, consider a meromor-
phic function f which is defined on an open set u ⊂ C and is not identically zero.
For any point z0 ∈ u we can write f(z), for z in some neighborhood of z0, in a
unique way as a laurent series

f(z) =

∞
∑

n=r

an(z − z0)
n,

where r is an integer, not necessarily positive, and ar 6= 0. I’ll call r the order of f
at z0. (If r > 0 we may say that f has a zero of order r, and if r < 0 that it has a
pole of order |r|.) The meromorphic functions on u form a field K under pointwise
addition and multiplication, and it’s pretty clear that the function v : K−{0} → Z
that assigns to each meromorphic function its order at z0 is a valuation.
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When v is a valuation of a field K it’s convenient to extend v to a function, still
denoted v, defined on all of K and taking values in a set Z∪{∞}, where∞ is a new
element that we adjoin to Z, by setting v(0) =∞. If we do this then the identities
(3.1.1) and (3.1.2) hold for all a, b ∈ K, provided that we interpret +, > and min
in the obvious ways on the set Z ∪ {∞}.

3.4. The valuation ring

A valuation v of a field K gives a good deal of nice structure. It’s immediate from
the definitions that the elements x ∈ K such that v(x) > 0 form a sub-ring (with
unity) of K. (I’m following the convention here according to which v(0) is defined
to be ∞ and therefore to be > 0.) This ring is called the valuation ring associated
to v, and I’ll denote it Ov . Note that a nonzero element x ∈ K satisfies v(x) = 0
if and only if x and x−1 are both in Ov . Thus the elements x ∈ K with v(x) = 0
comprise the (multiplicative) group of units O∗

v of the ring Ov .
The ideals in the ring Ov are of a very simple form. to see this, let us fix an

element π ∈ K with v(π) = 1. Such an element is called a uniformizer. Let I be
any ideal in Ov , and let’s set n = minx∈I v(n). If we fix an x0 ∈ I with v(x0) = n,
then πnx−10 = n−n = 0, so that πn ∈ x0O∗

v ⊂ I. Conversely, for any x ∈ I we have
v(x/π−n) = v(x) − n > 0, so that πn|x in Ov . This shows that I is the principal
ideal generated by πn. So Ox is a principal ideal domain, and the only ideals are

(1) ⊃ (π) ⊃ . . . ⊂ (πn) ⊂ . . . ,

all of them linearly ordered by inclusion. In particular, Mv = (π), which consists
of all elements x ∈ K with v(x) > 0, is the unique maximal (proper) ideal of Ov .
note that Ov −Mv = O∗

v . Since Mv is a maximal ideal, the ring kv = Ov/Mv is
a field, called the residue field of v.
Let’s see what all this looks like in the examples of Subsections 3.2 and 3.3. In

the example of 3.2, the valuation ring is the ring Z(p) consisting of all rational
numbers which, when written in lowest terms, have denominators not divisible by
the given prime p. In this example, p is itself a uniformizer, and the maximal ideal
pZ(p) of Z(p) consists of all rational numbers which, when written in lowest terms,
have numerators divisible by p. the residue field is easily seen to be isomorphic to
Z/pZ; in fact, the usual homomorphism Z → Z/pZ extends to a homomorphism
Z(p) → Z/pZ with kernel pZ(p).
In the example of Subsection 3.3, the valuation ring is the ring Oz0 consisting of

all meromorphic functions on u which do not have poles at z0. The function z − z0
is a uniformizer, and the maximal ideal Mz0 of Oz0 consists of all meromorphic
functions on u that have zeros at z0. The homomorphism f 7→ f(z0) from Oz0 to C
is surjective, since it maps the field of constant functions isomorphically to Z, and
its kernel is obviouslyMz0 . Hence the residue field kv is canonically isomorphic to
C in this example.
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3.5. The p-adics

One way of thinking about a valuation v of a field K—and this is valuable general
knowledge, although it won’t be essential for the applications to 3-manifolds—is
that it defines a “nonarchimedean absolute value” on K. Let’s choose any real
constant c > 1, and let’s set |x| = c−v(x) for every x ∈ K − {0} and |0| = 0. Then
we have |x| = 0 if and only if x = 0, and the properties (3.1.1) and (3.1.2) of v
translate into the identities

|ab| = |a| · |b|,

and

|a+ b| 6 max(|a|, |b|)

which hold for all a, b ∈ K. From this it is routine to deduce that K becomes a
metric space if we define the distance between x and y to be |x − y|, and that
the field operations are continuous in terms of the topology defined by this metric.
The closed unit ball about 0 in K is obviously just the valuation ring Ov . It’s also
routine to show that the field operations extend uniquely to the completion K̂ of the
metric space K, which thereby itself becomes a field, and that v extends uniquely
to a valuation v̂ of K̂. It is not hard to show that the residue field of v̂ is naturally
isomorphic to the residue field of v.
The “p-adic distance” dp(x, y) = |x− y|p defined by the valuation vp of the field

Q is an especially nice example. The definition of the distance depends on the
choice of the constant c. For deep number-theoretic reasons it is customary to take
the constant c to be p in this case. I’ll use this choice of constant so as make my
notation standard, but the choice of c does not affect anything I’ll be talking about
here. One nice feature of this example is that the unit ball Ov = Z(p) contains Z
as a dense subset. To see this, note that if we’re given any element of Z(p), say a/b
where a, b ∈ Z and p does not divide b, we have pnx + by = 1 for some integers x
and y, so that

|a
b
− ay|p = |

axpn

b
| 6 p−n,

from which the assertion follows.
The field obtained by completing of Q with respect to the distance function dp

is called the field of p-adic numbers and is denoted Qp. The valuation ring of Qp,
which is the closed unit ball about 0, is denoted Zp and is called the ring of p-adic
integers. Since Z is dense in Z(p), it’s easy to deduce that Z is dense in Zp as well.
So we can think of Zp as the completion of Z with respect to the p-adic distance.
Now Z is a totally bounded metric space with respect to the p-adic distance.

This is because for any integer n > 0 we can write Z as the union of pn congruence
classes modulo pn, and each of these classes has diameter p−n. so the completion
Zp of Z is compact. From this it’s easy to deduce that Qp is locally compact.
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As a field with an absolute value, which is locally compact with respect to the
topology defined by the absolute value, Qp has many formal properties in common
with the field R of real numbers. From a formal point of view it is interesting to
ask questions about p-adic numbers that are analogous to familiar questions about
real numbers. Actually such questions are of far more than formal interest, because
of the role of the p-adic numbers in number theory. A famous example is the Hasse-
Minkowski principle, which addresses the question of when a diophantine equation
in n variables

∑

aijxixj = 0,

where aij are integers for i, j ∈ {1, . . . , n}, has a nontrivial solution, i.e. whether
there are integers x1, . . . , xn, not all 0, that satisfy the equation. We can obviously
replace both occurrences of the word “integers” here by “rational numbers,” and
we can assume without loss of generality that the matrix (aij) is symmetric; the
question is then one about nontrivial zeros of a quadratic form in Q. The Hasse-
Minkowski principle says that such a form has a nontrivial zero in Q if (and only
if) it has a nontrivial zero in R and also in Qp for every prime p. Saying the form
has a nontrivial zero over R is the same as saying that it’s indefinite—i.e. that it’s
neither positive definite nor negative definite—and this information can be read off
from the signs of some minors of the matrix. The glorious part is that one can show,
for example, that if n > 5 then the form has a nontrivial zero in Qp for every p; so
we get the elegant result that the above equation has a nontrivial integer solution
whenever n > 5 and the (symmetrized) matrix of the form is indefinite.
The Hasse-Minkowski theorem is a special case of a “local-global” principle which

says you can do certain kinds of things in Q if you can do them in R and in Qp

for every p. Of course the principle doesn’t always work. Now you know as much
about this as I do; to learn more, look at [54].
In Subsection 3.10 I’ll give an actual proof of a p-adic analogue of a very familiar

theorem involving real numbers.

3.6. Defining the tree for SL2

Let K be any field. I’ll show how to associate with any valuation v of K a tree
T = Tv on which GL(2,K) acts in a natural way. (As I’ve said, the tree is a special
case of an object discovered by Bruhat and Tits. The description of it that I’ll give
is due to Serre.) Let’s consider the standard 2-dimensional vector space V = K2

overK. In particular we may regard V as a module over the valuation ring O = Ov .
We define a lattice in V to be an O-submodule of V which is finitely generated and
spans V as a vector space over K. Since O is a principal ideal domain, any finitely
generated O-submodule of V is a free O-module of some rank 6 2. If the rank is
< 2, the submodule cannot span V as a vector space. So any lattice is of rank 2: as
far as their isomorphism type is concerned, all lattices look just like the standard
lattice O2 ⊂ K2.
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In fact we can say slightly more. If Λ0 and Λ1 are lattices, and if {ei, fi} is a
basis of Λi as a free O-module, then each {ei, fi} is also a basis of V as a vector
space over K. Hence there is a linear automorphism of V , which we can think of as
an element A of GL(2,K), mapping {e0, f0} onto {e1, f1}. In particular, A carries
the lattice Λ0 onto Λ1.
When Λ0 and Λ1 are lattices, the element of GL(2,K) carrying Λ0 onto Λ1 is

far from being unique, but it does define an invariant quantity according to the
following result.

Lemma 3.6.1. Let Λ0 and Λ1 be lattices, and let A and B be two linear automor-
phisms of GL(2,K) that carry Λ0 onto Λ1. Then v(detA) = v(detB).

Proof. Set C = B−1A, so that C(Λ0) = Λ0. Hence if {e, f} is a basis for Λ0 as an
O-module, the matrix expressing C in terms of the basis {e, f} has entries in O, so
that detC ∈ O. Since C−1 also leaves Λ0 invariant, we have (detC)

−1 ∈ O as well.
Thus detC is a unit in O and hence v(detC) = 0. The conclusion of the lemma
now follows from (3.1.1) and the multiplicativity of determinants.

In view of this lemma we can associate an integer δ(Λ0,Λ1) with any ordered
pair of lattices (Λ0,Λ1) by setting δ(Λ0,Λ1) = v(detA), where A is an arbitrary
linear automorphism of V mapping λ0 onto Λ1. From the multiplicativity of the
determinant we see that

δ(Λ0,Λ2) = δ(Λ0,Λ1) + δ(Λ1,Λ2) (3.6.2)

for any lattices Λ0,Λ1,Λ2. Since the identity has determinant 1, we also have

δ(Λ,Λ) = 0 (3.6.3)

for every lattice Λ.
If the lattices Λ0 and Λ1 satisfy Λ1 ⊂ Λ0, and if A is a linear transformation which

maps Λ0 onto Λ1, then since A(Λ0) ⊂ Λ0, the argument used to prove Lemma 3.6.1
shows that in a suitable basis A has entries in O and therefore that detA ∈ O, i.e.
v(detA) > 0. So:

If Λ1 ⊂ Λ0 then δ(Λ0,Λ1) > 0. (3.6.4)

Note also that if B is a linear transformation of V , then for any lattices Λ0 and
Λ1 we have

δ(B(Λ0), B(Λ1)) = δ(Λ0,Λ1), (3.6.5)

since if A is a linear transformation mapping Λ0 onto Λ1 then BAB
−1 maps A(Λ0)

onto A(Λ1).
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We may think of δ(·, ·) as an “algebraic distance” between lattices. What is more
directly related to the construction of the tree Tv is a “geometric distance” be-
tween lattices, or more precisely between homothety classes of lattices. Two lattices
Λ,Λ′ ⊂ V are said to be (homothety)-equivalent, or to represent the same homo-
thety class, if there is a nonzero element α of K such that Λ′ = αΛ. You can see
immediately that this really is an equivalence relation. It will turn out that our tree
Tv is defined in such a way that its vertices are in bijective correspondence with
homothety classes of lattices. The distance function that I will define will turn out
to give the number of edges you have to follow to get from one vertex to another.
Because the homothety classes of lattices are going to be vertices, I will often use

the letter s for a homothety class when I’m thinking of it as an object in its own
right. (It’s convenient here to follow Serre, who wrote in French: s means a vertex
(sommet), whereas v is the valuation.) On the other hand, I will sometimes write
[Λ] for the homothety class of a lattice Λ that has already been named.
In order to define the geometric distance between homothety classes, we need

two lemmas, of which the first is almost trivial.

Lemma 3.6.6. If Λ0 and Λ1 are lattices, then Λ1 is equivalent to a lattice Λ
′
1 such

that Λ1 ⊂ Λ0.

Proof. For i = 0, 1, let {ei, fi} be a basis for Λi as an O-module. Then {ei, fi}
is also a basis for V as a vector space, so we can write e1 = αe0 + βf0 for some
α, β ∈ K. Since e1 6= 0 we have m0 = −min(v(α), v(β)) ∈ Z. For any m > m0 we
have v(πmα) = m + v(α) > 0, so that πmα ∈ O, and likewise πmβ ∈ O. Hence
πme1 ∈ Λ0 for m > m0. Similarly, we see that πmf1 ∈ Λ0 for m sufficiently large.
So we can find an m for which πme1 and πmf1 both belong to Λ0; hence π

mΛ1,
which is equivalent to Λ1, is contained in Λ0.

Rappel 3.6.7. In the proof of the next lemma I’ll be using a basic result on finitely
generated modules over a principal ideal domain: if L0 is a free module of finite rank
over a p.i.d. R, and L1 is a submodule of L0, then there exist a basis {e1, . . . , en} for
L0 and elements α1, . . . , αn of R such that L1 is generated by α1e1, . . . , αnen. (This
result underlies one proof of the structure theorem for finitely generated modules
over R: any finitely generated submodule M can obviously be written in the form
L0/L1, where L0 is a finitely generated free module and L1 is a submodule of L0;
the above result then shows that M is a finite direct sum of cyclic modules.)

Lemma 3.6.8. If Λ0 and Λ1 are lattices, then there is a unique lattice Λ
′
1 equivalent

to Λ1 such that Λ1 ⊂ Λ0 and Λ0/Λ1 is isomorphic as an O-module to O/βO for
some nonzero element β of O.

Proof. By Lemma 3.6.6, we may assume that Λ1 is already contained in Λ0. By
the result I mentioned before the proof, in Rappel 3.6.7, Λ0 has a basis {e, f} such
that Λ1 is generated by {αe, γf} for some α, γ ∈ O. After possibly reversing the
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roles of e and f we may assume that v(α) 6 v(γ); setting β = γα−1 we conclude
that v(β) > 0, so that β ∈ O. The lattice Λ′

1 = α−1Λ1, which is equivalent to Λ,
has the basis {e, βf}. It follows that Λ′

1 ⊂ Λ0 and that Λ0/Λ
′
1 is isomorphic as an

O-module to O/βO. This proves the existence assertion.
Now suppose there is a second lattice Λ′′

1 equivalent to Λ1 such that Λ′′
1 ⊂ Λ0

and such that Λ0/Λ
′′
1 is isomorphic as an O-module to O/δO for some δ ∈ O. We

may write Λ′′
1 = ζΛ′

1 for some ζ ∈ F . Since Λ′
1 contains the basis element e of O,

we have ζe ∈ Λ′′
1 ⊂ Λ0, which implies that ζ ∈ O. Since Λ′′

1 is generated by ζe and
ζβf , we have Λ0/Λ

′′
1
∼= O/ζO ⊕O/ζβO. But the uniqueness part of the structure

theorem for modules over a p.i.d. implies that O/ζO⊕O/ζβO can’t be cyclic unless
ζ is a unit in O, in which case Λ′′

1 = Λ′
1. This proves the uniqueness assertion, and

completes the proof of Lemma 3.6.8.

Given lattices Λ1 and Λ0, I will say that Λ1 is snugly embedded in Λ0 if Λ0 and
Λ1 are related in the way described in the conclusion of Lemma 3.6.8, that is, if
Λ1 ⊂ Λ0 and Λ0/Λ1 is a cyclic O-module. Now if s0 and s1 are homothety classes
of lattices, I’ll define the “geometric distance” d(s0, s1) to be the integer δ(Λ0,Λ1),
where the Λi are representatives of the si such that Λ1 is snugly embedded in Λ0.
According to Lemma 3.6.8, such representatives Λ0 and Λ1 exist, and Λ1 is uniquely
determined once Λ0 has been chosen. To show that d(s0, s1) is independent of the
choice of Λ0, note that if Λ0 and Λ′

0 are representatives of s0, so that Λ′
0 = αΛ0

for some nonzero element α of F , and if Λ1 is a representative of s1 that’s snugly
embedded in Λ0, then Λ′

1 = αΛ1 represents s1 and is snugly embedded in Λ′
0, and

by applying (3.6.5) to the linear transformation x 7→ αx we find that

δ(Λ′
0,Λ

′
1) = δ(αΛ0, αΛ1) = δ(Λ0,Λ1).

It follows from (3.6.4) that d(s0, s1) > 0 for any two homothety classes of lattices
s0 and s1.
To understand the definition of d better, let’s consider an arbitrary lattice Λ0

and a lattice Λ1 that’s snugly embedded in Λ0. From the proof of Lemma 3.6.8
(or, more precisely, the existence part of the proof and the uniqueness part of the
statement) we see that Λ0 has a basis {e, f} such that e and βf generate Λ1 for
some β ∈ F −{0}. The linear transformation of V whose matrix in the basis {e, f}
is

(

1 0
0 β

)

has determinant β and maps Λ0 onto Λ1. Hence

d([Λ0], [Λ1]) = δ(Λ0,Λ1) = v(β). (3.6.9)

It’s worth noticing that if π is a uniformizer in Ov then in the above discussion
we may take β to be a nonnegative power of π, since every nonzero element of Ov is
a nonnegative power of π with a unit. If β = πn then d([Λ0], [Λ1]) = δ(Λ0,Λ1) = n.
It’s useful to generalize the description of the distance that I just gave. If Λ0 and

Λ1 are lattices with Λ1 ⊂ Λ0, then by Rappel 3.6.7 Λ0 and Λ1 have bases of the
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form {e, f} and {αe, γf} for some α, γ ∈ F −{0}. Here, using the matrix

(

1 0
0 γ

)

,

we find that

δ(Λ1,Λ0) = v(αγ) = v(α) + v(γ).

This is used in the proof of the following lemma, which is the main step in the proof
that d is a distance function.

Lemma 3.6.10. If Λ0 ⊃ Λ1 are lattices, we have

d([Λ0], [Λ1]) 6 δ(Λ0,Λ1)

and

d([Λ0], [Λ1]) ≡ δ(Λ0,Λ1) (mod 2).

Furthermore, we have d([Λ0], [Λ1]) = δ(Λ0,Λ1) if and only if Λ1 is snugly embedded
in Λ0.

Proof. This is a lot like the existence part of the proof of Lemma 3.6.8. We fix
bases {e, f} and {αe, γf} for Λ0 and Λ1, where α, γ ∈ O. As in the proof of 3.6.8,
we may assume that v(α) 6 v(γ); and as in that proof it follows that β = γα−1 ∈
O, and that Λ′

1 = α−1Λ1, which is equivalent to Λ1, has the basis {e, βf} and
is therefore snugly embedded in Λ0. By the remarks before the statement of the
lemma we’re proving now, we find that d([Λ0], [Λ1]) = δ(Λ0,Λ

′
1) = v(β), and that

δ(Λ1,Λ0) = v(α) + v(γ) = v(β) + 2v(α), so that

δ(Λ0,Λ1) = d([Λ0], [λ1]) + 2v(γ),

from which the first two assertions follow. If δ(Λ0,Λ1) = d([Λ0], [λ1]) then v(γ) = 0;
thus γ ∈ O∗, and it follows that {e, γf} is a basis for Λ1, hence that Λ1 is snugly
embedded in Λ0. The converse follows from the definition of d.

Let’s denote by T (0) the set of all homothety classes of lattices, so that d is a
nonnegative integer-valued function on T (0) × T (0).

Lemma 3.6.11. (T (0), d) is a metric space.

Proof. Since any lattice is obviously snugly embedded in itself, it follows from
(3.6.3) that d(s, s) = 0 for any s. Conversely, if d(s0, s1) = 0, and if we represent
the si by lattices Λi where Λ1 is snugly embedded in Λ0, then Λ0 and Λ1 have bases
{e, f} and {e, βf} for some β ∈ O with v(β) = d([Λ0], [Λ1]) = 0; hence β ∈ O∗,
from which it follows that Λ1 = Λ0 and hence s0 = s1.
To prove symmetry we consider two arbitrary elements s0, s1 of T (0), which we

represent by lattices Λ0 and Λ1, where Λ1 is snugly embedded in Λ0. Again we
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choose a basis {e, f} of Λ0 such that e and f ′ = βf form a basis of Λ1. So d(s0, s1) =
δ(Λ0,Λ1) = v(β). On the other hand, Λ′

0 = βΛ0 also represents s0, and it has the
basis {f ′, βe}; hence Λ′

0 is snugly embedded in Λ1, and d(s1, s0) = δ(Λ1,Λ
′
0) = v(β).

To prove the triangle inequality we consider arbitrary elements v0, v1, v2 of T
(0).

If Λ0 is any lattice representing s0 then successive applications of Lemma 3.6.8 give
lattices Λ1 and Λ2 representing s1 and s2, with Λi+1 snugly embedded in Λi for
i = 0, 1. Now Λ2 ⊂ Λ0, and by Lemma 3.6.10 and (3.6.2) we have

d(s0, s2) 6 δ(Λ0,Λ2) = δ(Λ0,Λ1) + δ(Λ0,Λ2) = d(s0, s1) + d(s1, s2),

where the last equality follows directly from the definition of d.

Before I can move on to the definition of the tree Tv, I need to establish a couple of
other properties of the metric space T (0). Like the last result, they are applications
of Lemma 3.6.10.

Lemma 3.6.12. For any s0, s1, s2 ∈ T (0) we have

d(s0, s2) ≡ d(s0, s1) + d(s1, s2) (mod 2).

Proof. By successive applications of Lemma 3.6.6, we can represent the si by
lattices Λi with Λ2 ⊂ Λ1 ⊂ Λ0. By (3.6.2) and the second assertion of Lemma
3.6.10, we find that

d(s0, s2) ≡ δ(Λ0,Λ2) = δ(Λ0,Λ1) + δ(Λ1,Λ2) ≡ d(s0, s1) + d(s1, s2) (mod 2).

Lemma 3.6.13. Let s0 and s1 be elements of T
(0), set n = d(s0, s1), and let p and

q be nonnegative integers with p+ q = n. Then there is a unique element s of T (0)

such that d(s0, s) = p and d(s, s1) = q.

Proof. Let’s represent the si by lattices Λi, with Λ1 snugly embedded in Λ0. There
are bases {e, f} and {e, βf} of Λ0 and Λ1, and we may take β = πn where π is
a uniformizer and n = d(s0, s1). If we now define Λ to be the lattice generated
by e and πpf , it is clear that Λ is snugly embedded in Λ0 and that Λ1 is snugly
embedded in Λ1. By (3.6.9), the element s = [Λ] of T (0) has the required properties.
Now suppose that some s′ ∈ T (0) satisfies d(s0, s) = p and d(s, s1) = q. We

wish to prove that s′ = s. By successive applications of Lemma 3.6.8, there exist
a representative Λ′ of s which is snugly embedded in Λ0, and a representative Λ′

1

of s1 which is snugly embedded in Λ. Using the definition of d and (3.6.2), we find
that

d([Λ0], [Λ
′
1]) = n = p+ q = d(s0, s) + d(s′, s1)

= δ(Λ0,Λ
′) + δ(Λ,Λ′

1) = δ(Λ0,Λ
′
1),
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which by Lemma 3.6.10 implies that Λ′
1 is snugly embedded in Λ0. It now follows

from the uniqueness assertion of Lemma 3.6.8 that Λ′
1 = Λ1. Thus we have Λ1 ⊂

Λ ⊂ Λ0.
The lattices that contain Λ1 and are contained in Λ0 are in bijective correspon-

dence with the submodules of Λ0/Λ1 ∼= O/πnO. Since every ideal in O is generated
by a power of π, the only submodules of Λ0/Λ1 are those generated by πk for
0 6 k 6 n. Hence every lattice that contains Λ1 and is contained in Λ0 is generated
by e and πkβ for some k 6 n. In particular Λ′ has this form for some k. But then
by (3.6.9) we have k = d(s0, s) = p, so Λ′ = Λ and hence s′ = s. Lemma 3.6.13 is
now proved.

Let’s define an abstract simplicial 1-complex T = Tv as follows. The set of vertices
of T is T (0). A 1-simplex is an unordered pair (s, s′) of vertices such that d(s, s′) = 1.
I’ll use the same name T (or Tv) to refer to the geometric realization of this complex;
and as is usual in such situations, it will be either be clear from the context which
I mean, or it won’t matter.

Theorem 3.6.14. The 1-complex T is 1-connected, i. e. it is a tree.

Proof. Let s and s′ be any two elements of T (0). Set k = d(s, s′). By succes-
sive applications of the existence assertion of Lemma 3.6.13, we find elements
s = s0, s1, . . . , sk = s′ of T (0) such that d(si−1, si) = 1 for i = 1, . . . , k. This
defines an edge path between the vertices s, s′ of T and shows that T is connected.
To show that T is simply connected we must show that for every reduced edge

path s0, . . . , sn of length n > 0 in T we have sn 6= s0. To say that the edge path
is reduced means that in addition to having d(si−1, si) = 1 for i = 1, . . . , n, we
have si−1 6= si+1 whenever 0 < i < n. What I’ll prove, by induction on n, is that
if s0, . . . , sn is any reduced edge path of length n > 0 then d(s0, sn) = n. For
n = 1 this is trivial. Now suppose that s0, . . . , sn+1 is a reduced edge path of length
n+1, where n > 0, and assume that the assertion is true for shorter paths, so that
d(s0, sn) = n and d(s0, sn−1) = n− 1. Since d(sn, sn+1) = 1, the triangle inequality
gives n− 1 6 d(s0, sn+1) 6 n+ 1. By Lemma 3.6.12, we have

d(s0, sn+1) ≡ d(s0, sn) + d(sn, sn+1) = n+ 1 (mod 2),

so we can’t have d(s0, sn+1) = n. It remains to rule out the possibility that
d(s0, sn+1) = n− 1. Assume that this does hold. Then we have

d(s0, sn−1) = d(s0, sn+1) = n− 1,

d(sn−1, sn) = d(sn+1, sn) = 1,

and

d(s0, sn) = n.
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Invoking the uniqueness assertion of Lemma 3.6.13, taking p = n − 1, q = 1, and
letting sn play the role of s1, we conclude that sn+1 = sn−1. But this contradicts
the assumption that s0, . . . , sn+1 is a reduced edge path. The proof of Theorem
3.6.14 is now complete.

3.7. The action

Now it’s very easy to bring GL(2,K) into the picture. We can think of an element
B of GL(2,K) as a linear automorphism of V = K2. As such, B maps any lattice
onto a lattice, and it obviously maps equivalent lattices to equivalent lattices. So
there is a natural action of GL(2,K) on the set T (0) of homothety classes of lattices.
It’s also clear that if Λ1 is snugly embedded in Λ0 then B · Λ1 is snugly embedded
in B · Λ0, and by (3.6.5) we have

d([B · Λ0, B · Λ1]) = δ(B · Λ0, B · Λ1) = δ(Λ0,Λ1) = d([Λ0,Λ1]),

so that GL(2,K) acts by isometries on T (0). In particular, each element of GL(2,K)
carries 1-simplices onto 1-simplices, so that we have a natural action of GL(2,K)
on the tree T .
In this chapter I will mostly be using the action of SL(2,K) on T that comes

from restricting the action of GL(2,K). There are a couple of points to be made
about this action of SL(2,K). First of all, SL(2,K) acts on T without inversions.
This is because if s is any vertex of T , and Λ is any lattice representing s, then for
any B ∈ SL(2,K) we have d(s,B · s) ≡ δ(Λ, B ·Λ) = 0 (mod 2) by Lemma 3.6.10
and the definition of δ; in particular we always have d(s,B · s) 6= 1, so B can’t act
as an inversion.
The second point to be made about the action of SL(2,K) is that the stabilizers

of vertices have a very simple description. Let s be any vertex, let B be an element
of the stabilizer SL(2,K)s, and let Λ be a lattice representing s. Then B · s is
homothety-equivalent to s, so B · s = αs for some α ∈ K −{0}. Since δ(·, ·) is well-
defined, we have 2v(α) = δ(Λ, B ·Λ) = v(detB) = v(1) = 0. Hence α is a unit in O,
so that B ·Λ = Λ. Conversely, if B ∈ SL(2,K) leaves Λ invariant, it is obvious that
B · s = s. Thus SL(2,K)s is the stabilizer of Λ. Now the stabilizer of the standard
lattice O2 is the group SL(2,O) (consisting of all 2 × 2 matrices of determinant
1 with entries in O). If A is an element of GL(2,K) such that A · O2 = Λ, we
have SL(2,K)s = SL(2,O)A, where exponentiation denotes conjugation. What I’ve
shown is that the stabilizers in SL(2,K) of the vertices of T are just the conjugates
of SL(2,O) in GL(2,K).

3.8. Getting to know the tree, I: the link of a vertex

A good starting point for understanding what the tree T = Tv looks like is describing
the link of a vertex. Let s0 = [Λ0] ∈ T (0) be given. The link of s0 consists of all
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elements s of T (0) such that d(s0, s) = 1. Any such s is represented by a unique
lattice Λ which is snugly embedded in Λ0; thus if π denotes a uniformizer in Ov ,
the lattice Λ0 has a basis {e, f} (depending on s) such that {e, πf} is a basis of Λ0.
So we have

πΛ0 ⊂ Λ ⊂ Λ0. (3.8.1)

Now the lattices Λ that satisfy (3.8.1) are in bijective correspondence with submod-
ules of the quotient module V = Λ0/πΛ0, which we can think of as a 2-dimensional
vector space over the residue field k = kv = Ov/πOv of v. If Λ is in fact generated
by e and πf for some basis {e, f} of λ0, then the corresponding subspace of V is
clearly 1-dimensional; and the converse is easy to deduce from Rappel 3.6.7. So
we get a canonical bijection between vertices in the link of s0 and 1-dimensional
subpaces of V .
The set of 1-dimensional subspaces of a 2-dimensional vector space V over k is,

by definition, a 1-dimensional projective space, or projective line, over k. I’ll return
to projective spaces in Section 5.2. For now let me just observe that if V has a basis
we can identify the corresponding projective line with the disjoint union of k with
a single element denoted∞: the subspace spanned by the vector whose coordinates
in the basis are a and b is identified with a/b ∈ k if b 6= 0, and with ∞ if b = 0.
In the case where k is a finite field with q elements—for example when v is the

p-adic valuation of Q or Qp and q = p—the set k ∪ {∞} has q + 1 elements, and
hence each vertex of T has valence q+1. A good exercise in understanding the tree
is to take q = 2, so that k ∼= Z/2Z and T is a trivalent tree, and, starting with
an arbitrary vertex, to describe some nearby vertices. Suppose we denote by [e, f ]
the vertex represented by the lattice generated by a given basis {e, f} of F 2. If we
write a given vertex in the form [e, f ], the vertices in its link are [e, 2f ], [2e, f ] and
[2e, e+ f ]. (The latter vertex could equally well have been written as [e + f, 2f ].)
Now we can find the three vertices in the link of, say, [2e, e+ f ] by substituting 2e
and e + f for e and f in the expression for the vertices in the link of [e, f ]; doing
this directly gives [2e, 2e + 2f ], [4e, f ] and [4e, 3e + f ]. However, [2e, 2e + 2f ] is
simply the original vertex [e, f ] under a different name, which makes sense because
we already know that [e, f ] and [2e, e+ f ] are joined by an edge. So the two new
vertices in the link of [2e, e+ f ] are [4e, f ] and [4e, 3e+ f ], which you may prefer to
rename [4e,−e+ f ]. You can continue in this way and see various interesting new
vertices appear at small distances from [e, f ].
Since the action of SL(2,K) on T is simplicial, it restricts to an action of the

stabilizer SL(2,K)s of any vertex s on the link of s. Up to equivalence, what we are
looking at here is an action of SL(2,O) on the standard 1-dimensional projective
space kP1 over the residue field k. Once we’ve said that, it’s pretty clear what this
action should be (again up to equivalence): the quotient homomorphism O → k
gives rise to a natural homomorphism q : SL(2,O) → SL(2, k), and SL(2, k) acts
in a natural way on kP1 because a linear transformation of the vector space k2

permutes the 1-dimensional subspaces of k2. (If you identify kP1 with k∪{∞} then
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SL(2,K) acts on kP1 by linear fractional transformations:

(

a b
c d

)

: z → az + b

cz + d
for z ∈ k ∪ {∞}

as you can check by an easy calculation.) The obvious action of SL(2,O) on kP1

is obtained by pulling back this action of SL(2,K) via q. As is usual in such situ-
ations, proving that this natural action really is equivalent to the one obtained by
restricting the action of SL(2,K) on T is just an exercise in keeping track of the
definitions.
One consequence of this description of the action of SL(2,K)s on the link of

s is a description of the stabilizer in SL(2,K) of an edge of T . If e is an edge
with endpoints s0 and s1, we can think of the stabilizer SL(2,K)e of e as the
stabilizer of s1 within the group SL(2,K)s0 . But under the standard action of
SL(2,K) on kP1, the stabilizer of a point of kP1 is conjugate to the group ∆ of
upper triangular matrices in SL(2,K). It follows that SL(2,K)e is conjugate in
GL(2,K) to q−1(∆) ⊂ SL(2,O). The latter group can be described directly as

consisting of all matrices of the form

(

a b
c d

)

with c ∈ πO and a, b, d ∈ O.
This in turn has a neat consequence concerning the commutator subgroup

[SL(2,K)e, SL(2,K)e] of an edge stabilizer SL(2,K)e, which will come up a cou-
ple of times in the applications that I’ll talk about later in this chapter. We have
q([SL(2,K)e, SL(2,K)e]) ⊂ [∆,∆], and the group [∆,∆] is made up entirely of up-
per triangular matrices over k that have 1’s on the diagonal. In particular, if e is
an edge of Tv we have

traceA ≡ 2 (mod 2) for every A ∈ [SL(2,K)e, SL(2,K)e].
(3.8.2)

3.9. Getting to know the tree, II: axes

Now that we have a good picture of the stabilizer of a vertex and how it acts on
the link of the vertex, let’s ask the opposite question: what can we say about the
action of an element A of SL(2,K) that fixes no vertex of T ? For simplicity, let’s
assume that A is diagonalizable overK, so that for some basis {e, f} of K2 we have
A(e) = αe and A(f) = α−1f . The assumption that A fixes no vertex says that α
and α−1 do not both belong to O; by symmetry we may assume α−1 /∈ O, so that
l = v(α) > 0. Using the notation of Subsection 3.8, let us set sn = [e, πnf ] ∈ T (0)

for every n ∈ Z. We have d(sm, sn) = |m − n| for all m,n ∈ Z. It follows that
there is an edge an joining sn to sn+1 for each n, and that the sn and an form
a subcomplex L of T which, up to simplicial isomorphism, looks like the real line
triangulated so that the integers are the vertices. The definition of the action of
SL(2,K) on T implies that A · sn = sn+2l for every n ∈ Z. (In fact, A maps the
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lattice generated by e and πnf onto the one generated by π−le and πn+lf .) So the
“simplicial line” L is invariant under A, and A acts on L as a translation.
It’s a neat combinatorial exercise to prove that if T is any tree and γ is any

simplicial automorphism of T which is not an inversion and fixes no vertex of T ,
then there is a unique subcomplex L of T which is simplicially isomorphic to a line
and is invariant under γ; furthermore, γ always acts on L as a translation. You will
find this worked out in [55], or in a more general version in [42]. The line L is called
the axis of γ. So what I’ve done here is to describe the axis in T of a diagonalizable
element of SL(2,K) (when it exists, i.e. when the element has no fixed point in T ).

3.10. Application: Ihara’s theorem

To illustrate what can be done with the tree for SL2, I will give Serre’s elegant
proof of a result due to Ihara which is the p-adic analogue of a simple fact about
discrete subgroups of SL(2,R). Suppose that Γ ⊂ SL(2,R) is a discrete, torsion-free
group. Then Γ maps injectively to PSL(2,R), the group of orientation-preserving
isometries of the hyperbolic plane H2; the image is still discrete and of course
torsion-free. From this one deduces that the action of Γ on H2 is free. This is
because the stabilizer Γz of each point z ∈ H2 is a discrete subgroup of the compact
group SL(2,R)z ∼= SO2, and is therefore finite, hence trivial since Γ is torsion-free.
The discreteness of Γ also implies that Γ acts properly discontinuously on H2, so
the quotient H2/Γ is an orientable hyperbolic surface F having H2 as its universal
covering space and Γ as its group of deck transformations. Hence Γ ∼= π1(F ). This
shows that every discrete, torsion-free subgroup of SL(2,R) either is a free group
or is isomorphic to the fundamental group of a closed orientable surface of genus
> 2.
Ihara’s theorem says that in the p-adic world the corresponding result is even

simpler: every discrete, torsion-free subgroup of SL(2,Qp) is free! (Here the term
“discrete” is to be interpreted in terms of the topology on SL(2,Qp) defined in the
obvious way from the metric topology of Qp.) The proof closely parallels the one
for the real case, but it uses the tree T for SL(2,Qp) in place of H2. First we show
Γ acts freely on the set of vertices of T : this is formally identical to the proof in the
real case that Γ acts freely on H2, once one knows that the stabilizer SL(2,Qp)s
is compact for every vertex; but by what we saw in Subsection 3.7, SL(2,Qp)s is
conjugate in GL(2,Qp) to SL(2,Zp); and as we saw in Subsection 3.5 that Zp is
compact, the group SL(2,Zp) is clearly compact as well. Now that we know that Γ
acts freely on the vertices of T , it follows that it acts freely on the whole geometric
simplicial complex T because, according to 3.7, there are no inversions. So the
quotient T/Γ is a graph G having T as its universal covering space and Γ as its
group of deck transformations. (Note that since the action is simplicial this time,
proper discontinuity is not even an issue.) Hence Γ ∼= π1(G), and it follows that Γ
is free.
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4. Varieties of representations and varieties of characters

I talked in Subsection 1.6 about the nearly canonical representation of the funda-
mental group of a finite-volume hyperbolic 3-manifoldM in PSL(2,C) or SL(2,C).
It turns out that whenM has cusps, this representation can be “deformed” through
infinite families of inequivalent representations which can be studied with the tech-
niques of algebraic geometry. The punch line, later in the chapter, is going to be
that deforming representations “off to infinity” produces actions of π1(M) on trees,
which are defined using the construction of Section 3, and which in turn can be
used to define incompressible surfaces in M using the constructions of Section 2.
In this section I’ll try to provide a rough introduction to the needed foundational

ideas from algebraic geometry, as well as presenting the more specialized material
involving representations and hyperbolic manifolds. Although I won’t be able to
make this section as self-contained as Section 3, I’ll try to give a hint of what the
required material is about, and to provide references, where necessary, to sources
where proofs are presented in an accessible form.
I’ve decided to present this theory from the point of view taken in [17], [18], [15],

and [19], involving SL(2,C)-representations. It has been shown, for example in [6]
and [12], that stronger information can sometimes be obtained using PSL(2,C)-
representations; but this requires taking a less elementary point of view, and you
may have your hands full already.

4.1. The variety of representations

Let Γ be any finitely generated group. We are interested in studying the set R(Γ)
of all representations of Γ in SL(2,C). Suppose we fix a finite system of gener-
ators of Γ, say (g1, . . . , gn). Then a representation ρ : Γ → SL(2,C) is uniquely
determined by specifying the n-tuple (ρ(g1), · · · , ρ(gn)). Here each ρ(gi) is a matrix
(

wi gi
yi zi

)

∈ SL(2,C), so we may think of ρ as being determined by the 4n-tuple

(w1, x1, y1, z1, . . . , wn, xn, yn, zn) of complex numbers. This gives a bijective corre-
spondence ρ ↔ (ρ(g1), · · · , ρ(gn)) between R(Γ) and some subset of the complex
affine spaceC4n. It will be useful to think of R(Γ) as being identified with this subset
of C4n via this correspondence. (Of course this identification depends on choosing
a system of generators (g1, . . . , gn) for Γ. I’ll return to this issue in Subsection 4.3.)
Now suppose that (rj)j∈J is a system of defining relators for Γ; here the index

set J may be finite or infinite, and each rj is a word in the generators g1, . . . , gn.
If X1, . . . , Xn are 2 × 2 matrices, we denote by rj(X1, . . . , Xn) the matrix that’s
obtained from by substituting Xi for gi in the word rj for i = 1, . . . , n. Then a
4n-tuple (w1, . . . , zn) belongs to the set R(Γ) if and only if we have

wizi − xiyi = 1 (4.1.1)
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for i = 1, . . . , n, and

rj

((

w1 x1
y1 z1

)

, . . . ,

(

wn xn
yn zn

))

=

(

1 0
0 1

)

(4.1.2)

for each j ∈ J . For each i the equation (4.1.1) is a polynomial equation in the
coordinates of C4n. For each j we can rewrite the matrix equation (4.1.2) as a
system of four polynomial equations in the coordinates. To do this, we first rewrite

each occurrence of an inverse matrix

(

wi xi
yi zi

)−1

as

(

zi −xi
−yi wi

)

(which is equal

to

(

wi xi
yi zi

)−1

in the presence of equations (4.1.1). Then we multiply out the left

hand side of (4.1.2) and set each of the four matrix entries of the resulting product
equal to the corresponding matrix entry on the right hand side.
This shows that the set R(Γ) ⊂ C4n is the solution set to some system of poly-

nomial equations in the coordinates of C4n. In general, a subset of an affine space
CN is called a (complex affine) algebraic set if it’s the set of zeros of some system
of polynomial equations in the coordinates. The set of defining equations that we
have exhibited for R(Γ) may be infinite, if Γ is not finitely presented; however, one
of the first things that one proves in algebraic geometry—a corollary to the Hilbert
basis theorem—is that any subset of CN which is defined by a possibly infinite
system of polynomial equations can actually be defined by some finite subsystem.

4.2. A little algebraic geometry

This is a good place to review a few basic concepts and results concerning algebraic
sets in an affine space CN , where N is a natural number. (The proofs of these
facts can be found in any introductory text on algebraic geometry. One book that
I have found congenial is [45].) An algebraic set is said to be reducible if it can be
expressed as the union of two proper algebraic subsets. Irreducible affine algebraic
sets are often called affine varieties.
Another corollary of the Hilbert basis theorem states that any algebraic set V ⊂

CN is a finite union of irreducible algebraic sets V1 ∪ . . . ∪ Vk. Once this has been
established, it’s obvious that we can choose the Vi so that Vi 6⊂ Vj whenever i
and j are distinct indices 6 k. With this restriction, it isn’t hard to show that the
decomposition V = V1 ∪ . . . ∪ Vk is unique apart from the order of the terms. The
Vi are called the irreducible components of V . Unlike the connected components
of a topological space, the irreducible components of an algebraic set V are not
necessarily disjoint from one another. (The algebraic subset of C2 defined by the
equation zw = 0, where z and w denote the coordinates, has the coordinate axes
z = 0 and w = 0 as its irreducible components.)
If V ⊂ CN is any algebraic set, the coordinate ring C[V ] of V is defined, most

concretely, to be the ring of all functions on V which are restrictions of functions
on CN defined by polynomials in the coordinates. Since C[V ] contains the constant
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functions we may think of it as an algebra over C, and as such it is generated
by the restrictions to V of the coordinate functions on CN ; in particular it is a
finitely generated C-algebra. If V is irreducible, it’s a simple exercise in using the
definitions to show that C[V ] is an integral domain. In this case one denotes by
C(V ) the field of fractions of the integral domain C[V ].
If V is an affine variety, any element of C(V ) may be written in the form f/g,

where f, g ∈ C(V ) and g 6= 0 (i.e. the function g does not vanish identically on V ).
The points of V where g takes the value 0 form a proper algebraic subset of V . It
is a general fact that any proper algebraic subset of an affine variety V is made
up of irreducible components having lower dimension than V , and has a dense
complement of V . Thus g is nonzero on an open dense subset U of V . The given
element of C(V ) defines a function on U whose value at a point x = (z1, . . . , zN) is
f(z1, . . . , zN )/g(z1, . . . , zN).
This leads to an alternative description of the elements of C(V ) as equivalence

classes of genuine functions. Each of the functions in question is required to have
a domain which is the complement a proper algebraic subset of V , and on this
domain it is required to be defined by rational functions in the coordinates of the
affine space containing V . Two such functions are equivalent if they agree on the
intersection of their domains.
For this reason, the elements of C(V ) are called rational functions on V , and

C(V ) is referred to as the function field of V .
A polynomial map between algebraic sets V ⊂ CM and W ⊂ CN is a map

F : V → W which is defined by polynomials in the ambient coordinates. More
precisely, F is a polynomial map if there are elements f1, . . . , fN of C[V ] such that
F (x) = (f1(x), . . . , fN (x)) for every x ∈ V . A priori, of course, if f1, . . . , fN are
elements of C[V ] then (f1(x), . . . , fN (x)) is only a point of CN ; to say that it lies
in W for every x ∈ V says that the fi satisfy certain algebraic relations.
It’s often useful to think of affine algebraic sets as forming a category, with poly-

nomial maps playing the role of morphisms. In particular we have a natural notion
of isomorphism of affine algebraic sets. From this point of view, the coordinate
ring behaves like (you should excuse the expression) a contravariant functor: if
F : V → W is a polynomial map, then for every g ∈ C[W ], the function F ◦ g
belongs to C[V ]. (We’re just composing polynomials to get another polynomial.)
The map g 7→ F ◦ g is a homomorphism of C-algebras from C[W ] to C[V ]. It’s
obvious that if F is surjective—or more generally if it maps V onto a dense subset
of W—then the associated homomorphism C[W ]→ C[V ] is injective. So if V and
W are irreducible, there is an induced homomorphism (necessarily injective!) of
fields of fractions, from C(W ) to C(V ). So when we have fixed a polynomial map
of V onto W , where V and W are irreducible, we can think of the field C(V ) as an
extension of C(W ).
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4.3. More on varieties of representations

Let’s return to the study of the set of representations R(Γ) of a finitely generated
group Γ. I have pointed out that if we fix a system of generators (g1, . . . , gn) of Γ
defines a bijection, say η, of R(Γ) onto an affine algebraic set in C4n. By definition
we have η(ρ) = (ρ(g1), . . . , ρ(gn)). Now suppose that (h1, . . . , hm) is a second system
of generators of Γ, and let θ : ρ 7→ (ρ(g1), . . . , ρ(gn)) denote the corresponding
bijection to an algebraic set in C4m. The composition θ ◦η−1 is a bijection between
algebraic sets. Let’s write hi =Wi(g1, . . . , gn) for i = 1, . . . ,m, where each Wi is a
word in n letters; and let’s identify a point (w1, x1, yn, zn, . . . , wn, xn, yn, zn) of C

4m

with an n-tuple

((

w1 g1
y1 z1

)

, . . . ,

(

wn gn
yn zn

))

of 2× 2 matrices, and likewise for

Cm. Then the composite bijection θ◦η−1 maps an n-tuple of matrices (X1, . . . , Xn)
to the m-tuple

(Wi(X1, . . . , Xn))
m
i=1.

Because matrix multiplication and inversion involve only multiplying and adding
entries and changing signs, it follows that θ ◦ η−1 is a polynomial map. The same
argument shows that η ◦ θ−1 is a polynomial map. So the natural bijection between
the two algebraic sets incarnating R(Γ) is an isomorphism of algebraic sets; this
means that the structure of an algebraic set that we have given to R(Γ) is really a
completely natural one.
I’ll ordinarily be identifying R(Γ) with an actual algebraic set in an affine space

by fixing some set of generators, and the remark I just made says that nothing
algebro-geometric about R(Γ) really depends on the set of generators. I find it very
reassuring to know that, although I don’t know if I’ll actually use it anywhere in
this chapter. On the other hand, there is another remark I need to make about
the algebraic set R(Γ) which is absolutely fundamental for the mathematics I’ll be
talking about.
Suppose R0 is an algebraic subset of R(Γ), for example R(Γ) itself or an irre-

ducible component. Suppose we fix an element γ ∈ Γ. Then every ρ ∈ R0 defines
a matrix ρ(γ) ∈ SL(2,C). Since we are thinking of γ as being fixed, the entries of
ρ(γ) are determined by the element ρ of R0; so we can write

ρ(γ) =

(

aγ(ρ) bγ(ρ)
cγ(ρ) dγ(ρ)

)

, (4.3.1)

where a, b, c, d are complex-valued functions on R0 determined by the element γ.
Since each ρ ∈ R0 is a representation, we have ρ(γδ) = ρ(γ)ρ(δ), i.e.

(

aγδ(ρ) bγδ(ρ)
cγδ(ρ) dγδ(ρ)

)

=

(

aγ(ρ) bγ(ρ)
cγ(ρ) dγ(ρ)

)(

aδ(ρ) bδ(ρ)
cδ(ρ) dδ(ρ)

)

(4.3.2)

for all ρ ∈ R0 and γ, δ ∈ Γ.
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Now if as usual we think of R(Γ) as being a concrete set in an affine space by
fixing a set of generators for Γ, and if the element γ happens to be a generator, then
it is immediate from (4.3.1) that aγ , bγ , cγ , dγ are just the restrictions to R0 of the
four coordinate functions corresponding to that generator. So they belong to the
coordinate ring C[R0]. For an arbitrary element γ, if we write out γ as a word in
the generators and repeatedly apply (4.3.2), then again because of the polynomial
nature of matrix multiplication and inversion, we conclude that aγ , bγ , cγ , dγ ∈
C[R0] for every γ ∈ Γ. Notice also that for any γ ∈ Γ and any ρ ∈ R0 we have
aγ(ρ)dγ(ρ) − bγ(ρ)cγ(ρ) = det ρ(γ) = 1; so aγdγ − bγcγ = 1 for every γ ∈ Γ. This

means that the matrix

(

aγ bγ
cγ dγ

)

is an element of SL(2,C[R0]) for every γ. Finally,

it follows from (4.3.2)that the map P : Γ→ SL(2,C[R0]) defined by

P(γ) =
(

aγ bγ
cγ dγ

)

(4.3.3)

is a homomorphism, i.e. a representation of Γ in SL(2,C[R0]). In particular, if R0 is
irreducible and if K denotes the field C(R0), we may regard P as a representation
in SL(2,K).
In [17] Culler and I named P the tautological representation, and topologists

working in this area have generally used this term, although a very similar object
is sometimes referred to by algebraists as a universal representation.
A central theme in this chapter, which first appeared in my joint paper [17] with

Culler, is that the representation P can be used, via the theory that I presented in
Section 3, to define actions of Γ on trees. But before I can explain how this works,
I need to introduce a little more machinery.

4.4. Varieties of characters

From the beginning of the chapter I’ve been stressing the theme that one is in-
terested in representations primarily up to equivalence. However, the elements of
the set R(Γ) are representations in SL(2,C), not equivalence classes of represen-
tations, and for some purposes this is a defect. In this subsection I’ll show how
to parametrize the characters of representations of a finitely generated group Γ by
points of an affine algebraic set X(Γ), much as the representations themselves are
parametrized in the way I described in Subsection 4.1. According to Proposition
1.1.1, characters almost classify representations up to equivalence, so the points of
X(Γ) are very nearly in bijective correspondence with equivalence classes of repre-
sentations.
We can think of the group SL(2,C) as acting on R(Γ) by conjugation: for any

A ∈ SL(2,C) and for any representation ρ ∈ R(Γ) we can define A · ρ = iA ◦ ρ,
where iA is the inner automorphism X 7→ AXA−1. The equivalence classes of
representations are the orbits of this action. Furthermore, the action is algebraic in
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the sense that the map (A, ρ) 7→ A · ρ is a polynomial map from SL(2,C)×R(Γ) to
R(Γ), as you can easily check by arguments like the ones I gave in Subsection 4.1.
The fancy-delancey point of view about the algebraic set X(Γ) is that it is the

quotient of R(Γ) by the action of SL(2,C), in the category of algebraic sets. (Because
inequivalent representations can sometimes have the same character, it is not the
quotient in the category of “sets, period.”) There is a general theory of quotients
under group actions in algebraic geometry, called geometric invariant theory, which
certainly subsumes the material I’ll be covering in this section. The point of view
I’ll be presenting here is closely modeled on the point of view that Culler and I used
in [17]. I will be adopting this point of view partly because I don’t know geometric
invariant theory, and partly because I want to show how elementary the material is.
At one point I will refer you to [17] for a result that we proved using the “Burnside
Lemma,” but that is also quite elementary algebra.

To begin with, let’s define a function Iγ : R(Γ) → C for each γ ∈ Γ), by setting
Iγ(ρ) = trace ρ(γ) for every representation ρ ∈ R(Γ). Using the notation of Sub-
section 4.3, with R0 = R(Γ), we deduce from (4.3.1) that Iγ(ρ) = aγ(ρ) + dγ(ρ);
comparing this with (4.3.3), we conclude that

Iγ = traceP(γ) (4.4.1)

for every γ ∈ Γ. In particular, Iγ is an element of the coordinate ring C[R(Γ)] for
every γ ∈ Γ.
I’ll define the trace ring T (Γ) to be the sub-ring of C[R(Γ)] generated by all

the functions Iγ for γ ∈ Γ. (By definition the elements of T (Γ) are functions that
can be expressed as integer polynomials in the Iγ .) The following elementary result
provides a finite set of generators for T (Γ) as a ring.

Proposition 4.4.2. Suppose that a group Γ is generated by elements γ1, . . . , γn.
Then the trace ring T (Γ) is generated by the elements IV , where V ranges over all
elements of the form γi1 . . . γik with 1 6 k 6 n and 1 6 i1 < . . . < ik 6 n. (Note
that this set of generators of T (Γ) has 2n − 1 elements.)

Proof. The proof is based on the identity

traceAB + traceAB−1 = (traceA)(traceB), (4.4.3)

which holds for all A,B ∈ SL(2,C). This identity has a beautiful proof which
I learned from Troels Jorgensen. The characteristic polynomial of A is X2 −
(traceA) + 1, so the Cayley-Hamilton theorem says that A2 − (traceA)A + I = 0,
i.e. A + A−1 = (traceA)I . Now multiply both sides on the right by B and take
traces to get (4.4.3).
We can interpret (4.4.3) in terms of the functions Iγ as saying that for any

γ, γ′ ∈ Γ we have

Iγ′γ + Iγ′γ−1 = IγIγ′ ; (4.4.4)
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in fact, if we evaluate both sides of (4.4.4) at a point ρ of R(Γ) we get (4.4.3) with
A = ρ(γ′) and B = ρ(γ).
Let’s denote by T0 the sub-ring of T (Γ) generated by elements of the special

form described in the statement of the proposition. Using (4.4.4) we can prove by
induction on the length of a word W in the generators γ1, . . . , γn that IW ∈ T0.
This will give the conclusion. You can think of the induction as starting at length
0, where the assertion is trivial because I1 (where 1 means the identity element of
Γ) is the constant function 2. Now consider a word W of length n > 0, and assume
the assertion is true for words of length < n. We can assume W is a reduced, since
otherwise we can replace it by a shorter word representing the same element of Γ.
Suppose that W ′ is a word obtained from W by inverting a single letter some-

where in W : that is, W has the form XγεiY as a word, for some i 6 n and ε = ±1,
andW ′ = Xγ−εi Y . (When I say thatW has the form XγεiY as a word, the juxtapo-
sition of X, γεi , Y represents concatenation of words and not merely multiplication
in the group. In particular, n = lengthW = lengthX + lengthY +1. Note that the
word W ′ need not be reduced.) I claim that IW ∈ T0 if and only if IW ′ ∈ T0. This
is because we can rewrite IW and IW ′ as IY Xγε

i
and IY Xγ−ε

i
in view of the familiar

identity traceAB = traceBA, and then by (4.4.4) we find that

IW + IW ′ = IY XIγε .

Since IXY ∈ T0 by the induction hypothesis, and since Iγε = Iγ is one of the
generators of T0, the claim follows.
Next I claim that we can interchange two successive letters inW without affecting

the membership of IW in T0; that is, ifW = Xγεi γ
ζ
j Y as a word, andW ′ = Xγζj γ

ε
iY ,

then IW belongs to T0 if and only if IW ′ does. This is because the same argument
used to prove my last claim shows that IW ∈ T0 if and only if I

X(γε
i
γ
ζ

j
)−1Y =

I
Xγ

−ζ

j
γ
−ε
i
Y

belongs to T0, so this claim now follows from the last one.

Now by repeatedly interchanging successive letters we can replace W by a word
which either fails to be reduced or has the form γk1

1 . . . γknn for some k1, . . . , kn ∈ Z.
If we assume W to have the latter form then after possibly inverting certain letters
we can assume the ki to be nonnegative. If some ki is > 2, we can invert a single
letter and get a nonreduced word. So we can assume W already has the form
γk1

1 . . . γknn with each ki equal to either 0 or 1. But in this case IW is by definition
a generator of T0. This proves the proposition.

Now, given a finitely generated group Γ, let’s fix a set of generators γ1, . . . , γn
for Γ. Setting N = 2n − 1, let’s index the words of the form γi1 . . . γik , with 1 6

k 6 n and 1 6 i1 < . . . < ik 6 n, in some order as V1, . . . , VN . We define a map
t : R(Γ) → CN by t(ρ) = (IV1

(ρ), . . . , IVn(ρ)). If two points ρ, ρ′ in R(Γ) have
the same image under t, i.e. if IVi (ρ) = IVi (ρ

′), then it follows from Proposition
4.4.2 that Iγ(ρ) = Iγ(ρ

′) for every γ ∈ Γ. By the definition of the Iγ this means
that trace ρ(γ) = trace ρ′(γ) for every γ, i.e. that ρ and ρ have the same character.
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Conversely, if ρ and ρ′ have the same character then in particular t(ρ) = t(ρ′). So
the points of t(R(Γ)) are in natural bijective correspondence with the characters of
representations of Γ in SL(2,C), and the map t sends each representation to the
point corresponding to its character. From now on I will identify t(R(Γ)) with the
set of characters of representations of Γ, just as I identified the set of representations
itself with a subset of C4n in Subsection 4.1.
Whereas it was essentially obvious that R(Γ) ⊂ C4n was an algebraic set, the

corresponding fact for characters requires more work. I will refer you to [17] for a
proof, using the “Burnside Lemma,” that t(R(Γ)) ⊂ CN is an algebraic set. For
a still more elementary proof of this, see [29]. From this point I will denote the
algebraic set t(R(Γ)) by X(Γ).
Since t maps R(Γ) onto X(Γ), we have a natural injective homomorphism J :

C[X(Γ)] → C[R(Γ)] by Subsection 4.2. The algebra C[R(Γ)] is generated by the
restrictions of the coordinate functions in CN . The homomorphism J carries the
i-th coordinate function to its composition with t, which by the definition of t is
just IWi

. So the ring J(C[R(Γ)]) is generated by the IWi
. According to Proposition

4.4.2 it follows that J(C[R(Γ)]) coincides with the sub-algebra CT [R(Γ)] generated
by the functions Iγ for γ ∈ Γ. In particular, each Iγ is in the image of J , that is, it
is obtained from a polynomial function on X(Γ) by composition with t.
I’ll generally just identify C[R(Γ)] with its image under J . This means that each

function f on X(Γ) is identified with J(f) = f ◦ t. As a special case, the function
on X(Γ) from which Iγ is obtained by composition will also be denoted Iγ . In this
language we can say that the functions Iγ generate the algebra C[X(Γ)].

4.5. The irreducible component of a discrete faithful character

Having introduced the formalism of the character variety, I can now be precise about
the ideas I was waving my hands about in the introduction to this section. Let N
be an orientable hyperbolic 3-manifold of finite volume. According to Proposition
1.6.1, a (discrete, faithful) representation ρ0 : π1(N)→ PSL(2,C) associated to the
hyperbolic structure of N admits a lift ρ̃0 : π1(M) → SL(2,C). Thinking of ρ̃0 as
a point of R(π1(N)), we get an associated point χ0 = t(ρ̃0) ∈ X(π1(N)). It should
be clear at this point that when I talked in the introduction to the section about
ways of “deforming ρ̃0 through inequivalent representations,” I was referring to the
study of the irreducible component(s) of X(π1(N)) containing χ0.
When N is closed, everything that can be said about the subject is contained

in two theorems [65], [66] due to Weil. Whenever N has finite volume, whether or
not it is closed, the main result of [66], the “local rigidity theorem,” implies that
any discrete faithful representation ρ̃ : π1(N)→ SL(2,C) sufficiently close to ρ̃0 in
R(π1(N)) is equivalent to ρ̃0 as a representation in SL(2,C). This is forerunner of
the “strong rigidity theorem” later proved by Mostow, and can be easily deduced
from it; Mostow’s theorem asserts in this context that any two discrete faithful
representations of π1(N) in Isom(H3) are equivalent. (See Bonahon’s chapter in
this volume.)



50 P. Shalen

In the case where N is closed, the results of [65] imply that any representation
ρ̃ : π1(N)→ SL(2,C) sufficiently close to ρ̃0 in R(π1(N) is still discrete and faith-
ful. So Weil’s results, taken together, say in this particular context that an entire
neighborhood of ρ̃0 in R(π1(N)) is contained in a single equivalence class of repre-
sentations, and hence maps to a point in X(π1(M)). This suggests that the image
χ0 of ρ̃0 should be an isolated point in X(π1(N)), and this can in fact be deduced
from Weil’s results with a little fiddling.
An (irreducible) affine variety is always connected according to [45], GIVE PRE-

CISE REFERENCE, so the isolated point χ must constitute a 0-dimensional irre-
ducible component of X(π1(N)), which is of course the only irreducible component
containing χ0. In the informal language of the introduction to the section, ρ̃0 cannot
be deformed through inequivalent representations when N is closed.
The correct generalization of this to the case of a finite-volume manifold which

may have cusps is essentially due to Thurston. In one version, it states that if
N is an orientable, finite-volume, hyperbolic 3-manifold with n cusps, and if ρ̃0 :
π1(M) → SL(2,C) is defined as above, then any irreducible component X0 of
X(π1(N)) containing χ0 = t(ρ0) has dimension n. (This is not the strongest known
version; more about this at the end of this subsection.)
Thurston’s proof of this is divided into two parts. In the first step, which is

elementary, ingenious, and essentially algebraic, one shows that any component of
X(π1(N)) which contains χ0 must have dimension at least n. The idea is to write
down a presentation of π1(N) from which one can deduce that X = X(π1(N)),
which is realized concretely as an algebraic set in some affine space Cr, can be
defined “in a neighborhood of χ0” by r − n equations. (More precisely, this means
that there is a polynomial map f : Cr → Cr−n such that f−1(0) ∩ U = X ∩ U
for some neighborhood U of χ0 in Cr.) This implies the required lower bound
on dimension by virtue of general facts about algebraic sets. The only facts used
in describing X locally by the right kind of system of equations are that N is
homeomorphic to the interior of a compact manifold M whose boundary consists
of tori B0, . . . , Bn−1, and that the representation ρ̃0 is irreducible and maps each of
the subgroups im(π1(Bi)→ π1(M)) isomorphically to a group of parabolic elements
in SL(2,C).
You will find an account of this part of the argument in [17] (proof of Proposition

3.2.1).
I want to say a little more about the second part of Thurston’s argument because

it gives additional information which will be important in this chapter. This part
uses hyperbolic geometry, and the key step is an adaptation of the main theorem
of [65] to the case of a finite-volume hyperbolic manifold with cusps. In terms of
the notation that I just introduced, the relevant result is that if a representation
ρ̃ : π1(N)→ SL(2,C) is sufficiently close to ρ̃0 in R(π1(N), and if ρ shares with ρ̃0
the property that it maps each of the groups Pi = im(π1(Bi) → π1(M)) (defined
up to conjugacy, and often called peripheral subgroups) onto a group of parabolic
elements in SL(2,C), then ρ is still discrete and faithful. By [66], ρ is then equivalent
to ρ0, if it is close enough to it.
Like the corresponding statement in the closed case, this one is easily translated
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into a statement about the character variety. Let X∗ denote the algebraic subset of
X(π1(N)) obtained by adjoining the additional equations I2γ = 4, for all conjugacy
classes represented by elements of the subgroups Pi, to the defining equations for
X(π1(N)). So X∗ consists of all characters of representations that send all the
peripheral subgroups onto groups of parabolic elements. The translation of the
adapted version of Weil’s theorem is that χ0 is an isolated point of X∗.
Now suppose that for each i 6 n we fix a nontrivial element γi of Pi. (You should

think of the elements γ1, . . . , γn as being defined up to conjugacy, as the peripheral
subgroups are.) It is elementary to see that in a neighborhood of χ0, the algebraic
set X∗ is defined by adding the equations I2γi = 4, for i = 0, . . . , n, to the defining
equations for X . (The main point, at least intuitively, is that if ρ ∈ R(π1(N)) is a
representation sufficiently close to ρ̃0 in R(π1(N)), such that Iγ1

, . . . , Iγn vanish at
t(ρ), then each ρ(γi) is a nontrivial element of SL(2,C) with trace ±2. Any other
element γ of Pi commutes with ρ(γi) and must therefore also have trace ±2, so that
Iγ vanishes at t(ρ). Again, translating this into the required statement requires a
bit of fiddling.)
Now it’s a basic fact about complex affine varieties that if a variety X has di-

mension d then any irreducible component of a subset of X defined by n additional
equations has dimension at least d−n. (See [56], p. 60, Theorem 7.) If a component
X0 containing χ0 had dimension d > n, then since X∗ is defined in the neighbor-
hood of χ0 by the n additional equations Iγi = 0, any component of X∗ containing
χ0 would have dimension d − n > 0. This is a contradiction since χ0 is isolated in
X∗.
For details, see [18].
This argument gives more information than the statement about dimension that

I gave at the outset. Let’s summarize what it shows:

Theorem 4.5.1. Let N be an orientable hyperbolic 3-manifold of finite volume,
and n denote the number of its cusps. Let ρ̃0 : π1(M) → SL(2,C) be a lift of a
representation ρ0 : π1(N)→ PSL(2,C) associated to the hyperbolic structure of N ,
set χ0 = t(ρ̃0) ∈ X(π1(N)), and let X0 be an irreducible component of X(π1(N))
containing χ0. Then dimX0 = n. Furthermore, if B0, . . . , Bn−1 are the boundary
components of a compact core of N , if γi is an element whose conjugacy class is
carried by Bi for i = 0, . . . , n−1, then χ0 is an isolated point of the algebraic subset

X∗ = {χ ∈ X0 : I2γ1
= · · · = I2γn = 4}

of X0.

This is the theorem I will be quoting in later sections. I should point out
that stronger statements are generally believed to be true: that χ0 is a smooth
point of X(π1(N))—so that in particular there is only one irreducible compo-
nent of X(π1(N)) containing χ0—and that in a neighborhood of χ0, the functions
Iγ1

, . . . , Iγi form a system of local coordinates for X0. This last statement could be
used to simplify very slightly some of the arguments that I’ll be giving later on.
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However, as this goes to press, it is not clear to me whether references for these
stronger statements are available.
I’ll conclude this subsection with a simplified statement of a special case of Theo-

rem 4.5.1 which will come up in several applications. If n = 1, so that X0 is a curve,
and if we set γ = γ1, saying that χ0 is an isolated point of X∗ = X0 ∩ I−1γ {±2}
boils down to saying that the polynomial function Iγ is nonconstant on X0. So we
may state:

Corollary 4.5.2. Let N be an orientable one-cusped hyperbolic 3-manifold of finite
volume. Then there is a 1-dimensional irreducible component X0 of X(π1(N)),
containing the character of the lift of a representation associated to the hyperbolic
structure of N , such that if γ is any nontrivial element of π1(N) carried by the
boundary of the compact core of N , the function Iγ is nonconstant on X0.

5. Ideal points and trees

In this section I’ll be talking about a construction that was first introduced by Culler
and me in [17]. It gives a way of associating actions of a finitely generated group Γ
on trees with “ideal points” (see Subsection 5.2 below) of a curve in the character
space X(Γ). This construction turns out to have various applications to 3-manifold
theory, because SL(2,C)-representations of π1 of a connected 3-manifold are related
to hyperbolic structures on the manifold (Subsection 1.6), whereas actions of π1
on trees are related to essential surfaces (Subsection 1.5 and Section 2). All the
subsequent sections of the chapter will depend in some way on the construction I’ll
be describing here.
The construction depends on a little more background material from algebraic

geometry than was used in Section 4.

5.1. Some more algebraic geometry

A point P of an algebraic set V is said to be smooth of dimension d, where 0 6

d 6 N , if P has a neighborhood U in CN with the property that V ∩ U = Z ∩ U ,
where Z is the solution set of a system of N − d polynomial equations

f1(z1, . . . , zN) = . . . = fN−d(z1, . . . , zN) = 0,

the fi being polynomials in the coordinates z1, . . . , zN , such that the N × (N − d)-
matrix of partial derivatives

(
∂fj
∂zi

)16i6N,16j6N−d

at the point P is of rank N − d.
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I pointed out in Subsection 4.2 that the irreducible components of an affine
algebraic set are not in general disjoint from one another. However, it is not hard
to show that a point lying in the intersection of two distinct components is not
smooth in V , so a smooth point of V does lie in a unique irreducible component.
If V is an affine variety in CN , there is a unique natural number d 6 N , called

the dimension of V , such that V has a dense subset consisting of smooth points
of dimension d. If x is any smooth point of V , we can apply the complex implicit
function theorem–which looks formally just like the real implicit function from
advanced calculus, and can be deduced from it—to parametrize the points in some
neighborhood of x by d complex coordinates. This gives the set of smooth points
of d the structure of a complex submanifold of dimension d in CN .
An affine variety V of dimension 1 is called, naturally enough, an affine curve. In

the 1-dimensional case, the existence of a local complex coordinate near a smooth
point of V has especially nice consequences, for example for the study of the function
field C(V ). Using a local coordinate we can identify a neigborhood U of a smooth
point P ∈ V with a domain in C in such a way that P = 0. If we write a given
element of C(V ) in the form f/g, where f, g ∈ C[V ], then the restrictions of
f, g ∈ C[V ] to U are holomorphic functions fU and gU . The quotient fU/gU is a
meromorphic function, and takes a well-defined value in the Riemann sphere C∪∞
at every point in its domain. More explicitly, if fU (z) = zmF (z) and gU (z) =
tnG(z), where F and G are holomorphic and are nonzero at 0, then

fU (z)

gU (z)
= zm−nF (z)

G(z)
,

where F and G are holomorphic and nonzero. It’s easy enough to show that the
meromorphic function fU/gU is well-defined, i.e. does not depend on the way we
wrote the given element of C(V ) as a quotient. Its value at 0, which we may think
of as the value of f/g at P , is of course F (0)/G(0) if m > n and ∞ if m > n.
In Subsection 4.2 I pointed out that an element of C(V ) defines a natural

complex-valued function on an open dense subset of V . What we are seeing here
is a partial improvement of this: an element of C(V ) defines a natural function
on the set of all smooth points of V , although this function now takes values in
C ∪ {∞}. In any case, the value we have assigned to f/g at P is indeed the value
in any reasonable sense; for example, it is the limit of f(z)/g(z) as z approaches P
through U − {P}.
The number m− n that appeared in the discussion above is the order of fU/gU

in the sense of Subsection 3.3. Now I pointed out in 3.3 that there is a valuation of
the field of meromorphic functions on U which assigns to each function its order at
0. For the same reason, there is a valuation of the function field C(V ) that assigns
to each element f/g of C(V ) the order at P of the corresponding function fU/gU
on U .
For any point P of an arbitrary affine variety V , it is tempting to try to assign

a value at P to any element of C(V ), but this is not always possible. For example,
if V = C2 (an affine space which we may think of as an algebraic subset of itself,
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defined by the empty set of equations), and if z and w denote the coordinates on C2,
then the element z/w of C(V ) defines a function on the complement of the line L
defined by w = 0; furthermore, this function can be extended continuously to a map
C2 − {(0, 0)} → C ∪ {∞} by giving it the value ∞ at every point of L− {(0, 0)}.
However, the function cannot be extended continuously to (0, 0), because it can
take arbitrary limiting values through a sequence in C2 − {0, 0} which approaches
(0, 0); for example, along the complement of {(0, 0)} in a line z = λw, its value is
identically equal to λ.
This problematic behavior can also occur at nonsmooth points of affine curves.

For example, the two-variable polynomial z3 + w3 + zw is easily seen to be irre-
ducible, from which it follows by general principles that its zeros form an irreducible
algebraic set of codimension 1, hence a curve, V ⊂ C2. Since the polynomial defin-
ing V is closely approximated by zw near (0, 0), one can show that the intersection
of V with a suitable neighborhood of (0, 0) is made up of two “branches:” these are
complex analytic 1-manifolds that are tangent to the coordinate axes z = 0 and
w = 0. Consider the element z/w of C(V ), where z and w now denote the gener-
ators of C[V ] obtained by restricting the coordinate functions to V . The “rational
function” z/w defines a genuine function on V − {(0, 0)}, but this function ap-
proaches 0 as the argument approaches (0, 0) through the branch tangent to z = 0,
and approaches ∞ as the argument approaches (0, 0) through the branch tangent
to w = 0.

5.2. Projective varieties

Affine varieties are often awkward to work with because they are noncompact. One
can typically learn much more about an affine variety V by studying a projective
completion of V .
Recall that for a positive integer N , the complex projective N -space CPN

is the quotient of the CN+1 − {(0, . . . , 0)} under the equivalence relation ∼ in
which (Z0, . . . , ZN ) ∼ (W0, . . . ,WN ) if and only if there is a complex number
α 6= 0 such that Wi = αZi for i = 0, . . . , N . I’ll denote the equivalence class of
(Z0, . . . , ZN) by [Z0, . . . , ZN ]. One says that Z0, . . . , ZN are homogeneous coordi-
nates for [Z0, . . . , ZN ].
If f is a homogeneous complex polynomial of degree d > 0 in N + 1 inde-

terminates, then for any point (Z0, . . . , ZN) of CN+1 and any α ∈ C we have
f(αZ0, . . . , αZN ) = αdf(Z0, . . . , ZN ). This means that although f does not have
a well-defined value at a given point of CPN , it does have a well-defined set of
zeros. A projective algebraic set in CPN is the set of common zeros of a collection
of homogeneous polynomials—of various degrees—in N + 1 indeterminates. Some
of the basic properties of affine algebraic sets have straightforward analogues for
the projective case. Thus any projective variety can actually be defined as the zero
set of a finite collection of homogeneous polynomials, and can be represented as a
finite union of projective varieties, i.e. irreducible projective algebraic sets. (The
definition of reducibility in the projective setting looks formally just like the affine
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definition.)
Let H0 ⊂ CPN denote the locus of zeros of the coordinate function Z0, which we

can think of as a first-degree homogeneous polynomial. The map J0 : C
N → CPN

defined by J0(z1, . . . , zN ) = [1, z1, . . . , zN ] is a diffeomorphism of CN onto the open
dense subset CPN −H0 of CPN , with inverse given by

[Z0, Z1, . . . , ZN ] 7→ (
Z1
Z0

, . . . ,
ZN
Z0

).

If V is any affine algebraic set in CN then the closure J0(V ) is a projective algebraic
set in CPN . If V is irreducible, so is J0(V ). (Sometimes we can find defining
equations for J0(V ) by “homogenizing” equations for V : thus if n = 2 and V
is defined by z21 + z32 = 1, we can define J0(V ) by Z21 +Z32 = Z30 . However, this will
not always work. To give a trivial example, if we define ∅ ⊂ C2 by the equations
z1 = 1, z1 = 2, homogenizing gives the equations Z1 = Z0, Z1 = 2Z0. The solution
set of the latter system consists of the point [1, 1, 2], whereas J0(∅) = ∅. What is
always true is that if we homogenize an arbitrary system of equations defining V
then J0(V ) is a union of irreducible components of the locus of zeros of the resulting
homogeneous system.)
Because CPN is obviously compact, projective varieties are always compact;

this makes them more tractable objects than affine varieties for some purposes. If
V ⊂ CN is an affine variety, we can think of J0(V ) as a compactification of V , from
which V can be “recovered” since J0(V ) = J0(V ) ∩ J0(CN ). This is often a useful
way of getting information about an affine variety.
On the other hand, we can also use affine varieties to study projective ones.

If we’re looking at a projective variety W ⊂ CPN , we can assume that W is not
contained in any of the “hyperplanes”Hi ⊂ CPN defined by Zi = 0, for i−0, . . . , N ,
because otherwise we could think ofW as a variety in a lower-dimensional projective
space. Now if J0 : C

N → CPN −H0 is defined as above, and if set not contained
in H0, then V0 = V ∩ (CPN −H0) is “identified” via J0 with the set J−10 (W ); it’s
not hard to show that J−10 (W ) is an affine variety in CN . But for i = 0, . . . , n− 1,
we can do exactly the same construction using Hi and a similarly defined map
Ji : C

N → CPN −Hi in place of H0 and J0, to get an “identification” of the set
Vi = V ∩(CPN−Hi) with an affine variety. We have V = ∪Ni=0V0, and we can think
of the Vi as domains of an “atlas of affine coordinate charts;” in terms of these, a
projective variety is something that looks “locally” like an affine variety, in much
the way that a differentiable manifold looks locally like Rn.
The “transition maps” are easily understood in the setting of a projective variety.

To simplify the notation a bit, let’s consider a point P lying in the intersection of
the chart domains V0 and V1. Suppose that P , regarded as a point of the affine
variety V0, has affine coordinates z1, z2 . . . , zN . Then 1, z1, z2, . . . , zN are homoge-
neous coordinates for P as a point of V ⊂ CPN . It follows that if we regard P as a
point of V1, its affine coordinates are 1/z1, z2/z1, . . . , zN/z1. The same calculation
shows that for any i and j, the “transition maps” relating affine coordinates in Vi
to those in Vj are defined by rational functions in the coordinates.
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In view of the description of the function field as a set of equivalence classes of
functions, which I gave in Subsection 4.2, it now follows that there is a natural iso-
morphic identification of all the function fields C(V0), . . . ,C(VN ) with one another.
So it makes sense to talk about the function field C(W ) of a projective variety W .
This is a first example of how one can turn “local” definitions involving affine

varieties into “global” ones involving projective varieties, in close analogy with the
theory of differentiable manifolds. There are of course many other examples. A
point of a projective variety is smooth if it is identified with a smooth point of an
affine variety under one of the affine charts; for a point lying in more than one
chart domain, this is independent of the choice of chart, as a calculation with the
transition maps shows. Likewise, a projective variety has a dimension which is equal
to the dimension of each of its affine pieces.
The results about smooth points of affine curves that I discussed in Subsection

5.1 are readily translated into the projective context: if W is a projective curve,
i.e. a projective variety of dimension 1, and if P is a smooth point of W , then
every element of C(W ) has a well-defined value at P , this value being an element
of C∪{∞}; and furthermore, P gives rise to a valuation of C(W ) in a natural way.

5.3. Canonical completions

In Subsection 5.2 I talked about the completion of an affine algebraic set, because I
was thinking of such sets concretely as subsets of particular affine spaces. As with
so many other kinds of mathematical objects, it is often useful to have the flexibility
that comes from thinking of affine algebraic sets as being “defined up to isomor-
phism.” In this context it is no longer permissible to speak about the completion
of an affine algebraic set, because isomorphic affine algebraic sets may have noni-
somorphic projective completions. Actually, if you’re paying close attention you’ll
have noticed that I haven’t defined isomorphism of projective varieties, but there
are examples where projective completions of isomorphic affine varieties are not
even homeomorphic.
Let me point out an especially trivial example of this phenomenon. The union of

two “parallel lines” in C2, say z1 = 0 and z1 = 1, is isomorphic as an affine algebraic
set to the union of two “skew lines” in C3, say z1 = z2 = 0 and z2 = z3 = 1. (It’s a
good exercise to write down the polynomial maps between C2 and C3 that restrict
to an isomorphism and its inverse.) On the other hand, the completion of the first
set in CP2 is the union of the “projective lines” Z1 = 0 and Z1 = Z0, which are
topological 2-spheres meeting in the point (0, 0, 1), whereas the completion of the
second set is the union of the projective lines Z1 = Z2 = 0 and Z2 = Z3 = Z0,
which are again topological 2-spheres but are disjoint (since a point of CP3 cannot
have all its homogeneous coordinates equal to 0). Note that in this example the
completion of the second set is smooth, whereas the completion of the first set is
not.
From this point on I will be using the phrase “completion of V ,” where V is an

algebraic set in some CN , to mean any projective variety of the form J0(V ′), where
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V ′ is an arbitrary affine algebraic set in some CN ′ isomorphic to V and J0 : C
N ′ →

CPN ′ is the standard embedding defined in Subsection 5.2. In situations where a
particular completion V̂ of V has been fixed, I will regard V as being identified in
the obvious way with a subset of V̂ . In this situation I will often refer to the points
of V̂ − V as ideal points of the completion V̂ ; in contrast the points of V ⊂ V̂ may
be referred to as ordinary points.
The example I just described shows that a 1-dimensional algebraic set may have

one completion in which the ideal points are smooth, and another which fails to
have this property. It can be shown that every affine curve has a completion in which
all the ideal points are smooth. This is in fact a fairly direct consequence of one
of the basic results in the theory of algebraic curves, which allows one to “resolve
the singularity” at a nonsmooth point of a projective algebraic curve, replacing it
by a finite number of smooth points. In more precise terms, if x is a singular point
of a projective curve C, there exist a projective curve C̃ and a well-defined map
J : C̃ → C, which is rational in local affine coordinates near every point, such that
J−1(y) is a single point for every y 6= x, and J−1(x) consists of a finite number of
smooth points. In [45] and [28] you will find a total of three quite different proofs
of this result, all very enlightening. Now if V̂ is any completion of an affine curve
V , one can resolve all those singularities of V̂ which occur at ideal points, and it is
not hard to show that the resulting projective curve is still a completion of V .
Although I will not be defining the notion of isomorphism of projective varieties

in this chapter, because I won’t really need it, I ought to mention that up to
isomorphism there is only one completion of an affine curve in which all the ideal
points are smooth. Once one has studied the definitions, the proof that such a
completion is canonical in this sense is a simple application of the fact, which I
talked about above, that if W is a projective curve, every element of C(W ) has a
well-defined value in C ∪ {∞} at every smooth point of W .

5.4. Associating an action on a tree with an ideal point

Let Γ be a finitely generated group, and let C be a curve contained in X(Γ),
i.e. an irreducible 1-dimensional subvariety of X(Γ). By Subsection 5.3, there is a
projective completion X̂ of X such that every ideal point of X̂ is smooth. I will
show how every ideal point x of X̂ gives rise to a nontrivial action of Γ on a tree.
First of all, by the very way I defined C(X̂) in Subsection 5.2, there is a natural

isomorphism of C(X̂) with C(X). From now on I’ll write F = C(X) = C(X̂).
Any ideal point x of X̂, because it is a smooth point, determines a valuation vx of
F = C(X̂) by the construction described in Subsections 5.1 and 5.2.
On the other hand, there is an irreducible subvariety RC of R(Γ) such that

t(RC) = C. (The point here is that since C is a subvariety of X(Γ) = t(R(Γ)), it is
true for very general algebro-geometric reasons that C is the closure of t(RC) for
some subvariety RC of R(Γ). The argument I alluded to in Subsection 4.4, based
on the “Burnside Lemma,” which shows that t(R(Γ)) ⊂ CN is an algebraic set,
also shows that t(RC) is an algebraic set, hence closed, hence equal to C. I’ll have
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to refer you to [17] for details, but that’s the philosophy.) As in Subsection 4.2,
we can regard K = C(RC) as an extension of the field F = C(X). We invoke the
following extension theorem for valuations:

Theorem 5.4.1. Let K be a finitely generated extension of a field F and let v :
F ∗ → Z be a valuation of F . Then there exist an integer d > 0 and a valuation
w : K∗ → Z such that w|F ∗ = dv.

This result is pretty well-known and elementary. The best reference I can give
you is to my joint paper [2] with Roger Alperin, where we state it as Lemma 1.1 and
give a proof that’s self-contained except for a reference to Bourbaki’s Commutative
Algebra. If you read the proof and look up the reference, you’ll know about as much
valuation theory as you need for this subject. The result is an extension theorem
in the sense that the function 1

d
w is an extension of v to K∗, and is a valuation

in a very slightly more general sense than the one I have defined here: it takes its
values in the infinite cyclic group 1

d
Z rather than in Z.

We can apply this theorem in our situation because K, being the function field of
a (finite-dimensional) variety RC , is finitely generated as an extension of C; in fact,
if C lives in an affine space CN then the restrictions of the coordinate functions to
RC generateK overC. So in particularK is finitely generated as an extension of F .
The theorem gives a valuation w of F such that w|F ∗ = dvx for some d > 0. With
the valuation w, as in Section 3, we can associate a tree T = Tw on which SL(2,K)
acts in a natural way. On the other hand, by Section 4 we have a tautological
representation P : Γ → SL(2,K), and we can pull back the action of SL(2,K) on
T via P to get an action of Γ on T . According to Subsection 3.7, Γ acts without
inversions on T .
For any γ ∈ Γ, the function Iγ is an element of C(X). Since the ideal point x

is smooth, it follows from what I said in Subsection 5.2 that Iγ has a well-defined
value Iγ(x) ∈ C ∪∞ at x. The most important property of the action of Γ on the
tree T is:

Property 5.4.2. For any element γ ∈ Γ the following statements are equivalent:

(i) Iγ(x) ∈ C, i .e. Iγ does not have a pole at x;

and

(ii) Some vertex of T is fixed by γ.

To prove this, first recall that by (4.4.1) the element Iγ of F ⊂ K is the trace of
P(γ) ∈ SL(2,K). We have

Iγ(x) ∈ C⇐⇒ v(Iγ) > 0⇐⇒ w(traceP(γ)) > 0

⇐⇒ traceP(γ) ∈ O,
(5.4.3)

where O ⊂ K is the valuation ring defined by the valuation w. Now if (ii) holds,
i.e. if P(γ) ∈ SL(2,K) fixes a vertex of T , then by Subsection 3.7 the element P(γ)



Representations of 3-manifold groups 59

lies in a conjugate, within GL(2,K), of SL(2,O). In particular, traceP(γ) ∈ O,
so that (i) holds by virtue of (5.4.3). To prove the converse we need the rational
canonical form of a matrix in SL(2,K), which in this case is a pretty trivial matter.
Suppose that (i) holds, so that traceP(γ) ∈ O. If we are in the degenerate case
where P(γ) = ±I then γ acts trivially on the whole tree T . In the nondegenerate
case we can choose a vector e ∈ K2 such that e and its image f under the linear
transformation A = P(γ) of K2 are linearly independent. In the basis {e, f}, the
linear matrix of the linear transformation A has the form

B =

(

0 1
c d

)

,

so that A is conjugate to B in GL(2,K). In particular we have c = − detA = −1
and d = traceA ∈ O, so that B ∈ SL(2,O). Thus A = P(γ) lies in a conjugate,
within GL(2,K), of SL(2,O), and by Subsection 3.7, γ fixes a vertex of T .

An important consequence of Property 5.4.2 is the following property of the
action:

Property 5.4.4. The action of Γ on T is nontrivial. (Recall from Subsection 1.5
that this means that no vertex of T is fixed by the entire group Γ.)

To prove this, note that if the action were trivial, then by Property 5.4.2 we would
have Iγ(x) ∈ C for every element γ of Γ. In terms of the concrete description of the
character variety that I gave in Subsection 4.4, each of the coordinate functions of
C ⊂ X(Γ) is of the form Iγ for some γ ∈ Γ. But some coordinate function must
take the value ∞ at x since x is an ideal point. This contradiction completes the
proof of Property 5.4.4.

5.5. More about the action

In some of the applications that I discuss in this chapter I will need an apparently
more general version of Property 5.4.2: a finitely generated subgroup Γ1 of Γ fixes
a vertex of T if and only if Iγ takes a finite value at x for every γ ∈ Γ. My favorite
way to prove this is to notice that it follows immediately from Property 5.4.2 itself
and the following result:

Proposition 5.5.1. Suppose that a finitely generated group Γ acts without inver-
sions on a tree T , in such a way that each element γ ∈ Γ fixes some vertex vγ of
T . Then there is a single vertex v of T which is fixed by the entire group Γ: thus
γ · v = v for every γ ∈ Γ.

You may find a proof of this in [55], but it’s much more fun to do it as an exercise.
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Property 5.4.2 also admits a generalization in a different direction. This version
involves the notion of the length function associated to an action of a group Γ on
a tree T . The length function l associated to an action · (without inversions) is
defined by l(γ) = mins d(s, γ ·s), where s ranges over the vertices of T . I mentioned
in Subsection 3.8 that any γ ∈ Γ either has a fixed point in T—in which case
l(γ) = 0—or has a unique invariant line (an “axis”) on which it acts by a translation;
in this case it is not hard to show that l(γ) is the (integer) distance through which
γ translates vertices on its axis.
The second generalization of 5.4.2, involving the length functions l associated to

the action of Γ on T , is that for any γ ∈ Γ, the length l(γ) is equal to twice the
order of the pole of Iγ at the ideal point x. (Here “the order of the pole” is taken
to mean 0 if Iγ does not have a pole at x, so that 5.4.2 indeed appears as a special
case.) This is also an excellent exercise. The only reference I know for it is [42],
where it is proved in a much more general form.
One consequence of this generalization of 5.4.2 is that the length function defined

by the action of Γ on T = Tw is canonically associated to the ideal point x, i.e. does
not depend on the choice of the extension w.
The length function associated to an action on a tree plays the same role as

the character associated to a representation in SL(2,C), and there is an analogue
of Proposition 1.1.1. To understand the statement, first note that according to
Proposition 5.5.1, an action of a finitely generated group Γ on a tree is trivial if
and only if the associated length function is 0. It’s not hard to show that if Γ
acts nontrivially on T then there is a unique minimal Γ-invariant subtree of T .
(It can be described as the union of the axes of all the elements of Γ that do not
have fixed vertices.) It’s easy to see that if two actions of Γ on trees have minimal
invariant subtrees that are equivariantly simplicially isomorphic, then they give
rise to the same length function. The analogue of Proposition 1.1.1 gives a converse
that is valid except for certain “degenerate” actions that are analogous to reducible
representations.
An action of Γ on a tree is termed abelian if its length function has the form

l(γ) = |h(γ)| where h is a homomorphism from Γ to Z; any function of this form
does arise from an action of Γ on the tree R, triangulated so that its vertex set is
Z. The following result is a special case of results proved in [16] and in [1]:

Proposition 5.5.2. Let Γ be a finitely generated group. If two nonabelian actions
of Γ on trees T and T ′ define the same length function, then the minimal Γ-invariant
subtrees of T and T ′ are Γ-equivariantly simplicially isomorphic.

In particular, for the case of the action of Γ on the tree T associated to an ideal
point by the construction I described above, the restriction of the action to the
minimal Γ-invariant subtree of T is something canonically defined by the given
ideal point—except in the degenerate case where the action is abelian. I won’t be
using this fact anywhere in the rest of this chapter, but as Golde and Tevye said,
it’s nice to know.
I’ll conclude this section by pointing out one more property of the action of Γ on

the tree T associated to an ideal point x, which is just the translation of (3.8.2) into
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this context. (Check it.) This property and its variants come up a lot in applications
to 3-manifolds.

Property 5.5.3. If e is any edge of Tw and γ is any element of [Γe,Γe], the com-
mutator subgroup of the stabilizer of e in Γ, then Iγ(x) = 2.

5.6. Separating surfaces in knot exteriors

In his classic treatise [47], Lee Neuwirth asked a number of questions about the
structure of knot groups, i.e. fundamental groups of complements of nontrivial knots
in S3. (A knot is said to be trivial if it bounds a disk in S3.) One of his questions
was whether every knot group can be expressed as a nontrivial free product with
amalgamation (see Subsection 2.6) in which the amalgamated subgroup is free. He
proposed the idea of answering this question affirmatively by showing that if K is
a nontrivial tame knot in S3 then the exterior of K contains a separating essential
surface. I will refer to this statement as the weak Neuwirth Conjecture, because
in [46] Neuwirth formulated stronger topological and group-theoretic versions of
his conjecture, some of which are still unproved. Of course you should compare
the weak Neuwirth Conjecture with the elementary fact, which I talked about in
Subsection 2.5, that the exterior of K always contains a nonseparating essential
surface.
The weak Neuwirth Conjecture was proved in [18], in a much more general context

than that of knot exteriors in S3. It is included in the following result, which is
proved in [18]:

Theorem 5.6.1 (Culler-Shalen). Let M be a compact, orientable, irreducible 3-
manifold whose boundary is a torus. Suppose that H1(∂M ;Q) → H1(M ;Q) is
surjective, but that M is not a solid torus. Then M contains a separating essential
surface.

(By the way, when M is the exterior of a tame knot in S3, the surjectivity of
H1(∂M ;Q)→ H1(M ;Q) follows easily from the Mayer-Vietoris theorem. The irre-
ducibility ofM in this case follows from a classical result due to Alexander, Graeub
and Moise, the so-called 3-dimensional PL Schönflies theorem (see for example [39],
Section 17).)
I will discuss the stronger versions of Neuwirth’s conjectures in Section 10. The

essential point to be made here is that while Theorem 5.6.1 applies to irreducible
tame knot exteriors in arbitrary rational homology 3-spheres, the stronger versions
of the conjecture seem to depend on the hypothesis that the knot is in S3, or at
any rate in a 3-manifold of some more special sort.
Actually Theorem 5.6.1 is an essentially immediate consequence of a result, stated

below as Theorem 5.6.2, which applies to irreducible tame knot exteriors in arbitrary
closed, orientable, connected 3-manifolds; the statement of this theorem was not
spelled out in [18]. To state it we need the notion of a boundary slope, which is
discussed in more detail in Boyer’s chapter in this volume. CHECK THIS. Briefly,
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if M is a compact, orientable, irreducible 3-manifold whose boundary is a torus,
the boundary components of an essential surface F are all isotopic since they are
disjoint, homotopically nontrivial simple closed curves on a torus. Their common
isotopy class is called the boundary slope of F ; for reasons that Boyer explains, the
term slope is used to mean any isotopy class of nontrivial simple closed curves in
∂M . A slope is called a boundary slope of M if it is the boundary slope of some
essential surface in M . A fundamental result of Hatcher’s [30] implies that the set
of boundary slopes of M is always finite.

Theorem 5.6.2. Let M be a compact, orientable, irreducible 3-manifold whose
boundary is a torus. Then either

(i) M is a solid torus, or
(ii) M contains an essential separating annulus, or
(iii) M contains an essential nonseparating torus, or
(iv) M has at least two boundary slopes.

To see that this implies Theorem 5.6.1, notice that alternative (i) is ruled out
by the hypothesis of Theorem 5.6.1, while alternative (ii) implies the conclusion of
5.6.1. The hypothesis that H1(∂M ;Q) → H1(M ;Q) is surjective rules out alter-
native (iii). This hypothesis also implies, by a simple homological argument, that
there is at most one slope that can occur as the boundary slope of a nonseparating
essential surface. So if alternative (iv) holds thenM contains an essential separating
surface.
In this subsection I will show how to apply the techniques that I’ve described to

prove Theorem 5.6.2 in the special case where N = intM has a (finite-volume) hy-
perbolic structure. In this case one gets a stronger result, namely that alternative
(iv) of Theorem 5.6.2 holds. I’ll establish alternative (iv) in the following para-
phrased form: if s is any slope, there is an essential surface which has nonempty
boundary and has a boundary slope different from s.
Let s be represented by a simple closed curve c in ∂M and let γ be an element

representing the conjugacy class determined by some orientation of c. We consider
the curve X0 ⊂ X(π1(M)) given by Corollary 4.5.2. Since Iγ is nonconstant on X0
it must have a pole on X̂0, which must occur at some ideal point x of X0.
With the ideal point x we can associate a tree Tx and an action of π1(M) on Tx

by the construction of Section 5. Furthermore, according to Section 2 there exists
an essential surface F ⊂M which is dual to the action of π1(M) on Tx. To complete
the proof it suffices to show that any such F has a nonempty boundary and that
its boundary slope is different from s.
Assume that either F is closed, or that ∂F 6= ∅ and that the boundary slope

of F is s. In either case, the simple closed curve c is isotopic to a simple closed
curve in the complement of F . Thus the element γ ∈ π1(M) lies in a conjugate of
im(π1(Ci))→ π1(M) for some component Ci of M − F . According to 2.3.1(i), this
implies that γ fixes some vertex of Tx. But by Property 5.4.2 this means that Iγ
does not have a pole at x. Of course this contradicts our choice of x, and so the
proof of the theorem is complete—in the special case where intM is hyperbolic.
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6. The proof of the weak Neuwirth Conjecture

I’m going to present the main ideas in the proof of Theorem 5.6.2 in the general
case, where we don’t assume that intM has a hyperbolic structure. I will skip over
a few technical algebraic details, which you can find in [18].
The starting point for the argument is Thurston’s geometrization theorem [49],

[50], which, together with the characteristic submanifold theorem ([35], [34]) guar-
antees that by splitting M along some disjoint system of essential tori {T1, . . . , Tk}
we can get a manifold M ′ such that for each component M ′

i of M
′, either M ′

i is a
Sefiert fibered space or intM ′

i is hyperbolic. We can assume that the component of
M0 ofM

′ which contains the torus B0 = ∂M is not homeomorphic to S1×S1×[0, 1],
as otherwise we could replace {T1, . . . , Tk} by a system of fewer tori with the same
properties.
If M0 is a Seifert fibered space (not homeomorphic to S1 × S1 × [0, 1]), it’s a

routine matter to check that eitherM0 is homeomorphic toD2×[0, 1]—in which case
M = M0 and alternative (i) of Theorem 5.6.2 holds—or M0 contains an essential
separating annulus A with ∂A ⊂ B0. We can think of A as an essential annulus in
M . This annulus will separateM (implying alternative (ii) of Theorem 5.6.2) unless
there are two components T1 and T2 of ∂M0 which lie in different components of
M0 − A but lie in the same component of M −M0; but if this happens then T1
and T2 are both nonseparating tori in M , so that alternative (iii) of Theorem 5.6.2
will hold. So the conclusion of the theorem holds whenever M0 is a Seifert fibered
space.
In the crucial case where intM0 is hyperbolic, we generalize the argument of

Subsection 5.6 to show that alternative (iv) of Theorem 5.6.2 holds. As I pointed
out in Subsection 5.6, it suffices to show that if s is any slope, there is an essential
surface in M which has nonempty boundary and has a boundary slope different
from s. It turns out we can show more than this, namely that there is an essential
surface F ⊂ M0 with ∂F ⊂ B0, and such that the common isotopy class of the
components of ∂F is distinct from s.
In Subsection 5.6, in the case where intM was hyperbolic and had a single cusp,

we used the 1-dimensional component of π1(M) given by Corollary 4.5.2. In the
general case, if intM0 has n cusps then ∂M0 consists of n tori. We have labeled
one of these B0; let B1, . . . , Bn−1 denote the others. Theorem 4.5.1 gives an n-
dimensional irreducible component X0 of X(Γ). I’ll define a curve Y0 ⊂ X0 which
plays the role that X0 played in the one-cusp case. Specifically, I claim that X0
contains a curve Y0 such that

(i) for each i = 1, . . . , n − 1 and each element α ∈ im(π1(Bi) → π1(M)), the
function Iα|Y0 is identically equal to either 2 or −2, and

(ii) for each nontrivial element α ∈ im(π1(B0)→ π1(M)), the function Iα|Y0 is
nonconstant.
To construct Y0 we first recall that X0 is by definition an irreducible component

of X(π1(M)) containing the character χ0 of the lift to SL(2,C) of a discrete faithful
representation of π1(M) in PSL(2,C). Hence if we fix elements γi ∈ im(π1(Bi) →
π1(M)) for i = 1, . . . , n − 1, we have Iγi(χ0) = χ0(γi) = ±2 for 1 6 i 6 n − 1.
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In particular, χ0 lies in the algebraic subset Z of X(π1(N)) obtained by adding
the equations I2γi = 4 for i = 1, · · · , n − 1. Now by a general property of complex
affine varieties that I already quoted in Section 4.5 (see [56], p. 60, Theorem 7),
since X0 has dimension n, and Z is defined by adding n− 1 extra equations, each
component of Z must have dimension at least 1. In particular there must be a
curve Y0 with χ0 ∈ Y0 ⊂ X0. To prove property (ii) for the curve Y0, we use
the fact that Iα(χ0) = ±2 to conclude that if Iα were constant on Y0, all the
functions I2α, I

2
γ1
, . . . , I2γn−1

would be identically equal to 4 on Y0. Thus Y0 would be
contained in the algebraic subset X∗ of X(π1(N)) obtained by adding the equations
I2α = I2γ1

= . . . = I2γn−1
= 4. But this contradicts the last assertion of Theorem 4.5.1,

according to which χ0 is an isolated point of X∗.
To show that Y satisfies (i), one begins with the fact, which I already mentioned

in Subsection 5.4 (the paragraph before the statement of the Extension Theorem
for Valuations) that any (irreducible) curve in X(π1(M)) is in fact the image under
t : R(π1(M))→ X(π1(M)) of a subvariety of R(π1(M)). Having fixed a subvariety
R0 of R(π1(M)) with t(R0) = Y0, one considers an index i with 1 6 i < n and an
element α of im(π1(Bi) → π1(M)). For any point ρ ∈ R0 we have trace ρ(γi) =
Iγi(t(ρ)) = ±2, since t(ρ) ∈ Y0 ⊂ Z. Thus ρ(γi) is either ±I or a conjugate

of ±
(

1 1
0 1

)

. But ρ(α) commutes with ρ(γi) since π1(Bi) is abelian; as the only

matrices that commute with ±
(

1 1
0 1

)

are those of the form ±
(

1 λ
0 1

)

for λ ∈ C,

we must have either ρ(γi) = ±I or trace ρ(α) = ±2.
In view of the irreducibility ofR0, there are two possibilities: either (a) ρ(αi) = ±I

for every ρ ∈ R0, or (b) trace ρ(α) = ±2 for every ρ ∈ R0. Now (b) is exactly what
we need, because it translates into the statement that the function Iα takes the
value 2 or −2 at every point of Y0; this implies the conclusion of (i) since Y0 is
irreducible. So we need only rule out (a). Well, if (a) holds then every point of X0,
in particular χ0 = t(ρ0), is the character of a nonfaithful representation. But since
ρ0 is irreducible, any representation with character χ0 is equivalent to ρ0, and since
ρ0 is faithful we have a contradiction.
Having constructed the curve Y0 satisfying (i) and (ii), we proceed to construct

the required surface F . We follow the same basic procedure as in Subsection 5.6,
using Y0 in place of X0. Remember that we are given a slope s in B0, and that
we require that the essential surface F ⊂ M0 have its boundary contained in B0,
and that the common isotopy class of the components of ∂F be distinct from s.
We represent s by a simple closed curve c in ∂M , and we let γ be an element
representing the conjugacy class determined by some orientation of c. By property
(ii) of the curve Y0, the function Iα|Y0 is nonconstant, and therefore has a pole at
some ideal point x of Ỹ0. The ideal point x determines an action of π1(M) on a tree
T . If F is any essential surface in M dual to this action, the same argument that we
used in Subsection 5.6 shows that F must have boundary components contained in
B0, and that the common isotopy class of these boundary components cannot be
s. The new twist is that we must pick the surface F in such a way that it has no
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boundary components in any component Bi 6= B0 of ∂M . This is made possible by
property (i) of Y0; I’ll indicate how this works.
First we translate property (i) into a property of the action of π1(M) on T . For

i = 1, . . . , n− 1, set Γi = im(π1(Bi)→ π1(M)). Of course, this subgroup is defined
only up to conjugacy, but we fix a concrete representative Γi in the conjugacy class
of subgroups. Property (ii) says that Iγ takes a finite value at the ideal point x for
every γ ∈ Γi. Thus by Proposition 5.5.1, there is a vertex vi of T which is fixed by
Γi.
The property of the action that I have stated here is exactly what is needed to

guarantee that we can choose the a surface F dual to the action in such a way
that a F is disjoint from B1, . . . , Bn−1. (Remember that the surface dual to a given
action is in general far from being canonical.) The transition from the property of
the action to the property of the (suitably chosen) dual surface is contained in the
following result, which is a corollary to Proposition 2.5.3.

Corollary 6.0.1. Let M be a compact, orientable, irreducible 3-manifold, and let
B1, . . . , Bk be disjoint subpolyhedra of ∂M . Suppose that we are given an action of
π1(M) on a tree T , without inversions, and suppose that for each i 6 k, the subgroup
Γi = im(π1(Bi)→ π1(M)) of π1(M) fixes a vertex vi of T . (Of course the subgroups
Γi are defined only up to conjugacy, but if a given subgroup fixes a vertex then any
conjugate subgroup fixes a (possibly different) vertex; so the condition makes sense.)
Then there is an essential surface F ⊂M , dual to the action of π1(M) on T , such
that F ∩ Bi = ∅ for i = 1, . . . , k.

This is just the special case of Proposition 2.5.3 in which the map g̃i, for i =
1, . . . , k, is the constant map that sends B̃i to vi; it has the required equivariance
property because Γi fixes vi. In the notation of 2.5.3 we have Ci = ∅ for i = 1, . . . , k,
so that the conclusion of 2.5.3 implies that F ∩ Bi = ∅.

In the case of the action associated to the ideal point x that we are considering,
I have shown that the hypothesis of Corollary 6.0.1 holds if we set k = n− 1 and
define B1, . . . Bn−1 as above. So the corollary gives an essential dual surface F to the
action which has the property that F ∩Bi = ∅ for i = 1, . . . , n− 1. This completes
the proof of Theorem 5.6.2.

7. The Smith Conjecture

It is a long-standing conjecture that a tame periodic homeomorphism h of S3 is
topologically linear, i.e. conjugate to the restriction to S3 of an orthogonal trans-
formation of R4. (To say that h is tame means that for every fixed point P of h,
there exist an h-invariant neighborhood V of h and a homeomorphism j of V onto
the unit ball B3 ⊂ R3, such that jhj−1 is the restriction of a linear automorphism
of R3. A periodic diffeomorphism is automatically tame.) The Smith Conjecture,
which was first proved in 1978 (see [41]), is equivalent to the special case of this
conjecture in which h is assumed to have period n > 1 (not much of a restriction),
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to preserve orientation, and to have nonempty fixed point set. Under these assump-
tions, it follows from classical theorems due to P. A. Smith that the fixed point set
of h is homeomorphic to a 1-sphere, so that it may regarded as a knot in S3; and
the hypothesis that h is tame implies that the fixed point set is a tame knot.
It was long unknown whether this fixed point set could be a nontrivial knot. In

fact, classical arguments may be used to show that the homeomorphism is topo-
logically linear if and only if the fixed point set is unknotted. This connection with
classical knot theory was one source of fascination with the Smith Conjecture. How-
ever, the proof that was eventually given did not use this particular reduction to
knot theory, but another one which in a sense is more direct.
If h is a tame, periodic homeomorphism whose fixed point set is a knot, it’s ele-

mentary to show that the orbit space Σ = S3/〈h〉 is a connected, closed, orientable
3-manifold; and, furthermore, that the orbit map p : S3 → Σ is a branched covering
map, whose branch set is a tame knot K ⊂ Σ. It’s pretty clear that the branched
covering S3 of Σ is regular and that its covering group is the cyclic group 〈h〉. Fur-
thermore, it’s an entirely elementary exercise to prove that h is topologically linear
if and only if the knot K ⊂ Σ is trivial, in the sense that it bounds a disk in Σ. So
the Smith Conjecture is in fact an immediate consequence of the following result.

Theorem 7.0.1. Let K be a tame knot in a connected, closed, orientable 3-
manifold Σ. Let n be an integer > 1, and let Σ̃ denote the n-fold cyclic regular
branched covering of Σ, branched over K. Assume that Σ̃ is simply connected. Then
the knot K is trivial.

Of course this result is really stronger than the Smith Conjecture, because it is
assumed only that Σ̃ is simply connected, not that it is diffeomorphic to S3. For
this reason the result was known for a time as the “Generalized Smith Conjecture,”
until a still more general version was announced by Thurston. . .
In this section I will sketch a proof of Theorem 7.0.1 which was first given in [17].

As I will point out below, it gives a rather stronger form of Theorem 7.0.1 than the
form that was first proved in [41]. In any case, it is a good illustration of the use of
the character variety in this subject.

7.1. Preliminary observations

A preliminary step in the proof of Theorem 7.0.1 is to reduce it to the special case
where the exterior M of K is irreducible. This may be done by using the Kneser
finiteness theorem—of which you will find an account in Bonahon’s chapter in this
volume, or in [31] (Theorem 3.15)—to decompose M as the connected sum of an
irreducible manifold, itself the exterior of some tame knot K0 in a closed orientable
3-manifold Σ0, and a closed manifold. The n-fold cyclic branched cover Σ̃0 of Σ
branched over K0 is then a connected summand of Σ̃, so if Σ̃ is simply connected,
so is Σ̃0. It’s also a routine matter to check that K is trivial if and only if K0 is.
There is a basically similar preliminary reduction to the case where K is a prime

knot. A tame knot is said to be prime if its exterior contains no essential annulus
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whose boundary components are meridians. (I’m using the term “essential” as I
did in Section 1, and since at this point I’m looking at a knot whose exterior is
irreducible, the context is consistent with that of Section 1.) The reason for the
term “prime” is that if the exterior of K does contain an essential annulus with
meridian boundaries, we can decomposeK as a connected sum of two tame knotsK1

and K2 in closed orientable 3-manifolds Σ1,Σ2. (The connected sum is defined by
removing from each Σi a ball Bi that meets Ki in an unknotted arc αi, then gluing
together Σ1 − intB1 and Σ2 − intB2 by some homeomorphism of their boundaries
that matches ∂α1 with ∂α2; this gives a knot K1#K2 in the manifold Σ1#Σ2. For
Σ1 = Σ2 = S3, this formalizes the idea of tying two knots in succession in the same
piece of string.) There is a prime decomposition of a tame knot analogous to the
prime decomposition for an oriented 3-manifold described in Bonahon’s chapter,
and using this it is not hard to reduce the proof of Theorem 7.0.1 to the case where
K, in addition to having an irreducible exterior, is prime.
Having made these reductions, we consider a prime tame knot, with irreducible

exterior M , in a connected, closed, orientable 3-manifold Σ, and an integer n > 1.
We let Σ̃ denote the n-fold cyclic regular branched covering of Σ, branched over K.
Working contrapositively, we assume that K is a nontrivial knot, and we wish to
show that π1(Σ) is a nontrivial group. We let µ denote the meridian µ of K, which
we think of as an element of π1(M), represented by a simple closed curve in ∂M .
When I need to refer to this simple closed curve itself, regarded as a subset of ∂M ,
I will denote it |µ|. It is quite elementary to see that there is an exact sequence

1→ π1(Σ̃)→ |π1(M) : µn = 1| → Z/nZ→ 0.

Here by |π1(M) : µn = 1| I of course just mean the group obtained from π1(M) by
adding the relation µn = 1. (Nowadays this group is often referred to as an orbifold
group.)

7.2. The character variety appears

Thus one way of showing that π1(Σ̃) is nontrivial is to show that |π1(M) : µn = 1|
is not a cyclic group. Thus it certainly suffices to find a representation ρ̄ : π1(M)→
PSL(2,C) with noncyclic image such that ρ̄(µ) has order n. To carry this a step
further, it suffices to find a representation ρ : π1(M)→ SL(2,C) such that
(i) the image of ρ(π1(M)) under the natural homomorphism
SL(2,C)→ PSL(2,C) is noncyclic,
and
(ii) ρ(µ) has order 2n.
(I am using here the fact that −I is the only element of order 2 is SL(2,C), so that

any element of order 2n is SL(2,C) maps to an element of order n in PSL(2,C).)
Notice that I haven’t claimed that there is always a representation ρ satisfying

(i) and (ii). What I’ll show, rather, is that in the crucial case where intM ∼= Σ−K
is hyperbolic (i. e. has a hyperbolic structure of finite volume), the attempt to find
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a representation ρ satisfying (i) and (ii) either succeeds or—in the case where it
fails—leads to an alternative way of showing that π1(Σ̃) is nontrivial. It will also
turn out that when intM is not hyperbolic, this alternative method nearly always
works—and the exceptional cases are easily handled.
Assume for the moment, then, that intM is hyperbolic. Corollary 4.5.2 gives a

curve X0 ⊂ X(π1(M)). We are attempting to find a point χ ∈ X0 which is the
character of a representation ρ satisfying (i) and (ii). For condition (i) the following
lemma is of obvious relevance.

Lemma 7.2.1. Let N be an orientable hyperbolic 3-manifold of finite volume with
a single cusp, and let X0 be a curve in X(π1(N)) given by Corollary 4.5.2. Then
for every point χ ∈ X0 there is a representation ρ ∈ t−1(χ) such that the image of
ρ(π1(N)) under the natural homomorphism SL(2,C)→ PSL(2,C) is noncyclic.

Sketch of proof. We have X0 = t(R0), where R0 is an irreducible component of
R(π1(N)) containing ρ0, a lift of the discrete, faithful representation of π1(N) to
SL(2,C). It’s easy to see that ρ0 is irreducible. It’s also easy to see that the reducible
representations of π1(N) form a closed algebraic subset of R(π1(N)). (In fact, it’s
shown in [17] that a representation ρ is reducible if and only if trace ρ(γ) = 2 for
every element γ of the commutator subgroup of π1(N).) So there’s an open, dense
subset of R0 consisting of irreducible representations.
If ρ ∈ R0 is irreducible then ρ(π1(N)) is nonabelian. This easily implies that the

centralizer of ρ(π1(N)) is {±I}. Hence under the action of SL(2,C) by conjugation

on R0, the orbit ρSL(2,C) of ρ—which for the irreducible representation coincides
with the fiber t−1(t(ρ)) of ρ—is homeomorphic to PSL(2,C) and thus has dimension
3. Since X0 has dimension 1 and the generic fiber of t|R0 : R0 → X0 has dimension
3, it follows that the dimension of R0 is 4. By a general property of algebraic maps
between complex varieties, it now follows that every fiber of t|R0 has dimension at
least dimR0 − dimX0 = 3.
Suppose now that there is a point χ ∈ X0 such that for every representation ρ ∈

t−1(χ), the image of ρ(π1(N)) in PSL(2,C) is cyclic. If for some given ρ ∈ t−1(χ)
the group ρ(π1(N)) is not itself cyclic, then ρ(π1(N)) must contain −I and the
quotient ρ(π1(N))/{±I} must be cyclic. It follows that in this case we must have
ρ(π1(N)) ∼= (Z/nZ)× (Z/2Z) for some n > 0.
Let S denote the set of all homomorphisms of π1(N) onto groups of the form

(Z/nZ) × (Z/εZ), where n ranges over the nonnegative integers and ε over {1, 2}.
Since π1(N) is finitely generated, S is countable. We can write

t−1(χ) ⊂
⋃

φ∈S

Aφ;

here Aφ ⊂ R(π1(N)) denotes the set of all homomorphisms of the form σ ◦ φ,
where σ ranges over all faithful representations of φ(π1(N)) = (Z/nZ)× (Z/εZ) in
SL(2,C). Such a representation σ must send the generator of Z/εZ to −I if ε = 2
(and to I if ε = 1). Hence, if we are given φ ∈ S and we fix an element γ ∈ π1(N)
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such that φ(γ) is the standard generator of (Z/nZ)× {0}, a representation ρ ∈ Aφ

is uniquely determined by the element ρ(γ). If ρ ∈ Aφ ∩ t−1(χ) then the trace of
ρ(γ) must be equal to χ(γ). Since the set of matrices with a given trace is a 2-
dimensional subvariety of SL(2,C), it follows that the set Aφ ∩ t−1(χ) ⊂ R(π1(N))
has dimension at most 2 for any φ ∈ S. Thus

t−1(χ) =
⋃

φ∈S

Aφ ∩ t−1(χ)

is a countable union of sets of dimension at most 2. Since we showed that the
complex algebraic set t−1(χ) has dimension 3, we now have a contradiction.

7.3. The character variety argument completed

Having finished the proof of Lemma 7.2.1, we return to the main menu. (Hi, my
name’s Peter, I’m your waiter.) Remember we are trying to find a representation
ρ : π1(M) → SL(2,C) satisfying (i) and (ii). In view of the lemma (applied to
N = intM), it’s enough to find a point χ ∈ X0 such that every ρ ∈ t−1(x) satisfies
(ii). The simple observation that gets us started in doing this is that if ω is any
primitive 2n-th root of unity in C, then any matrix with trace ω + ω−1 has order
2n in SL(2,C). This is because the matrix

(

ω 0
0 ω−1

)

has the right trace and the right order; and since n > 1 we have ω + ω−1 6= ±2, so
that any two matrices with trace ω + ω−1 and determinant 1 are conjugate.
The upshot of all this is that if Iµ takes the value ω+ω−1 at some point χ ∈ X0,

then any representation ρ ∈ t−1(χ) will satisfy (ii); by the lemma, some ρ ∈ t−1(χ)
will also satisfy (i). So ρ will give rise to a representation of |π1(M) : µn = 1| in
PSL(2,C) with a noncyclic image, and in particular it will follow that |π1(M) :
µn = 1| is noncyclic, and hence that π1(Σ̃) is nontrivial.
Now by Corollary 4.5.2, the function Iµ is nonconstant on X0. Furthermore, as

there is a canonical isomorphism C(X̂0) → C(X0), we can extend Iµ to a rational

function Î0 : X̂0 → C∪{∞}; since I0 is nonconstant, Î0 is surjective. Thus either Iµ
takes the value ω+ω−1 at some point of X0, or Îµ takes the value ω+ω−1 at some

point x ∈ X̂0−X0. In the latter case we can still show that π1(Σ̃) is nontrivial, but
by a quite different method.
The idea is, of course, to look at the tree T associated to the ideal point x. Since

Iµ takes a finite value at x, it follows from 5.4.2 that µ fixes a vertex of T . Since
µ generates the image of the fundamental group of |µ| ⊂ ∂M in π1(M), it follows
from Corollary 6.0.1 that there is an essential surface F ⊂ M , dual to the action
of π1(M) on T , such that F ∩ |µ| = ∅. (In applying the corollary we take k = 1
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and B1 = |µ|.) Thus either F has boundary components which are all parallel to
|µ|—i.e. its boundary slope is the meridional slope—or it is closed.
At this point it is easy to reduce the proof of Theorem 7.0.1 to the proof of the

following result, which can be proved by arguments due to Meeks-Yau, Gordon-
Litherland and Thurston.

Theorem 7.3.1. Let K be a prime tame knot in a closed, connected, orientable
3-manifold Σ, such that the exterior M of K is irreducible. Suppose that either M
contains a closed essential surface, or the meridian of K is a boundary slope in
M . Then for any n > 1, the n-fold cyclic branched covering space Σ̃ of Σ branched
over K contains a closed, connected essential surface. (Here the term “essential”
can be interpreted according to the definition I gave in Section 1, even though we
don’t know that M̃ is irreducible.)

The point is that what I have shown above is that if intM is hyperbolic, and
if we are in the case where the approach to the proof of Theorem 7.0.1 based
on the character variety fails, the hypothesis of Theorem 7.3.1 must hold. But
the conclusion of 7.3.1 certainly implies the conclusion of 7.0.1, since if F̃ and is
essential in M̃ , then according to the definition I gave in Section 1, F̃ has genus > 0,
and π1(Σ̃), which contains an isomorphic copy of π1(F ), is therefore nontrivial. If
intM is not hyperbolic we are still OK, because then by Thurston’s geometrization
theorem, eitherM contains an essential torus and we can still apply Theorem 7.3.1,
or M is Seifert fibered, in which case the proof of Theorem 7.0.1 is an elementary
exercise based on the classification of the Seifert fibered spaces.

7.4. The equivariant loop theorem

I will give only the briefest hint about the proof of Theorem 7.3.1, since the tech-
niques don’t have much to do with the subject of this chapter. If F ⊂ M is an
essential surface which is either closed or has meridional boundary slope, then the
pre-image of F in Σ̃, say F̃0, is a closed bicollared surface, possibly disconnected but
definitely invariant under the action of Z/nZ on the cyclic branched covering space
Σ̃. Using the primality of K and the irreducibility of M , it’s not hard to show that
F̃0 has a component of genus > 0. If this component is essential, we’re happy. If not,
the equivariant version of the Dehn-Lemma-Loop-Theorem due to Meeks and Yau
[38] allows one to do compressions on F0 in such a way that the resulting surface
F1 is still invariant under the Z/nZ action. The primality and irreducibility again
imply that F1 must have a component of positive genus, and we can repeat the
process until we see an essential component appearing. (By a finiteness argument
like the one I described in Subsection 2.4, the process cannot continue indefinitely.)
The big ingredient here is the equivariant Dehn-Loop Theorem. This was first

proved by Meeks and Yau using minimal surface techniques. Their proof, which
required a lot of hard analysis, was later reinterpreted in a purely combinatorial
setting by Edmonds [25], Dunwoody [24] and Jaco and Rubinstein [33].
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7.5. The root-of-unity phenomenon

In the argument given in Subsection 7.3, the only ideal points that had to be
considered were those where the function Iµ took finite values of the apparently
special form ω+ω−1, where ω is some root of unity. We saw that just by using the
finiteness of Iµ at the ideal point we got topological information—that M contains
a closed essential surface or that µ is a boundary slope—which was crucial for the
proof. It is natural to wonder whether the fact that one obtains a very special kind
of finite value, namely ω + ω−1, where ω is a root of unity, provides additional
restrictions on the situation.
From this point of view, the following result, proved in [11], is striking. Suppose we

have a compact orientable manifold M bounded by a torus, with intM hyperbolic,
and for simplicity suppose that M contains no closed essential surfaces. Suppose
that for some nontrivial element α of im(π1(∂M)→ π1(M)), the function Iγ takes
a finite value c ∈ C at some ideal point x of the curve given by Corollary 4.5.2.
Then c = ω + ω−1 for some root of unity ω.
As a hint about why this should be so, consider a dual surface F to an action on

a tree T associated to x. Since by hypothesis F cannot be closed, the arguments
of Subsection 7.3 show that α belongs to the conjugacy class in π1(M) defined by
the boundary slope of α. Now consider for a moment the special case in which ∂F
is connected. In this case, α is a product of commutators in im(π1(F ) → π1(M)),
which by 2.3.1(ii) is a subgroup of the stabilizer of an edge of T . By Property 5.5.3,
it follows that Iγ(x) = 2. This proves the assertion in this case, since we can take
ω = 1.
The proof in the general case is a refinement of this argument. If F is a dual

surface having the minimal number of boundary components among all surfaces
dual to the action, and if some component of F has n boundary components, then
ω can be shown to be an n-th root of unity.
Nathan Dunfield found a remarkable application of this result in his paper [23].

As I will barely have a chance to mention Dunfield’s results in Sections 9 and 10,
you will have to look at his paper to appreciate his application of the root-of-unity
phenomenon.

7.6. Extensions of the theorem

If you examine the proof of Theorem 7.0.1 that I have sketched here, you will see
that it really gives a proof of the following stronger result:

Theorem 7.6.1. Let K be a nontrivial tame knot in a closed, connected, orientable
3-manifold Σ. Let n be an integer > 1, and let Σ̃ denote the n-fold cyclic regular
branched covering of Σ, branched over K. Then either (i) π1(Σ̃) has a nontrivial
representation in PSL(2,C), or (ii) Σ̃ contains an essential surface. Condition (i)
can be replaced by the stronger condition that the “orbifold group” |π1(M) : µn = 1|,
whereM is the exterior of K and µ the meridian, has a representation in PSL(2,C)
with noncyclic image.
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This “PSL(2,C)-version” of the Smith Conjecture is the result which I mentioned
earlier as being stronger than the version of the Smith Conjecture proved in [41]. In
[17] you will find a proof of an essentially more general result than Theorem 7.6.1,
which applies to many noncyclic regular coverings; it is a “PSL(2,C)-version” of a
generalization of the Smith Conjecture due to Davis and Morgan [21]. Thurston’s
orbifold theorem, which you may read about in Bonahon’s chapter in this volume,
is in turn much stronger than Theorem 7.6.1. (It is also much harder to prove!)
In the cases where the “PSL(2,C)-versions” give nondegenerate representations
in PSL(2,C) of the fundamental group of the branched covering—or the “orb-
ifold group” which contains the group of the branched covering as a finite-index
subgroup—Thurston’s result actually gives a geometric structure on the manifold
whose existence implies the existence of such a representation. Furthermore, the
geometric structure is invariant under the group of symmetries of the branched
covering, and this accounts for the extension of the representation to the “orbifold
group”: see Bonahon’s chapter in this volume. Thurston’s theorem also applies in
more general situations than the other results.

8. Degrees and Norms

The material in this section first appeared in [15] and was worked out by Marc
Culler and myself.
In Subsection 5.6 and Sections 6 and 7, very simple properties of algebraic curves

were used to prove nontrivial theorems about 3-manifolds. In Subsection 5.6 and
Section 6 we used the simple fact that a nonconstant rational function f on a
projective algebraic curve C always has at least one pole. In Section 7 we used the
essentially equivalent fact that such a function f takes every value in C ∪ {∞} at
least once. These facts were applied to the functions Îγ on a projective completion

X̂0 of a curve X0 given by Corollary 4.5.2. (Recall that X̂0 is a curve in X(π1(N)),
where N is a hyperbolic 3-manifold with one cusp and γ is a nontrivial peripheral
element of π1(N)).)
These simple facts about a nonconstant rational function f on a projective al-

gebraic curve C can be regarded as consequences of the fact that f is a branched
covering map. (Coincidentally the same concept came up, one dimension higher,
in the last section.) This is an especially natural point of view in the case where
C is smooth, and I’ll discuss this case first. To see that f is a branched covering
map means that there is a finite set Ψ ⊂ C ∪ {∞} such that f |C − f−1(Ψ) :
C − f−1(Ψ) → (C ∪ {∞}) − Ψ is a covering map. By compactness, it suffices to
show that for each point x ∈ C there exist a neighborhood U of x in C, and home-
omorphic identifications of U and F (V ) with the unit disk in C, under which F |U
becomes the map z 7→ zn for some positive integer n = nx. This in turn is true
because f is nonconstant and is complex analytic in terms of local coordinates on
C and C ∪ {∞}. The integer nx is the degree of the zero of the function f − c
if c = f(x) ∈ C; if f has a pole at x then nx is the order of the pole. For any
y ∈ C ∪ {∞}, we have y ∈ Ψ if and only if nx > 1 for some x ∈ f−1(y).
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The fact that f is a branched covering map also implies that it has a well-defined
degree. The degree may be defined as the degree of the covering map f |C−f−1(Ψ) :
C − f−1(Ψ) → (C ∪ {∞} − Ψ. Thus for any y ∈ (C ∪ {∞}) − Ψ, the number of
points in f−1(y) is the degree of f . More generally, for any y ∈ C∪{∞}, the degree
of f is

∑

x∈f−1(y)

nx.

When y is 0 or ∞ this says that the degree counts the zeros or poles of f with
multiplicity, the multiplicity of a zero or pole being its order.
In the general case, where C is not necessarily smooth, we can get a picture of

the function f by resolving the singularities of C. In Section 5.3 I mentioned the
process of resolving a singularity of a projective curve. If we apply this process
successively at all the singular points of C we get a smooth curve, sometimes called
the normalization of C and denoted Cν , and a generically one-one map ν : Cν →
C. This curve does not depend on any choices made in constructing it, but is
canonically associated with C.
Now if f is a nonconstant rational function on C, and if we set f ν = ν ◦ f :

Cν → C ∪ {∞}, we can define the degree of f to be the degree of f ν . It is still the
case that for any point y lying outside a suitable finite subset of C∪ {∞}, we have
Card f−1(y) = deg f .
If f is a nonconstant rational function on an affine curve C, and if Ĉ is a projective

completion of C whose ideal points are smooth, then f extends to a rational function
f̂ on Ĉ, and we can define the degree f to be the degree of f̂ . The interpretation
as the generic number of points in a fiber still works.
The degree of f can also be defined from an algebraic point of view. The map f

gives an identification of the function field of C with an extension of the function
field of C, which is a field of rational functions in one indeterminate. The degree
of f is the degree of this extension. From this point of view there is no distinction
between the smooth case and the singular case, or between the affine case and the
projective case. For details, see [45].
It turns out that the study of the degree of the functions Îγ : X0 → C has real

applications to the study of 3-manifolds. This was first made clear by my joint work
with Culler that appeared as Chapter I of [15], and was developed further in some
remarkable papers by Boyer and Zhang [5], [6], [7]. I will begin the discussion of
this degree in the present section. In Sections 9 and 10 I will give some topological
applications. All the material in this section is extracted from [15].

8.1. Degrees of trace functions; defining the norm

Throughout this section I’ll be talking about a hyperbolic 3-manifold N with one
cusp; as in the earlier sections I’ll let M denote its compact core, I’ll choose a curve
X0 with the properties stated in Corollary 4.5.2, and I’ll let X̂0 denote a projective
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completion of X0 in which the ideal points are smooth. If we want to calculate the
degree of Îγ for a given element γ ∈ im(π1(∂M → π1(M)), it is in a sense simplest

to do so by counting the poles of Îγ , if only because these all occur at the finitely

many ideal points of X̂0. If x1, . . . , xn are the ideal points, we can write

deg Iγ =

n
∑

i=1

Pxi(Iγ), (8.1.1)

where Pxi(f) denotes the order of the pole of a function f at xi in the sense of
Subsection 5.5: thus

Pxi(Iγ) = max(0,−vi(Iγ)), (8.1.2)

where vi is the valuation of C(X0) associated to the ideal point xi.
In order to understand the nature of the right hand side of (8.1.2), we consider the

tautological representation. Let ∗ be a base point in ∂M , let R0 be a component of
R(Γ) that maps onto X0 (see Subsection 5.4) and let P : π1(M, ∗)→ SL(2,C(R0))
denote the tautological representation. This is relevant to understanding the terms
in the sum (8.1.2), because by (4.4.1) we have Iγ = traceP(γ). Since the sub-
group Λ = im(π1(∂M, ∗)→ π1(M, ∗)) is abelian, its image under P is conjugate in
SL(2,K), where K is some finite extension of C(R0), either to a group of diagonal

matrices or to a group of matrices of the form ±
(

1 λ
0 1

)

with λ ∈ K. Actually the

second alternative is impossible, because it would make Iγ = traceP(γ) equal to
2 ∈ C, a constant function, for every γ ∈ Λ, whereas we know from Corollary 4.5.2
that these functions Iγ are all nonconstant. So there is a homomorphism η from Λ
to K∗, the multiplicative group of the field K, such that

η(γ) =

(

η(γ) 0
0 η(γ)−1

)

for every γ ∈ Λ. So for each γ ∈ Λ we have

Iγ = η(γ) + η(γ)−1 (8.1.3)

.
To calculate vi(Iγ) from (8.1.3), we first use the extension theorem for valuations,

Theorem 5.4.1, to get a valuation wi of K such that wi|C(V ) = divi for some
positive integer di. Now it’s an elementary exercise, starting from the definition of
a valuation, to show that if w is a valuation of a field K and f is an element of K,
then

max(0,−w(f + f−1)) = |w(f)|.
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Putting this together with (8.1.2) and (8.1.3), we get

Pxi(Iγ) =
1

di
max(0,−wi(Iγ)) =

1

di
|wi(η(γ))|.

To simplify the notation a little, let’s set `i(γ) =
1
di
wi(η(γ)), so that `i : Λ→ Z

is a homomorphism of abelian groups for i = 1, . . . , n. Then we have

Pxi(Iγ) = |`i(γ)|, (8.1.4)

which, combined with (8.1.1), gives

deg Iγ =

n
∑

i=1

|`i(γ)|. (8.1.5)

So the integer-valued function on the rank-two free abelian group Λ that assigns to
each γ ∈ Λ the degree of Iγ is a function of a very special sort: it is a finite sum
of functions, each of which is the absolute value of a homomorphism Λ → Z. To
make this look more familiar, it is useful to think of Λ in a slightly different way.
Remember that the inclusion homomorphism π1(∂M, ∗) → π1(M) is injective, so
that Λ is isomorphic in a canonical way to π1(∂M, ∗); since π1(∂M, ∗) is abelian,
it is in turn canonically isomorphic to H1(∂M,Z). Finally, the latter group can be
identified with a lattice in the 2-dimensional vector space V = H1(∂M,R). So we
can identify Λ with this lattice by an isomorphism of groups. When we do this,
each of the homomorphisms `i : Λ → Z can be extended to a linear form V → R,
which I’ll still denote `i. Then, copying the formula (8.1.5), we can define a function
‖ · ‖ : V → [0,∞) ⊂ R by

‖u‖ =
n
∑

i=1

|`i(γ)|, (8.1.6)

so that ‖γ‖ = deg Iγ for every γ ∈ Λ. From the formula (8.1.6) we deduce immedi-
ately that

‖u1 + u2‖ 6 ‖u1‖+ ‖u2‖ (8.1.7)

for all u1, u2 ∈ V , and

‖ru‖ = |r|‖u‖ (8.1.8)

for all u ∈ V, r ∈ R.
If V is any vector space, a function ‖ · ‖ : V → R that satisfies (8.1.7) and (8.1.8)

is called a seminorm. It’s called a norm if it also satisfies

‖u‖ > 0 (8.1.9)
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for every nonzero vector u ∈ V . Before giving a little context for these definitions,
let me give the simple proof that the function ‖ · ‖ that I’ve defined on the 2-
dimensional vector space V = H1(∂M,R) satisfies (8.1.9) and is therefore actually
a norm.
The key point is that (8.1.9) is true if 0 6= u ∈ Λ, because then ‖u‖ = deg Iu,

and since Iu is nonconstant according to Corollary 4.5.2, it has a strictly positive
degree. Now we certainly can’t have ‖u‖ = 0 for every u ∈ V , since ‖u‖ > 0 when
u ∈ Λ; so in the expression (8.1.6) defining ‖ · ‖, the linear forms `i can’t all be
identically zero. After re-indexing we can assume that `1 is not identically zero. If
for some vector u0 6= 0 we have ‖u0‖ = 0, then in particular `1(u0) = 0, so u0
spans the kernel of `1. But since, by construction, `1 maps Λ to Z, the kernel of `1
is spanned by an element of Λ. So after multiplying u0 by a nonzero constant we
can assume u0 ∈ Λ, and as ‖u0‖ = 0 we now have a contradiction.
So far we have established the following properties of ‖ · ‖ : V → R :

Property 8.1.10. The function ‖ · ‖ : V → R is a norm;

and

Property 8.1.11. For each γ ∈ Λ we have ‖γ‖ = deg Iγ .

The norm on V = H1(∂M ;R) that I have described is essentially the same as
the one defined in Section 1 of [15]. Actually these two norms differ by a factor of
2; the reason for this will emerge.
I’ll sometimes denote this norm ‖ · ‖ on H1(∂M) by ‖ · ‖M . If you want to justify

this notation on strictly logical grounds, you will have to check that the norm
depends only on M , and not on the choice of the lift ρ0 of the discrete faithful
representation to SL(2,C) that was used in defining the norm. It seems to me that
this is easy enough to check, but if you don’t want to go to the trouble you can just
think of ‖ · ‖M as depending on a choice which is suppressed from the notation.

8.2. A word about norms

Before going on, I would like to give a brief discussion of the geometric meaning
of norms on a finite-dimensional vector spaces. The most familiar example of a
norm on Rn is of course the Euclidean norm ‖ · ‖E , defined by ‖(x1, . . . , xn)‖E =
√

x21 + . . .+ x2n. If ‖ · ‖ is a norm on a vector space V one can define a metric
d on V , generalizing the definition of the Euclidean metric, by setting d(u, v) =
‖u − v‖. What is interesting about this metric in the finite-dimensional case is
not the topology it defines, because it is an elementary fact, sometimes called the
“equivalence of norms theorem,” that any metric defined by a norm on Rn gives
rise to the same topology as the Euclidean metric.
(In a somewhat sharper form, the equivalence of norms theorem states that for

any norm ‖ · ‖ there are constants C,C ′ > 0 such that ‖u‖ 6 C‖u‖E and ‖u‖E 6
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C‖u‖ for every u ∈ Rn. To prove the existence of C one writes u = (x1, . . . , xn) in
the standard basis as

∑n
i=1 xiei, and uses (8.1.7) and (8.1.8) to conclude that

‖u‖ 6

n
∑

i=1

|xi|‖ei‖ 6 ‖u‖E
n
∑

i=1

‖ei‖,

so that we can take C to be
∑n

i=1 ‖ei‖. The existence of C implies in particular
that ‖ · ‖ is continuous in the usual topology of Rn. Since, by (8.1.9), ‖ · ‖ is
strictly positive on the Euclidean unit sphere Sn−1, it now follows that ‖ · ‖ takes
a minimum value c > 0 on Sn−1. The proof of the equivalence of norms theorem is
now completed by setting C ′ = 1

c
and invoking (8.1.8) again.)

What is interesting about a norm (or the associated metric) on a finite-
dimensional vector space is the geometric structure to which it gives rise. Specifi-
cally, if ‖ · ‖ is a norm on a vector space V , then the ball B of radius 1 about the
origin, consisting of all u ∈ V such that ‖u‖ 6 1, is a convex, compact subset of
V having 0 as an interior point. (Convexity is immediate from properties (8.1.7)
and (8.1.8). In proving that B is compact and that 0 ∈ intB, we may assume that
V = Rn; in this case the assertions follow from the equivalence of norms theorem.)
It follows from (8.1.9) that B is also balanced in the sense that −u ∈ B whenever
u ∈ B. Conversely, if B ⊂ V is a balanced, convex, compact set with 0 ∈ intB, it is
clear that for each u ∈ Rn there is a nonnegative real number r ∈ [0,∞) such that
u = ru0 for some u0 ∈ B. By compactness there is in fact a least such r, say r = ru.
It is a straightforward exercise to check that the function ‖ · ‖ : V → [0,∞) defined
by ‖u‖ = ru is a norm, and that this construction is precisely the inverse of the con-
struction that associates to each norm its unit ball. So when V is finite-dimensional
we have a canonical bijection between norms on V and balanced, convex, compact
sets whose interiors contain the origin. A norm is an appealing algebraic way of
encoding the structure of a certain kind of geometric object.
Sometimes I’ll find it convenient to look at the ball

Br = {u ∈ V : ‖u‖ 6 r}

of radius r associated to a norm ‖ · ‖, where r is a positive number not necessarily
equal to 1. The difference between Br and B1 is not a big deal, because (8.1.8) says
that Br = rB1 = {ru : u ∈ B1}. We can also think of Br as the unit ball for r‖ · ‖,
which according to the definition is itself a norm on V .
Another useful fact, which is also easy to prove by the elementary methods I’ve

been talking about, is that the unit sphere of a norm ‖ · ‖, i. e. the set of all u ∈ V
with ‖u‖ = 1, is precisely the boundary of its unit ball.

8.3. Further properties of the norm

Now I’ll discuss some more properties of the norm ‖ · ‖ = ‖ · ‖M on V = H1(∂M),
where M is the compact core of a one-cusped orientable finite-volume hyperbolic
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3-manifold, and the associated balanced convex set B ⊂ V . The first thing to notice
is that because the expression (8.1.6) that was used to define ‖ · ‖ is a finite sum of
absolute values of linear forms, the unit sphere ∂B is a polygon, i.e. a finite union
of line segments. This may seem almost obvious, but giving a careful proof of it
leads to important information. To begin with, we note that of the linear forms `xi
that appear in the expression (8.1.6), it may happen that some are identically zero.
After reindexing the `i, if need be, we may assume that there is a natural number
k 6 n such that

‖u‖ =
k
∑

i=1

|`i(γ)| (8.3.1)

for every u ∈ V , and `i is not identically zero for any i 6 k. (Actually we must have
k > 2, as otherwise ‖ · ‖ wouldn’t satisfy (8.1.9).) The kernel of `i, for each i 6 n,
is a line Li through the origin in the plane V . Each Li divides the plane into two
half-planes, H+

i and H−
i , such that `i is > 0 on H+

i and 6 0 on H−
i .

The lines L1, . . . , Lk divide the plane into 2k sectors. Let Σ denote any one of
these sectors. For each i 6 k, the sector Σ is contained in either H+

i or H−
i . Hence

the i-th term ‖`i‖ in the sum (8.3.1) is identically equal on Σ either to the linear
form `i or to the linear form −`i. It follows that ‖·‖|Σ coincides with the restriction
to Σ of a function λΣ which is a finite sum of linear forms, and is therefore itself a
linear form. The intersection of Σ with the unit ball ∂B of ‖ · ‖ coincides with the
intersection of Σ with the line on which λΣ is equal to 1. This is a line segment.
It follows that ∂B is a polygon, as it is the union of the 2k line segments ∂B ∩ Σ,
where Σ ranges over the sectors.
However, this argument shows more. Since the line segment ∂B ∩ Σ is the inter-

section of Σ with a line not passing through 0, the endpoints of this segment must
lie on the rays that make up the frontier of Σ. Each of these rays is contained in one
of the lines Li. So every vertex of ∂B lies on one of the Li. What’s neat is that the
lines Li have direct topological meaning in terms of the 3-manifold M . Since the
definition of the `i involved ideal points of the curve X̂0, you will probably guess
that the meaning of the Li has something to do with essential surfaces; and you
will not be wrong.
As I mentioned in Subsection 5.6, the term “slope” is used to indicate an un-

oriented isotopy class of simple closed curves in ∂M . These are in bijective corre-
spondence with indivisible elements of π1(∂M) modulo sign. In this section we are
identifying π1(∂M) with the lattice Λ ⊂ V . I’ll talk about the “slope of an indivis-
ible element of Λ,” so that there are just two inidivisible elements with any given
slope and they differ by sign. In 5.6 I also pointed out that there is a “boundary
slope” associated with each bounded essential surface F ⊂ M . I’ll call an element
of Λ a boundary class if its slope is a boundary slope. Two indivisible elements of Λ
which differ by sign span the same 1-dimensional subspace of V . So corresponding
to each “slope” there is a line through the origin in the plane V . I’ll call a line
through the origin a boundary line if it corresponds to a boundary slope. According
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to the theorem of Hatcher’s that I talked about in Subsection 5.6, only finitely
many lines in V occur as boundary lines of bounded essential surfaces in M .

Proposition 8.3.2. Each of the lines L1, . . . , Lk is the boundary line of some
bounded essential surface inM . So each vertex of the polygon ∂B lies on a boundary
line.

To prove this, we recall that for each i 6 k the linear form `i restricts to a
nontrivial homomorphism from Λ to Z, so that ker `i is a direct factor of Λ and
is therefore spanned by some indivisible element γi, which is the homology class
determined up to sign by some simple closed curve C ⊂ ∂M . What we have to prove
is that there is a bounded essential surface F ⊂ M whose boundary components
are all isotopic in ∂M to C.
Remember that Li is the kernel of the linear form `i, which is defined in terms

of an ideal point xi of X0. According to Section 5, there is an action of π1(M) on
a tree Ti associated to xi. Since γi ∈ ker `i, we find from (8.1.4) that

Pxi(Iγi ) = |`i(γi)| = 0.

In other words, Iγi does not have a pole at xi. It therefore follows from Property
5.4.2 that γi fixes a vertex of Ti.
Now we argue as in Section 7. Let |γi| denote a simple closed curve realizing the

slope of γi. Since γi generates the image of the fundamental group of |γi| ⊂ ∂M
in π1(M), it follows from Corollary 6.0.1 that there is an essential surface F ⊂M ,
dual to the action of M on T , such that F ∩ |γi| = ∅. Thus either F has boundary
components which are all parallel to |γi|—i. e. its boundary class is γi—or it is
closed.
Of course the conclusion that γi is a boundary class is exactly what we want,

because it says that Li is a boundary line. So we need to rule out the possibility
that F is closed. If we assume F is closed, then ∂M ⊂ M − F , so by 2.3.1(i) the
subgroup Λ of π1(M) fixes a vertex of Ti. This assertion makes sense even though
Λ, as a subgroup of π1(M), is defined only up to conjugation: if a given subgroup
fixes some vertex of T , then any conjugate subgroup also fixes some—possibly
different—vertex.) By Property 5.4.2 and (8.1.4) it then follows that

|`i(γ)| = Pxi(Iγ) = 0

for every γ ∈ Λ, i.e. that `i is identically zero. But this is false since i 6 k. The
proof of Proposition 8.3.2 is now complete.
Everything I have said up to now about the norm has involved calculating the

degrees of the functions Iγ in terms of poles. The degree of a function can also
be calculated in terms of its zeros; in the next section I’ll show how to get new
information about the norm by studying the zeros of certain functions closely related
to the Iγ , and comparing this with the information we already have.
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9. Applications to Dehn surgery

9.1. The Cyclic Surgery Theorem

The first application of the norm ‖ · ‖M that I talked about in the last section
was given in [15], where it was used to prove the Cyclic Surgery Theorem. I will
refer you to Boyer’s chapter in this volume for the motivation, but I will review
the statement of the Cyclic Surgery Theorem here. If M is a compact, orientable
3-manifold whose boundary is a torus, and α is a slope (i. e. an isotopy class of
simple closed curves on ∂M), I will denote by M(α) the manifold obtained from
M by the Dehn filling with filling slope α. By definition, this means that M(α) is
obtained from the disjoint unionM q (S1×D2) by gluing the boundaries of M and
S1 ×D2 via some homeomorphism which maps a simple closed curve representing
the slope of α to a curve {∗} × ∂D2 for some point ∗ ∈ S1.

Theorem 9.1.1. (Culler, Gordon, Luecke, Shalen [15]) Let M be a com-
pact, orientable 3-manifold whose boundary is a torus. Suppose that M is irre-
ducible but is not a Seifert fibered space. Let α and β be indivisible elements of
Λ = im(π1(∂M)→ π1(M) such that π1(M(α)) and π1(M(β)) are cyclic. Then the
geometric intersection number ∆(α, β) is at most one.

9.2. The “no-closed-surface” case

The proof of the Cyclic Surgery Theorem turns out to be a lot simpler in the special
case in which we assume that M contains no closed essential surfaces. I will spend
most of this section discussing the proof in this case first. In Subsection 9.5 I’ll
come back and say a little about the refinements that one has to make to handle
the general case.
So for the rest of this subsection I will be assuming that M contains no closed

essential surfaces.
In particularM contains no essential tori; and since the hypothesis of the theorem

rules out the Seifert fibered case, it follows from Thurston’s geometrization theorem
that the interior of M—call it N—has a hyperbolic structure of finite volume.
Since ∂M is one torus, N has one cusp. Let’s fix a curve X0 with the properties
stated in Corollary 4.5.2. As in Section 8 I’ll identify Λ = im(π1(∂M) → π1(M)
with H1(∂M ;Z), which I’ll think of as a lattice in the 2-dimensional vector space
V = H1(∂M ;R). As in Section 8 we have a norm ‖ · ‖ = ‖ · ‖M defined on V .
A key step in the proof of the cyclic surgery theorem in this case turns out to be
extracting information about the norm of an element α of Λ from the condition
that π1(M(α)) is cyclic.
The following simple but arresting lemma, which was discovered by Marc Culler,

gives the first indication that the character variety may be useful in studying classes
α ∈ Λ for which M(α) is cyclic. It was the starting point for Culler’s and my work
on this subject.
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Lemma 9.2.1. Let α be an indivisible element of Λ such that π1(M(α)) is cyclic.
Let χ be a point of X0 such that Iα(χ) = ±2. Then Iγ(χ) = ±2 for every γ ∈ Λ.

Proof. By Lemma 7.2.1, applied to N = intM , there is a representation ρ ∈ t−1(χ)
such that the image of ρ(π1(M)) under the natural homomorphism p : SL(2,C)→
PSL(2,C) is noncyclic. If ρ(α) = ±I , then p ◦ ρ : π1(M) → PSL(2,C) maps α to
the identity element of PSL(2,C) and hence factors through a homomorphism of
|π1(M) : α = 1| onto the noncyclic group p(ρ(π1(M))). This is impossible, since
|π1(M) : α = 1| ∼= π1(M(α)) is noncyclic. So ρ(α) 6= ±I . On the o ther hand,
we have trace ρ(α) = Iα(χ) = ±2. So after composing ρ with a suitable inner

automorphism of SL(2,C) we can assume that ρ(α) = ±
(

1 1
0 1

)

. (Of course a

conjugation doesn’t change the character of ρ.)

Now for any γ ∈ Λ the matrix ρ(γ) commutes with ρ(α) = ±
(

1 1
0 1

)

, since Λ is

abelian. So ρ(γ) must have the form ±
(

1 λ
0 1

)

. In particular Iγ(χ) = trace ρ(γ) =

±2. This proves the lemma. Is that cool, or what?

In thinking about the consequences of Lemma 9.2.1, it’s nice to think in terms
of the functions fγ = I2γ − 4 : X0 → C which are defined for all γ ∈ Λ. It’s very
easy to see that squaring a function doubles its degree, and that adding a constant
doesn’t change the degree, so in terms of the norm ‖ · ‖M defined in Section 8 we
have

deg fγ = 2deg Iγ = 2‖γ‖ (9.2.2)

for every γ ∈ Λ. Now Lemma 9.2.1 says that if π1(M(α)) is cyclic, then at every
point of X0 where fα takes the value 0, all the functions fγ for γ ∈ Λ take the value
0.
Recall from Corollary 4.5.2 that if γ is any nontrivial element of Λ then Iγ is

nonconstant on X0; hence so is fγ . If we allow ourselves to think in very fuzzy
terms for a moment, we can think of the degree of fγ as counting the points where
fγ takes the value 0, and Lemma 9.2.1 says that fγ , for an arbitrary γ ∈ Λ, takes
the value 0 wherever fα does; this suggests the

Fuzzy Idea 9.2.3. Maybe we should expect to have deg fα 6 deg fγ, and hence
‖α‖ 6 ‖γ‖, for every γ ∈ Λ, if π1(M(α)) is cyclic. In other words, when π1(M(α))
is cyclic, maybe the the norm of α should be minimal among all norms of nontrivial
elements of the lattice Λ.

However, we have not come even close to proving this. This is because calculating
the degree of a function in terms of its zeros makes sense only when the domain is
a smooth projective curve, and even in this case the orders of the zeros must be
taken into account. The curve X0 is not projective, it need not be smooth, and we
have ignored orders.
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Of these three issues, the last two turn out to be essentially technical. First of
all, the proof of Lemma 9.2.1 can be souped up, by an argument involving the
tautological representation and valuations of function fields, to show that if χ is a
smooth point of X0 where fα has a zero of a certain order, then fγ has a zero of at
least the same order. To put this in symbols, let’s write Zx(f) to mean the order of
zero of a function f at a smooth point of a curve, and to mean 0 if f does not have
a zero at x: thus Zx(f) = max(0, vx(f)), where vx is the valuation of the function
field associated to the smooth point x. Then the souped-up version of Lemma 9.2.1
says that if α and γ are elements of Λ with α indivisible and π1(M(α)) cyclic, then
Zχ(fα) 6 Zχ(fγ) for every smooth point χ of X0.
There’s also a version of this that works for nonsmooth points of X0. Let’s set

Xν
0 = ν−1(X0) ⊂ X̂ν

0 . The following result is the ultimate version of Lemma 9.2.1.

Theorem 9.2.4. Let α be an indivisible element of Λ such that π1(M(α)) is cyclic.
Then for every point x of Xν

0 we have

Zx(f
ν
α) 6 Zx(f

ν
γ ).

Again, the most important thing to say about the proof of this theorem is that
it’s a essentially an elaborate technical refinement of the simple proof of Lemma
9.2.1. As amusing as the algebra involved is, I will fight back the impulse to give
any of the argument, but I will make one comment to help get you into the right
mood for reading the details in [15]. Although on the face of it Xν

0 would appear
to be only a subset of a projective curve, it turns out to have the structure of an
affine curve, the affine normalization of X0. From the algebraic point of view, the
coordinate ring C[Xν ] is the integral closure of C[X ].
Theorem 9.2.4 deals with two of the issues I mentioned above in connection the

proposed “proof” of the Fuzzy Idea 9.2.3. The remaining issue concerns ideal points,
and is different in nature. In fact, it should be clear by now that anything related
to ideal points of X0 has something to do with the topology of M , specifically with
the essential surfaces in M .
The natural context for all this is provided by the normalized projective comple-

tion X̂ν
0 . According to the discussion in the introduction to Section 8, we have

deg f = deg f̂ν =
∑

x∈X̂ν
0

Zx(f̂
ν). (9.2.5)

Of course this last expression is really a finite sum since Zx(f̂
ν) = 0 for all but

finitely many points x ∈ X̂ν
0 .

Now let α be an indivisible element of Λ such that π1(M(α)) is cyclic. According
to (9.2.5), the inequality proposed in 9.2.3 will hold if Zx(f

ν
α) 6 Zx(f

ν
γ ) for every

x ∈ X̂ν
0 ; and according to Theorem 9.2.4, this is true whenever x ∈ Xν

0 .
Now suppose that x ∈ X̂ν

0 −Xν
0 . We would like to know that Zx(f

ν
α) 6 Zx(f

ν
γ )

in this case. This is not even an issue unless Zx(f
ν
α) 6= 0, so that Iα(ν(x)) = ±2.

Suppose this happens, and let’s look at the tree T associated to the ideal point
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ν(x) of X̂0. Since Iα takes the finite value 2 at x it follows from 5 that α fixes a
vertex of T . Let C be a simple closed curve in ∂M realizing the slope of α. Since
α generates the image of the fundamental group of C ⊂ ∂M in π1(M), it follows
from Corollary 6.0.1 that there is an essential surface F ⊂M , dual to the action of
π1(M) on T , such that F ∩C = ∅. Thus either F has boundary components which
are all parallel to C—i. e. its boundary slope is the slope of α—or it is closed.
We are excluding from the discussion the case where M contains closed essential

surfaces, so we need only worry about the case where F is bounded and has α
as a boundary class. In this case, where α is a boundary class of M , we need to
resort to some serious topology. The relevant argument here is due to Gordon. If
F is any essential surface in M having α as a boundary class, we can use F to
construct a closed bicollared surface F (α) in the manifold M(α). After all, M(α)
is constructed from M by attaching a solid torus K in which α is a meridian; since
the components of ∂F are meridians in K, we can attach disjoint disks in K to the
boundary components of F , and this gives the surface F (α). Let me suspend the
conventions of this subsection for a moment so that I can state the following result
with all relevant hypotheses so as to make its self-contained nature clear.

Theorem 9.2.6 (Gordon). Let M 3 be compact, connected, orientable and irre-
ducible, with ∂M a torus. Suppose that M contains no closed essential surfaces.
Let α be a boundary class for M . Among all essential surfaces in M having α as a
boundary class, α, let us choose one, say F0, whose number of boundary components
is minimal. Then either (i) F has strictly positive genus and F (α) is an essential
surface in M(α), or (ii) F has genus 0, so that F (α) is a 2-sphere; and either F
is a fiber in a fibration of M over S1, or F (α) decomposes M(α) as the connected
sum of two nontrivial lens spaces.

A lens space is nontrivial if it’s not a 3-sphere. To say that F (α) decomposes
M(α) as the connected sum of two nontrivial lens spaces means that the closure of
each component of M(α)−F (α) is homeomorphic to the manifold obtained from a
nontrivial lens space by removing the interior of a 3-ball with bicollared boundary.
Such a ball is unique up to ambient isotopy in M(α); see [32].
Note that if (i) holds then π1(M(α)) contains an isomorphic copy of π1(F (α)),

where F (α) is a closed, orientable surface of positive genus; and that if (ii) holds,
π1(M(α)) is a free product of two nontrivial cyclic groups. So:

Corollary 9.2.7. Under the hypotheses of Theorem 9.2.6, π1(M(α)) is not cyclic.

Resuming the conventions of this subsection, we can now go back to considering
a class α ∈ Λ such that π1(M(α)) is cyclic. If Iα takes a finite value at some ideal
point ofX0 then we have seen that, under the assumption thatM contains no closed
essential surfaces, α must be a boundary class; and this contradicts Corollary 9.2.7.
So Iα must have a pole at every ideal point, which means that the inequality of
Theorem 9.2.4 holds even when x ∈ X̂ν

0 −Xν
0 , since in that case the left hand side

is zero. So we can sum the inequality over all x ∈ X̂ν
0 , and according to (9.2.5) we
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get

deg fα 6 deg fγ

whenever α and γ are elements of Λ such that α is indivisible and π1(M(α)) is
cyclic. Thus the “fuzzy idea” 9.2.3 turns out to be entirely justified in the case
where M contains no closed essential surfaces, and we may state it as a

Theorem 9.2.8. If π1(M(α)) is cyclic then ‖α‖ is minimal among all norms of
nonzero elements of Λ. (Let me emphasize that this theorem depends on the blanket
assumption made in this section that M contains no closed essential surfaces.)

In order to make the transition between Theorem 9.2.8 and the conclusion of
the Cyclic Surgery Theorem, we set m = min06=γ∈Λ ‖γ‖, so that m is a natural
number and any α ∈ Λ with π1(M(α)) cyclic has norm m. The argument is based
on considering the ball Bm of radius m for the norm ‖ · ‖ = ‖ · ‖M . From what I
said in Subsections 8.2 and 8.3 it follows that the unit ball B of ‖ · ‖ is a compact,
convex, balanced set bounded by a polygon, and hence so is Bm = mB. We can
paraphrase Theorem 9.2.8 by saying that intBm contains no points of Λ except 0.
It happens that number-theorists have long been interested in properties of con-

vex, balanced polygons whose interiors contain no points of a give lattice. In the
next subsection I will state and prove a theorem on this subject, which is one of the
simplest results in Minkowski’s “geometry of numbers,” and illustrate how powerful
it is in number theory. Then, in Subsection 9.4, I will show how to use Minkowski’s
theorem to finish the proof of the Cyclic Surgery Theorem in the case where there
is no closed essential surface.

9.3. A little geometry of numbers: a theorem of Minkowski’s

Suppose that V is an n-dimensional vector space. The volume element (Lebesgue
measure) on V , which we can think of as a function that assigns a nonnegative real
number to every bounded, measurable set in V , is well-defined up to multiplication
by a positive constant. A convex set is always measurable, so it has a well-defined
volume once we have fixed a volume element. If Λ is a lattice in V , i.e. a discrete,
cocompact subgroup of the additive group of V , then the quotient V/Λ, which is
topologically an n-torus, inherits a volume element when we fix a volume element
on V ; the volume of the whole torus V/Λ is then called the covolume of Λ. Of course,
multiplying the volume element by a positive constant has the effect of multiplying
the covolume by the same constant. Hence the conclusion of the following theorem
is independent of the choice of a volume element.

Theorem 9.3.1 (Minkowski). Let Λ be a lattice in an n-dimensional vector space
V . Let B be a compact, convex, balanced subset of V such that intB contains no
point of Λ except 0. Then

volB 6 2n covolΛ.
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Proof. We may take the volume element to be normalized so that covolΛ = 1. It
follows from convexity that intB has the same volume as B. The volume element on
V induces a volume element on V/2Λ as well as on V/Λ. Since V/Λ has volume 1, the
volume of V/2Λ is 2n. So it’s enough to show that the natural map p : V → V/2Λ
maps intB injectively.
Let x and y be points of B with p(x) = p(y); then x− y ∈ 2Λ, i.e. x−y2 ∈ Λ. But

since intB is convex and balanced, and contains x and y, we have x−y
2 ∈ B. The

hypothesis concerning B now implies that x−y
2 = 0, so x = y. This is all there is to

the proof of the theorem.
(This is logically equivalent to the proof you will find in books on the subject,

but the use of the torus V/2Λ makes it more intuitive. John Morgan pointed out
this version of the argument to me several years ago.)

I will illustrate the use of Minkowski’s theorem in number theory by showing
how it can be used to prove Lagrange’s famous theorem that every positive integer
is the sum of four squares. I’ve adapted this from [48]. One way of paraphrasing
the statement that a given n is a sum a2 + b2 + c2 + d2 of four squares of integers
is to say that n is the squared absolute value |h|2 of a (Hamiltonian) quaternion
h = a + bi + cj + dk with integer “coordinates.” Since we have |hk| = |h||k| for
any quaternions h and k, the property of being a sum of four squares is preserved
under the formation of products; so it’s enough to prove that every prime p is the
sum of four squares. The case p = 2 is clear, so let’s take p odd.
Having made this reduction, we now forget about quaternions, and reinterpret

our goal more näıvely as showing that p is the square of the Euclidean norm ‖v‖ of
a point v = (a, b, c, d) in the standard lattice Z4 ⊂ R4. The approach is to construct
a subgroup Λ of Z4 which has index p2, and is therefore a lattice of covolume p2

in terms of the Euclidean volume element, and such that for every v ∈ Λ we have
‖v‖2 ≡ 0 (mod p). If we have such a Λ, and if B denotes the ball of radius

√
2p

about the origin, then by elementary calculus we find that

volB = 2π2p2 > 16p2 = 24 covolΛ,

so that by Minkowski’s theorem, there is a nonzero element v of Λ ∩ intB. Then
0 < ‖v‖2 < 2p, but the property we’re assuming for Λ says that ‖v‖2 is divisible by
p; so we must have ‖v‖2 = p, which is what we need.
The best way to find a Λ with the right properties is to think of R4 in yet a

third way, as the complex vector space C2, in which case the lattice Z4 becomes
O2, where O = Z[i] is the ring of Gaussian integers, consisting of all complex
numbers a+ ib with a, b ∈ Z. Given any s ∈ O, we can define a homomorphism of
additive groups H : O2 → O by Hs(z, w) = z − sw. Then Λ = Λs = H−1

s (pO) is a
subgroup of index p2 in O2, and for any (z, w) ∈ Λ we have |z|2 ≡ |s|2|w|2 (mod p).
Hence if we can choose s ∈ O so that |s|2 ≡ −1 (mod p), it will follow that
‖(z, w)‖2 = |z|2 + |w|2 ≡ 0(mod p) for any (z, w) ∈ Λ, as required.
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But the existence of such an s is easy. The homomorphism x → x2 from the
multiplicative group (Z/pZ)∗ to itself has kernel {±1} and hence has image of
order (p− 1)/2, so the set S of squares in Z/pZ has cardinality (p+1)/2. It follows
that the set T ⊂ Z/pZ consisting of elements of the form 1− x2 also has (p+ 1)/2
elements, and the paucity of pigeon holes forces S and T to intersect. So there exist
integers u and v such that −1 − u2 ≡ v2 (mod p), and s = u + iv then satisfies
|s|2 ≡ −1 (mod p).

9.4. The “no-closed-surface” case, concluded

To complete the proof of the Cyclic Surgery Theorem in the case whereM contains
no closed essential surfaces, we apply Minkowski’s theorem to the set Bm in our
2-dimensional vector space V = H1(M,R). Let’s normalize the volume element on
V in such a way that our lattice Λ = H1(M,Z) has co-area 1. The relevance of the
theorem comes from the observation that, under this normalization, if γ and γ ′ are
two elements of Λ, then the area of the parallelogram with vertices ±γ,±γ ′ is just
2∆(γ, γ′).
Suppose that α and β are indivisible elements of Λ with π1(M(α)) and π1(M(β))

cyclic. By Theorem 9.2.8 we have ‖α‖ = ‖β‖ = m, so that α, β ∈ ∂Bm. The
parallelogram P with vertices ±α,±β is therefore contained in Bm, so that

∆(α, β) =
1

2
areaP 6

1

2
areaB 6 2, (9.4.1)

where in the last step we have used Theorem 9.3.1 to conclude that areaB 6 4.
To complete the proof of the Cyclic Surgery Theorem in this case we need only

rule out the possibility that all the inequalities in (9.4.1) are equalities. If this hap-
pens, then in particular α and β are vertices of Bm. Now according to Proposition
8.3.2, each of the vertices of B, and hence of Bm, lies on a boundary line defined by
some bounded essential surface inM . So in this situation we conclude that α and β
are boundary classes. However, in the situation of this section, knowing that even
one of the classes α and β is a boundary class is enough to give a contradiction.
This follows from Corollary 9.2.7, since π1(M(α)) and π1(M(β)) have both been
assumed cyclic, and M contains no essential surfaces.
And that is how the Cyclic Surgery Theorem is proved in the special case I’ve

been talking about.

9.5. The case where there are closed surfaces

In the general case, the proof of the Cyclic Surgery Theorem breaks up into three
cases. For two of the cases–the case in which either α or β is a boundary slope,
and the case in which intM is not hyperbolic—I will refer you to Boyer’s chapter
in this volume. In the case that neither α nor β is a boundary slope, the proof is a
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refinement of the proof that I gave in the special case where M contains no closed
essential surfaces. The main step is to prove the following result, which is mostly a
refinement of the proof of Theorem 9.2.8.

Theorem 9.5.1. LetM be a manifold with a single torus boundary such that intM
has a hyperbolic structure of finite volume, and let ‖·‖ be the norm on Λ = H1(∂M)
defined in Section 8. Let α be an indivisible element of Λ which is not a boundary
class, and suppose that π1(M(α)) is cyclic. Then ‖α‖ is minimal among all norms
of nonzero elements of Λ.

The basic strategy used in the proof is the same as in the proof of Theorem 9.2.8:
one shows that for any point x of the curve X̂ν where f(α) has a zero, fγ has a zero

of at least the same order for each nontrivial element γ of Λ. When x ∈ Xν ⊂ X̂ν

this is proved in exactly the same way as above. If x projects to an ideal point of
X̂, the above arguments give an action of π1(M) on a tree T under which α fixes
a vertex. As before, we can associate an essential surface F with this action, and
we can take it to be disjoint from a simple closed curve realizing the slope of α. If
F had a nonempty boundary, its boundary slope would be α, and we would have
a contradiction. The difficulty is that F may now be closed. Section I.6 of [15] is
devoted to the proof that in this situation, if Zx(fα) > Zx(fγ), then we can replace
a given closed surface F dual to the action of π1(M) on T by a new dual surface
which has nonempty boundary, and has α as a boundary class. The starting point
is the observation that since π1(M) is cyclic, there must be a compressing disk for
F in M . See [15] for more.

9.6. Other applications to surgery

In [7], Boyer and Zhang proved the following analogue of the Cyclic Surgery The-
orem:

Finite Surgery Theorem (Boyer-Zhang). Let M be a compact, orientable
3-manifold whose boundary is a torus. Suppose (for simplicity) that intM has a
hyperbolic metric of finite volume. Let α and β be indivisible elements of Λ such
that π1(M(α)) and π1(M(β)) are finite. Then the geometric intersection number
∆(α, β) is at most three. Furthermore, up to sign there are at most five indivisible
elements α of Λ such that π1(M(α)) is finite.

The bounds of three and five are both sharp. For more discussion of the context
of the statement, see Boyer’s chapter in this volume.
A key step in the proof of the Finite Surgery Theorem is the following surprising

analogue of Theorem 9.5.1, which was proved in [5]; I will have to refer you to [5]
for an account of the very remarkable new ideas that enter into the proof.

Theorem 9.6.1. LetM be a manifold with a single torus boundary such that intM
has a hyperbolic structure of finite volume, and let ‖·‖ be the norm on Λ = H1(∂M)
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defined in Section 8. Let α be an indivisible element of Λ which is not a boundary
class, and suppose that π1(M(α)) is finite. Then

‖α‖ 6 max{2m,m+ 8},

where

m = min
06=γ∈Λ

‖γ‖.

Using Theorem 9.6.1 and the kinds of arguments that I’ve discussed earlier in this
chapter, Boyer and Zhang were able to show that the bound of 3 on the geometric
intersection number asserted in the Finite Surgery Theorem holds unless the unit
ball for the norm ‖ · ‖ = ‖ · ‖M is of a special type. The same argument works if
one replaces the usual norm ‖ · ‖M by a slightly different norm ‖ · ‖′M ; the definition
of ‖ · ‖′M is just like that of ‖ · ‖M , except that in place of the usual curve X0 one
uses the possibly reducible curve X1 obtained by saturating X0 under the action
of the Galois group of C over Q. The completion of the proof of the Finite Surgery
Theorem given in [7] essentially involves showing that polygons of these exceptional
types do not arise as unit balls of norms ‖ · ‖′M for 3-manifolds M whose interiors
have 1-cusped hyperbolic structures. In order to do this, Boyer and Zhang needed
to interpret the polygons arising from 3-manifolds from a new point of view, based
on the theory of the so-called A-polynomial, which was developed in [11] and [13],
among other papers.
If M is a compact 3-manifold with torus boundary, there is a natural map r from

the character variety X(π1(M)) to X(π1(∂M)): the image under r of a character of
π1(M) is its precomposition with the inclusion homomorphism π1(∂M)→ π1(M).
Basically the A-polynomial—or the slight variant of it used in [5], which I’ll call the
A′-polynomial—gives information about the image r(X1) in the case where intM
has a 1-cusped hyperbolic structure and X1 is the Galois-saturated curve I’ve just
described. It turns out that there is a curve Y ⊂ C2 which admits a canonical
degree-two rational map to r(X1). The A

′-polynomial of M is a canonically defined
two-variable integer polynomial whose locus of zeros is Y . (The A-polynomial is
defined similarly except that in place of X1 one uses a curve X2 that’s possibly still
bigger than X1 in the sense that it may have still more irreducible components.)
Boyer and Zhang re-interpreted the unit ball of the norm ‖ · ‖M as a “geomet-

ric dual” to the so-called Newton polygon of the A′-polynomial, which is another
convex plane polygon obtained from the curve A′ by an algebro-geometric con-
struction. Then they adapted to the A′-polynomial properties of the A-polynomial
established in [11], and the more surprising properties established by Cooper and
Long in [13], to deduce restrictions on the unit ball of ‖ · ‖M which rule out the
exceptional polygons that arise in the proof of the Finite Surgery Theorem. For a
survey of the relevant material on the A-polynomial, see Cooper and Long’s paper
[14].
In [23], Dunfield established a fundamental property of the map r, namely that

r|X0 : X0 → r(X0) is a birational map, which is to say that it has degree one. His
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ingenious proof, besides using the result from [11] about the exactness of Hodg-
son’s volume form, uses deeper properties of hyperbolic manifolds than had previ-
ously been brought to bear on the theory that I’ve been describing in this chapter:
Thurston’s Dehn surgery theorem and, crucially, the volume rigidity theorem of
Goldman, Gromov and Thurston. Dunfield gave elegant applications of his bira-
tionality theorem to Dehn surgery and to related topics. One of his results on Dehn
surgery states that if a hyperbolic knot in S3 is small, i.e. if its exterior contains
no closed essential surface, and if it admits a nontrivial cyclic surgery, then it ad-
mits a nonintegral boundary slope. (For the terminology I’m using here, it’s best
to see Boyer’s chapter. I’ll talk about another of Dunfield’s consequences of his
birationality theorem in the next section.)

10. Boundary slopes and genera of essential surfaces in knot exteriors:
the Neuwirth Conjecture revisited and the Poincaré Conjecture ap-
proached

According to Theorem 5.6.2, if a tame knot in any closed orientable 3-manifold Σ
satisfies some mild conditions then it has at least two boundary slopes. In the case
where π1(Σ) is cyclic (for example if Σ = S3) one gets strictly stronger results. Some
of these are best understood in terms of explicitly identifying slopes as elements of
Q∪{∞}, by the formalism explained in Boyer’s chapter in this volume. Recall that
if µ ∈ Λ = H1(∂M) denotes the meridian of M , and if we choose an element λ ∈ Λ
such that {µ, λ} is a basis of λ, then we get a bijection between slopes and elements
of Q∪{∞} by letting the slope of aµ+ bλ correspond to a/b. As a/b has at least as
much of a right to be called a slope as the corresponding unoriented isotopy class,
I will allow myself to blur the distinction between the two when λ has been chosen,
or—as as in what we’re about to see—when the choice doesn’t matter.
Changing the choice of λ has the effect of subjecting all slopes to an integer

translation, possibly followed by a change of sign. In particular, the absolute value
of the difference between two slopes does not depend on the choice of λ. Indeed,
a straightforward calculation shows that the difference between the slopes of two
indivisible elements α, β ∈ λ is given in invariant form by the expression

∆(α, β)

∆(α, µ)∆(β, µ),

where ∆ denotes the geometric intersection number of α and β as in Theorem 9.1.1.
The slope of the meridian is always ∞. When ∞ is not a boundary slope, the

set of boundary slopes is a subset of Q which is finite by Hatcher’s theorem [30]
and is well-defined modulo integer translation and change of sign. In particular,
the diameter of the set of boundary slopes—the difference between its greatest and
least elements—is well defined.
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10.1. A lower bound for the diameter of the boundary slopes

The following result is proved in [19].

Theorem 10.1.1. Let K be a nontrivial tame knot in a homotopy 3-sphere. Sup-
pose that ∞ is not a boundary slope of K. Then the diameter of the set of boundary
slopes of K is > 2.

An immediate corollary to this theorem is that if ∞ is not a boundary slope,
there is always a boundary slope of absolute value at least 1. This is a small step
in the direction of the conjecture that there is always a boundary slope which is
a nonzero integer. You should think of this conjecture as a stronger form of the
conjecture of Neuwirth’s that I sketched the proof of in Chapter 6; in fact it is
closely related to some of the stronger versions stated by Neuwirth himself.
Theorem 10.1.1 is deduced in [19], by a relatively routine argument, from the

following more general result, Theorem 10.1.2. A cable knot is a knot that lies on
the boundary of some tame solid torus and has intersection number at least 2 with
a meridian disk for that solid torus.

Theorem 10.1.2. Let Σ be a closed, connected, orientable 3-manifold such that
π1(Σ) is cyclic. Let K be a nontrivial tame knot in Σ which is not a cable knot.
Suppose that ∞ is not a boundary slope of K. Then the diameter of the set of
boundary slopes of K is > 2.

This result, like Theorem 5.6.2, is technically easier to prove in the case where
Σ−K is hyperbolic. The proof in the hyperbolic case, which I will give here, turns
out to be a remarkably simple application of Theorem 9.5.1. The proof in the general
case involves souping up the argument that works in the hyperbolic case in rather
the same way that the arguments of Subsection 5.6 were souped up in Section 6,
although the details—for which I will refer you to [19]—are more involved.
In proving Theorem 10.1.2 in the hyperbolic case, it’s nice to think in terms of

the invariant description of the difference of two slopes that I gave above. From
this point of view, what we have to prove is that there exist two boundary classes
α and β such that

∆(α, β)

∆(α, µ)∆(β, µ)
> 2. (10.1.3)

As in Section 9, let’s set m = min06=γ∈Λ ‖γ‖M . If µ denotes the meridian of K (in
the sense of Boyer’s chapter, for example), then the “Dehn-filled” manifold M(µ)
is just Σ, which has cyclic fundamental group, so that ‖µ‖ = m by Theorem 9.5.1.
Thus if Bm denotes the ball of radius m for the norm ‖ · ‖ = ‖ · ‖M , we have
µ ∈ ∂Bm.
Now recall from Subsection 8.3 that the unit ball B of ‖ · ‖ is a compact, convex,

balanced set bounded by a polygon, and that each vertex of the polygon lies on a
boundary line; hence the same is true of Bm = mB. Let e denote an edge of the
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polygon ∂Bm containing µ. The endpoints of e are vertices α0 and β0 of ∂Bm, and
are therefore positive multiples of boundary classes α and β. I’ll complete the proof
by showing that the inequality (10.1.3) holds with these choices of α and β.
The geometric intersection number ∆(·, ·) is the absolute value of an alternating

integer-valued bilinear pairing on the lattice Λ = H1(∂M ;Z). Let’s extend the
latter pairing to an alternating real-valued bilinear pairing on the vector space
V = H1(∂M ;R); I’ll write ∆(·, ·) for the absolute value of this extended pairing as
well. If we write α = a‖α0‖ and β = b‖β0‖, with a, b > 0, then we have ∆(α, β) =
ab∆(α0, β0), whereas ∆(α, µ) = a∆(α0, µ) and ∆(β, µ) = b∆(β0, µ). Hence

∆(α, β)

∆(α, µ)∆(β, µ)
=

∆(α0, β0)

∆(α0, µ)∆(β0, µ)
. (10.1.4)

Since µ is on the segment e with endpoints α0, β0, we can write µ = tα0+(1−t)β0
for some t ∈ [0, 1]. So we have

∆(α0, µ) = (1− t)∆(α0, β0) and ∆(β0, µ) = t∆(α0, β0).

Combining this with the equality (10.1.4), we get

∆(α, β)

∆(α, µ)∆(β, µ)
=

1

t(1− t)∆(α0, β0)
. (10.1.5)

As I pointed out in Section 9, it follows from Theorem 9.3.1 that Bm has area
at most 4. Now we reason as in the proof of Theorem 9.1.1, but with α0 and β0
playing the roles of α and β in that argument. The parallelogram P with vertices
±α,±β is therefore contained in Bm, and we have

∆(α0, β0) =
1

2
areaP 6

1

2
areaBm 6 2.

Combining this inequality with the equality (10.1.5) we find that

∆(α, β)

∆(α, µ)∆(β, µ)
>

1

2t(1− t)
.

But the right-hand side of this last inequality is bounded below by 2, since the
function t(1− t) on [0, 1] takes its maximum at t = 1/2. So the inequality (10.1.3)
is established, and Theorem 10.1.1 is established in the hyperbolic case.

10.2. Some related results

Nathan Dunfield has shown that Theorem 10.1.1 is sharp: there exists a hyperbolic
knot K in a closed orientable 3-manifold Σ with π1(Σ) ∼= Z/10Z such that the
set of boundary slopes of K has diameter 2. Furthermore, the greatest and least
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slopes are half-integers. (Remember that the set of slopes is defined only modulo
an integer translation and a change of sign, so that the greatest and least slopes
are not well-defined. On the other hand, both the diameter of the set of boundary
slopes, and the condition that the greatest and least boundary slopes are integers,
is invariant.) This example is presented in [19].
In this example, π1(Σ) is cyclic of even order. By contrast, Dunfield has given an

argument in [22] which shows that if K is a hyperbolic knot in a closed 3-manifold Σ
such that π1(Σ) is cyclic of odd order, and if the diameter of the set of all boundary
slopes is exactly 2, then the greatest and least slopes cannot be integers or half-
integers. The proof involves the same ingredients as Dunfield’s theorem about Dehn
surgery which I mentioned in Subsection 9.6.
Although the restrictions on the set of boundary slopes that I have stated are the

only ones known for a general knot in a manifold with cyclic π1, one can get a little
more information about the set of essential surfaces in the knot exterior by looking
beyond the set of slopes. For example, the main theorem of my forthcoming paper
[20] with Culler gives, as a special case, information about any nontrivial knot K
in a homotopy 3-sphere (e.g. S3). Suppose that the exterior of K contains only
two incompressible surfaces (so that both are bounded, one is a spanning surface
and one has boundary slope 6= 0). If the genus g of K is > 2 and if s denotes the
non-zero boundary slope, then

g

log2 g
6 24s2.

It’s interesting to compare this with the known examples of knots in S3 with only
two essential surfaces in their exteriors, which are the torus knots: for a type (p, q)
torus knot, the genus is (p − 1)(q − 1)/2 and the nonzero boundary slope is pq.
So for torus knots the genus is a little less than the slope, whereas the general
theorem gives an upper bound for the genus which is slightly worse-than-quadratic
in the slope. (The general form of the theorem of [20], which involves the notion of
a “strict boundary slope,” applies to certain hyperbolic knots as well, such as the
figure-eight knot.) The method of proof involves considering the functions Iγ − 2
associated to nonperipheral elements γ, and comparing the orders of their poles
with the orders of their zeros by using some of the facts pointed out in Section 5.
In addition to the connection with classical knot theory, these results are poten-

tially related to the Poincaré Conjecture. One can think of them as characterizations
of the trivial knot in a closed orientable 3-manifold Σ with cyclic π1: for example,
Theorem 10.1.1 says that a knot in Σ is trivial if and only if the diameter of the
set of its boundary slopes is strictly less than 2. If one can characterize the trivial
knot, one can try to show that an arbitrary closed orientable 3-manifold contains
some knot satisfying the condition and having an irreducible exterior. It would then
follow that any closed orientable 3-manifold with cyclic π1 would contain a trivial
knot with irreducible exterior, and would therefore be a lens space. (This would
give the Poincaré Conjecture as a special case.)
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11. R-trees, degenerations of hyperbolic structures, and other stories

In [64], Thurston gave a criterion for the set AH(M) of “homotopy hyperbolic
structures” on a compact irreducible 3-manifold M (with boundary) to be com-
pact. The simplest way to define AH(M) involves using the PSL(2,C)-character
variety PX(π1(M)), which I haven’t defined in this chapter: it’s the subset of
PX(π1(M)) consisting of all characters of faithful representations whose images
are discrete subgroups of PSL(2,C). The question of compactness is unaffected by
replacing PSL(2,C) by SL(2,C): saying that AH(M) is compact is equivalent to
saying that the set D(π1(M)) ⊂ X(π1(M)) consisting of all characters of discrete
faithful representations in SL(2,C) is compact. Thurston’s theorem, which played
a key role in his original proof of his geometrization theorem for Haken manifolds,
asserts that this set is compact if and only if M contains no essential disks or an-
nuli. The “only if” part is easy, and in proving the converse it’s easy to see that
one can assume that M contains no connected essential surfaces with nonnegative
Euler characteristic.
When Marc Culler and I were doing the work that led to [17], we noticed a

connection between our methods and the statement of Thurston’s result. In fact,
we noticed a simple proof of the weaker statement that whenM contains no essential
surfaces with nonnegative Euler characteristic, the intersection of D(π1(M)) with
any curve C ⊂ X(π1(M)) is compact. If the conclusion were false there would be
a sequence (χi) of points of C ∩D(π1(M)) approaching an ideal point x of C. The
discreteness and faithfulness of the representations ρi defining the χi implies that
under the action on a tree T associated to x by the construction of Section 5, the
stabilizer Γe of any edge e of T is a “small” subgroup of π1(M) in the sense that it
contains no nonabelian free subgroup. Briefly, this is because, if γ and δ generated
a free subgroup of [Γe,Γe], the functions Iγ and I[γ,δ] would take the value 2 at x
by Property 5.5.3. So trace ρ(γ), and trace ρ([γ, δ]) would be close to 2 for large i,
and this would contradict Jørgensen’s inequality [36] about discrete subgroups of
SL(2,C).
Now let’s associate an essential surface F with the action of π1(M) on T . Since

the edge stabilizers are small subgrooups of π1(M), it follows from 2.3.1(ii) that each
component of F has a small fundamental group, and hence has Euler characteristic
> 0. This contradicts the hypothesis.
John Morgan and I were able to turn this into a proof of Thurston’s compactness

theorem. The task was to replace the curve C by a whole irreducible component of
X(π1(M)), and this required generalizing all the material in Sections 2, 3, and 5.
In this theory, the discrete, rank-1 valuations that appear in Section 3 are replaced
by more general valuations in which the “value” group Z is replaced by a general
ordered abelian group; the simplicial trees that appear in Sections 2 3, are replaced
by R-trees, which can be thought of as metric spaces in which any two points
are joined by a unique topological arc; and the essential surfaces that appear in
Section 2 are replaced by essential measured laminations, which can be thought of
as “irrational” counterparts of essential surfaces, and which typically look locally
like the product of an open set in R2 with a Cantor set.
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Formally the two main steps in this argument were to show that a suitable kind of
sequence tending to infinity in D(π1(M)) defines an action of π1(M) on an R-tree
with small arc stabilizers, and that if a 3-manifold group admits such an action then
it contains an essential connected surface of nonnegative Euler characteristic. In [40],
Morgan generalized the first step to hyperbolic manifolds of arbitrary dimension.
Morgan and I then formulated a general conjecture about groups that act on R-
trees with small arc stabilizers; in view of the result of [40], this conjecture implied
a high-dimensional analogue of Thurston’s compactness theorem. As a by-product
of our proofs, we also showed that if a finitely generated 3-manifold acts freely on
an R-tree then it’s a free product of free groups and surface groups. We conjectured
that any group which acts freely on an R-tree is of this form.
This conjecture on free actions was proved by Rips. Using Rips’s ideas, Bestvina-

Feighn [4] and Rips-Sela independently proved a version of our conjecture on actions
with small arc stabilizers which is strong enough to imply the high-dimensional
version of Thurston’s compactness theorem. In another direction, Paulin [51], [52]
discovered a partial generalization of the results of [42] and [40] which permit appli-
cations to much more general kinds of objects than hyperbolic manifolds. This has
given rise to an entire new area of geometric group theory in which methods involv-
ing actions on R-trees are applied to the study of outer automorphisms, decompo-
sitions of groups, and other questions. You can learn more about this—including
aspects that I haven’t even mentioned, such as the connection with Thurston’s
compactification of Teichmüller space—from my old survey articles [57] and [58],
or from Bestvina’s chapter in this volume.
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vent. Math. 94 (1988), 53–80.

[52] F. Paulin, “Outer automorphisms of hyperbolic groups and small actions on R-trees.” Arbo-
real group theory (Berkeley, CA, 1988). MSRI Publ. 19, Springer New York, 1991, pp. 331–343.

[53] P. Scott and C. T. C. Wall, “Topological methods in group theory.” Homological Group
Theory (Proc. Sympos. Durham 1977), London Math. Soc. Lecture Note Series 37. Cambridge
Univ. Press, 1979, pp. 137–203.

[54] J.-P. Serre, A Course in Arithmetic. Translated from the French. Graduate Texts in Mathe-
matics, No. 7. Springer-Verlag, 1973, viii+115 pp.

[55] J.-P. Serre, Trees. Translated from the French by John Stillwell. Springer-Verlag, 1980. ix+142
pp.

[56] I. R. Shafarevich, Basic Algebraic Geometry . Translated from the Russian by K. A. Hirsch.
Springer-Verlag, 1977. xv+439 pp.

[57] P. B. Shalen, “Dendrology of groups.” Essays in Group Theory, S. Gersten, Ed. M.S.R.I.
Pub. 8, Springer-Verlag 1987, pp. 265-320.

[58] P. Shalen, “Dendrology and its applications.” Group Theory from a Geometrical Viewpoint,
ICTP, Trieste, Italy, 26 March–6 April, 1990, E. Ghys, A. Haefliger, and A. Verjovsky, Eds.
World Scientific Publishing, 1991, pp. 543–616.

[59] E. H. Spanier, Algebraic Topology . Springer, 19??, xvi + 528 pp.
[60] J. R. Stallings, “On fibering certain 3-manifolds.” Topology of 3-Manifolds and Related Topics

(Proc. Univ. of Georgia Institute 1961). Prentice-Hall, 1962, pp. 95–100.
[61] J. R. Stallings, “A topological proof of Grushko’s theorem on free products.” Math. Z. 90

(1965), 1–8.
[62] J. Stallings, Group theory and three-dimensional manifolds. A James K. Whittemore Lec-
ture in Mathematics given at Yale University, 1969. Yale Mathematical Monographs 4, Yale
University Press, 1971, v+65 pp.

[63] W. P. Thurston, “A norm for the homology of 3-manifolds.” Mem. Amer. Math. Soc. 59



Representations of 3-manifold groups 97

(1986), no. 339, 1–viii and 99–130.
[64] W. P. Thurston, “Hyperbolic structures on 3-manifolds. I. Deformation of acylindrical man-

ifolds.” Ann. of Math. (2) 124 (1986), 203–246.
[65] A. Weil, “On discrete subgroups of Lie groups. Ann. of Math. (2) 72 (1960), 369–384.
[66] A. Weil, “On discrete subgroups of Lie groups. II. Ann. of Math. (2) 75 (1962), 578–602.
[67] F. Waldhausen, “Gruppen mit Zentrum und 3-dimensionale Mannigfältigkeiten.” Topology 6
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