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Abstract. Two conjectures about ranks of fundamental groups of 3-manifolds are formulated, and it

is shown that they imply new statements about hyperbolic volume.

1. Preface

In my talk at the conference on Heegaard splittings at the Technion, I formulated some

topological conjectures and discussed how, by adapting some of my work with Marc Culler

and others on volumes of hyperbolic 3-manifolds, to use these conjectures—if true—to

the problem of relating hyperbolic volume to Heegaard genus.

One of the conjectures that I stated is a modernized version of the antique conjecture

that if M is a compact, orientable 3-manifold, the rank of π1(M) is equal to the Hee-

gaard genus of M . The first counterexamples to this old conjecture, in which M is a

Seifert fibered manifold, had been given by Boileau and Zieschang in [5]; more general

counterexamples, for graph manifolds, were given by Schultens and Weidmann in [17].

Here is the modernized version:

Conjecture 1.1. If M is a compact, orientable, hyperbolic 3-manifold, the rank of

π1(M) is equal to the Heegaard genus of M .

The main results that I discussed in my talk give connections between Heegaard genus and

hyperbolic volume that are conditional on Conjecture 1.1 and another conjecture, which

is formulated below as Conjecture 4.3. Those results are incorporated into this article as

Corollaries 4.9, 5.3 and 6.8. They are immediate conequences of results, Corollary 4.8 and

Propositions 5.2 and 6.2, which involve ranks of groups instead of Heegaard genus and

are not conditional on Conjecture 1.1 (although they are conditional on other topological

conjectures).

This reorganization of the material may prove valuable if Conjecture 1.1 turns out to be

false. The immediate motivation for reorganizing the paper in this way was that rumors

were circulating to the effect that Conjecture 1.1 had been disproved. These rumors seem

to have died down.

In this article I will provide detailed proofs of all the new results, including those that

I announce in my talk. I will give less space here than in my talk to summaries of the
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arguments in the papers [2] and [8], on which the proofs are based, as these summaries

were not significantly different from the ones given in the introductions to those papers.

All the new results are conditional in the sense that they include various topological

conjectures as hypotheses. Some of these conjectures are very new, and I hope that they

will motivate new research, whether or not they are true.

I thank Ian Agol for some valuable discussions about Conjecture 1.1. I also thank the

referee for pointing out some major errors in the first draft of the article.

2. Introduction

When one studies closed hyperbolic 3-manifolds, the volume is a key invariant, because

it is known that up to isometry there exist at most finitely many hyperbolic manifolds of

a given finite volume. The volume of a closed hyperbolic 3-manifold M is a topological

invariant of M—for example because Mostow rigidity says the hyperbolic structure of

M is itself determined by the topology—but the precise connection between volume and

more classical topological invariants is far from being well understood.

In this article I’ll be concerned with the connection between volume of a hyperbolic 3-

manifold and the rank of its fundamental group. An upper bound on rank—or even the

Heegaard genus—of a closed hyperbolic 3-manifold does not give an upper bound on the

volume. For example, if M0 is a closed hyperbolic 3-manifold that fibres over the circle,

and g is the genus of the fiber, then for every positive integer n there is an n-fold cyclic

cover Mn of M which itself fibers over S1 with genus-g fiber. In particular the Heegaard

genus of each Mn is at most 2g + 1, but the volume of Mn is nv0, where v0 denotes the

volume of M0.

On the other hand, an upper bound on the volume of a closed hyperbolic 3-manifold

definitely does give an upper bound on the Heegaard genus (and hence on the rank). In

fact, there is a universal constant µ > 0, the Margulis constant, such that for every closed

hyperbolic 3-manifold M , the subset Mthin of M , defined to consist of all points through

which there pass homotopically non-trivial curves of length ≤ µ, is a disjoint union of

smooth solid tori. It’s not hard to show that the submanifold Mthick = M − Mthin has

a triangulation with at most C0v simplices, where v denotes the volume of M and C0 is

another universal constant that can be computed from µ. This implies that there is a

constant C such that every closed 3-manifold M has Heegaard genus at most Cv, where

v denotes the volume of M .

The problem is that the constant C that comes from this argument is astronomical, and

the estimates obtained in this way don’t get us anywhere near what we expect from

examples. The goal of this article will be to suggest a way of getting good explicit upper

bounds for the rank of π1(M), where M is a hyperbolic 3-manifold, in terms of the volume

of M .

By contrast, if one is willing to settle for bounds on the homological complexity of a

manifold M instead of the rank of π1(M), the results that appear in my papers with
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Culler and others are in the realm of reality and are sometimes sharp. For example, the

main result of [2], Theorem 1.1, states among other things that if M is a closed, ori-

entable hyperbolic 3-manifold with volume at most 1.22, then H1(M ; Zp) has dimension

at most 2 for every prime p 6= 2, 7. This result is sharp for p = 3 and for p = 5: the

manifolds referred to in the Weeks-Hodgson census [19] as m003(-3,1) and m007(3,1)

have respective volumes 0.94 . . . and 1.01 . . ., while their integer homology groups are

respectively isomorphic to Z5 ⊕ Z5 and Z3 ⊕ Z6.

One would like to obtain bounds for Heegaard genus, or rank of fundamental group, in

terms of volume, similar to the bounds on homology that I have described. This will

require more knowledge on the topological side. In Section 4 I’ll formulate and discuss

a pair of topological conjectures, one about rank and one about Heegaard genus; the

former will be shown to imply a bound on the rank of the fundamental group in terms of

hyperbolic volume. In Section 5 I’ll show how to get a stronger bound by combining the

conjecture of Section 4 with a conjectured analogue for rank of Moriah and Rubinstein’s

result in [12] about the behavior of Heegaard genus under Dehn filling. In Section 6 I’ll

give another consequence of the conjecture of Section 4, partially analogous to the results

of [8] and [9].

3. A little background

The following result provides the simplest motivation (from the point of view of studying

volumes) for the conjectures on ranks of 3-manifold groups that I’ll state in the next

section.

Theorem 3.1. Suppose that M is a closed, orientable hyperbolic 3-manifold with volume

less than 1.015. Then π1(M) has a 2-generator subgroup of finite index.

Proof. Let M be any closed, orientable hyperbolic 3-manifold. Let us write M = H
3/Γ,

where Γ ≤ Isom+(H3) is discrete, cocompact and torsion-free. If Γ ∼= π1(M) has no

2-generator subgroup of finite index, it follows from [10, Theorem VI.4.1] that Γ is 2-free

in the sense that all its 2-generator subgroups are free.

When Γ is 2-free, the number log 3 is a strong Margulis number for M in the sense

of [4, Section 8]. Indeed, the case k = 2 of [4, Proposition 8.1] asserts that log 3 is

a strong Margulis number for M as long as every 2-generator subgroup of Γ is free

and topologically tame. But according to the main result of [1] and [6], every finitely

generated Kleinian group is topologically tame.

Theorem 3 of [13] asserts that if the first Betti number β1(M) is at least 3, then the

volume of M is at least 1.015. The hypothesis β1(M) ≥ 3 is used only in order to quote

Theorem 1 of [13], which is included in Corollary 10.6 of [4], and gives a lower bound

V (λ) on the volume of M in terms of the length λ of a shortest geodesic in M , under

the assumption that β1(M) ≥ 3. Now, according to [4, Corollary 10.5], the number V (λ)

is a lower bound for the volume of M as long as log 3 is a strong Margulis number for
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M . Hence the lower bound of 1.015 for the volume of M still holds if one replaces the

assumption β1(M) ≥ 3 by the assumption that log 3 is a strong Margulis number for M ;

by the discussion above, this holds in particular if π1(M) has no finite-index subgroup of

rank 2. ¤

4. A conjecture on rank and finite covering spaces, and a consequence

Theorem 3.1 raises the following question (most immediately for the case k = 2):

Question 4.1. What restriction does the existence of a k-generator subgroup of finite

index in π1(M) place on M?

There is a homological condition which is necessary for the existence of such a subgroup:

H1(M ;Zp) must have rank ≤ k + 1 for every prime p. The necessity of this condition

follows from [18, Proposition 1.1]. This was the starting point for the results relating

volume to homology which I described in the introduction.

The following conjecture, which I first formulated in my talk at the Technion, would

provide a bound of the rank of π1(M) when π1(M) has a k-generator subgroup of finite

index.

Conjecture 4.2. If M is a compact, orientable hyperbolic 3-manifold with rankπ1(M) =

r, then for any finite-sheeted covering space ˜M of M we have rankπ1( ˜M) ≥ r − 1.

Equivalently, Conjecture 4.2 asserts that if π1(M) has a k-generator subgroup of finite

index then rankπ1(M) ≤ k + 1.

In my talk, I also formulated a parallel conjecture about Heegaard genus:

Conjecture 4.3. If M is a compact, orientable hyperbolic 3-manifold with Heegaard

genus g, then any finite-sheeted covering space ˜M of M has Heegaard genus at least

g − 1.

Of course, Conjectures 4.2 and 4.3 are equivalent modulo the “rank equals genus” con-

jecture 1.1.

4.4. It follows from [2, Corollary 7.3] (which is in turn a refinement of [18, Proposition

1.1], a result which I mentioned above) that if M is a closed, orientable hyperbolic

3-manifold such that H1(M ; Zp) has rank r for a given prime p, then for any finite-

sheeted covering space ˜M of M , the rank of H1( ˜M ; Zp) is at least r − 1. We may regard

Conjectures 4.2 and 4.3 as analogues, for the rank of the fundamental group and the

Heegaard genus, of this result about the rank of the mod-p homology.

4.5. There appears to be a huge class of examples, for every g ≥ 3, in which a compact,

orientable hyperbolic 3-manifold M with Heegaard genus g has a finite-sheeted covering

space ˜M of Heegaard genus exactly g − 1. Alan Reid gave the first such example, for
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g = 3, in his paper [14], which was inspired by an earlier, weaker version of Theorem 3.1

which appeared in [7].

During the conference, Hyam Rubinstein pointed out a systematic way of constructing

such examples. Suppose that M is a closed, orientable hyperbolic 3-manifold containing

a closed, non-orientable surface F , and that the complement in M of the interior of a

regular neighborhood N of F is a handlebody J of genus g − 1. Since N is a twisted

I-bundle over F , it’s easy to construct a 2-sheeted covering space q : ˜M → M to which

J lifts, and in which q−1(N) is a trivial I-bundle. It follows that ˜M has a Heegaard

splitting in which the handlebodies are isotopic to the two lifts of J ; in particular this

splitting has genus g−1. On the other hand, if A is a vertical arc in the twisted I-bundle

N , and T is a regular neighborhood of A relative to N , then J ∪ T and N − T are

genus-g handlebodies, which define a genus-g Heegaard splitting of M . It appears that

for g ≥ 3 the “generic” situation is that both the genus-g Heegaard splitting of M and

the genus-(g − 1) Heegaard splitting of ˜M are minimal.

These examples help show why the lower bound g − 1 is natural in Conjecture 4.3. I

would guess that in many of these examples one can also show that rankπ1(M) = g and

rank π1(M) = g − 1, which would help show why the lower bound r − 1 is natural in

Conjecture 4.2.

4.6. During the conference, Andrew Casson pointed out that Conjecture 4.2 is trivial

for a cyclic regular covering. This is because if any group G has a normal subgroup N

with G/N cyclic, the rank of G can obviously exceed the rank of N by at most 1.

4.7. The best known result in the direction of Conjecture 4.3 seems to be the result of

[15], which gives a lower bound for the Heegaard genus of a two-sheeted covering of M

in terms of the Heegaard genus of M .

Theorem 3.1 now has the following immediate consequence:

Corollary 4.8. If Conjecture 4.2 is true, then for every closed, orientable hyperbolic

3-manifold with volume at most 1.015 we have rank π1(M) ≤ 3. ¤

Since Conjectures 4.2 and 4.3 are equivalent modulo the “rank equals genus” conjecture

1.1, we also get:

Corollary 4.9. If Conjectures 1.1 and 4.3 are true, then for every closed, orientable

hyperbolic 3-manifold with volume at most 1.015 we have rank π1(M) ≤ 3. ¤

5. A conjecture on rank and Dehn filling, and a consequence

It is a consequence of the result proved by Moriah and Rubinstein in [12] that if N is

a hyperbolic 3-manifold of finite volume with exactly one cusp, and if g denotes the

Heegaard genus of the compact core ̂N of N , then infinitely many Dehn fillings of ̂N



HYPERBOLIC VOLUME, HEEGAARD GENUS, AND RANKS OF GROUPS 6

yield closed manifolds of Heegaard genus exactly g. (This was re-proved by a purely

topological argument in [16].)

In view of Moriah and Rubinstein’s result, the following conjecture would follow imme-

diately from the “rank equals genus” conjecture 1.1.

Conjecture 5.1. Suppose that N is a hyperbolic 3-manifold of finite volume with exactly

one cusp, and set r = rankπ1(N). Let ̂N denote the compact core of N . Then there is

an infinite sequence (Mi) of manifolds obtained by distinct Dehn fillings of ̂N such that

each rankπ1(Mi) = r for each i.

The main result of [2], Theorem 1.1, states that if M is a closed, orientable hyperbolic

3-manifold with volume at most 1.22, then H1(M ; Zp) has dimension at most 2 for every

prime p 6= 2, 7, and that H1(M ; Z2) and H1(M ; Z7) have dimension at most 3. The result

had originally been proved in a weaker form, which states that if M has volume at most

1.22, then H1(M ; Zp) has dimension at most 3 for every prime p. In this section I’ll show

how to adapt the proof of this weaker theorem to prove an analogous result about the

rank of the fundamental group, modulo Conjectures 4.2 and 5.1. This is Proposition 5.2

below. I have not thought about whether one can prove a Heegaard-genus analogue of

the strong form of [2, Theorem 1.1] modulo Conjectures 4.2 and 5.1.

Proposition 5.2. If Conjectures 4.2 and 5.1 are true, then for every closed, orientable

hyperbolic 3-manifold M with volume at most 1.22, we have rank π1(M) ≤ 3.

You’ll notice that the information given by Proposition 5.2 modulo Conjectures 4.2 and

5.1 is strictly stronger than the information given by Corollary 4.8 modulo Conjecture 4.2

alone. The proof of Proposition 5.2 uses a lot more mathematics than that of Corollary

4.8. In particular, Lemma 3.2 of [2], which is quoted in the proof below, depends on

a result from [3] which in turn relies on Pereleman’s estimates for the Ricci flow with

surgeries.

Proof of Proposition 5.2. As in [2], we shall say that a hyperbolic manifold M is excep-

tional if every shortest geodesic in M has tube radius at most (log 3)/2.

We first prove the proposition in the case where M is non-exceptional. In this case, by

definition, there is a shortest geodesic C in M with R = tuberad(C) > (log 3)/2. We set

N = drillC(M). Let H denote the maximal cusp neighborhood in N . Since R > (log 3)/2,

[2, Lemma 3.2] implies that volH < π.

Now assume that rankπ1(M) ≥ 4. Set r = rankπ1(̂N). It is obvious that r ≥

rank π1(M), so in particular r ≥ 4. Conjecture 5.1 implies that there is an infinite se-

quence (Mi) of manifolds obtained by distinct Dehn fillings of ̂N such that rankπ1(Mi) =

r for each i. Since r ≥ 4, Conjecture 4.2 implies that for each i, every finite-index sub-

group of π1(Mi) has rank at least 3. Since π1(Mi) has no 2-generator subgroup of finite

index, it follows from [10, Theorem VI.4.1] that π1(Mi) is 2-free in the sense that all
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its 2-generator subgroups are free. Lemma 4.3 of [2] then implies that volH ≥ π, a

contradiction. This completes the proof in the non-exceptional case.

We now turn to the case where M is exceptional. If M is isometric to the manifold vol 3

discussed in [11], then M can be obtained by Dehn filling from a once-punctured torus

bundle over S1, and hence rank π1(M) ≤ 3. If M is not isometric to vol 3, then according

to [2, Proposition 7.1], the group π1(M) has a finite-index subgroup of rank at most 2.

But if rank π1(M) ≥ 4, Conjecture 4.2 implies that every finite-index subgroup of π1(M)

has rank at least 3. Hence rankπ1(M) ≤ 3 in this case as well.

¤

I pointed out in Section 4 that Conjectures 4.2 and 4.3 are equivalent modulo the “rank

equals genus” conjecture 1.1. I pointed out at the beginning of the present section

that Conjecture 5.1 would follow immediately from Conjecture 1.1. Hence the following

corollary follows from Proposition 5.2.

Corollary 5.3. If Conjectures 1.1 and 4.3 are true, then for every closed, orientable

hyperbolic 3-manifold M with volume at most 1.22, the Heegaard genus of M is at most

3.

6. A hybrid consequence of the conjecture on covering spaces

In [9], Culler and I prove:

Theorem 6.1. If M is a closed, orientable hyperbolic 3-manifold with volume at most

3.08, then H1(M ;Z2) has rank at most 7.

The weaker version that the rank is at most 10 is somewhat easier to prove, and is

established in [8].

In this section I’ll show how to adapt the proof of this weaker result to get the following

result. The information given by this result modulo Conjecture 4.2 is not exactly an

analogue of the result of [8] involving the rank of the fundamental group, but rather

a hybrid result involving both the rank of the fundamental group and the rank of the

mod-2 first homology.

Proposition 6.2. If Conjecture 4.2 is true, then for every closed, orientable hyperbolic

3-manifold M with volume at most 3.08, either rank π1(M) ≤ 10, or dim H1(M ; Z2) ≤ 4.

The proof of Proposition 6.2 will depend on refining a number of the results proved in [8].

For the rest of this section I shall use the notation and definitions of [8], including the

definition of a book of I-bundles. As in [8], I shall write χ̄(X) = −χ(X), where X is any

space homeomorphic to a finite polyhedron and χ(X) denotes its Euler characteristic.

Lemma 6.3. Let X be a compact, connected 3-manifold, and let P 6= X be a sub-

manifold of X. Suppose that P is an I-bundle over a compact, orientable surface with
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non-empty boundary, that the frontier F of P in X is the vertical boundary of P , and

that F is properly embedded in X. Let Y be a component of X − P , and assume that

every component of X − (P ∪ Y ) is a solid torus. (The last condition holds vacuously if

X − P is connected.) Then

rank π1(X) ≤ rank π1(Y ) + rankπ1(P ).

Proof. Let S denote the base of the I-bundle P . Let m + 1 denote the number of

components of F . If m = 0 then F is connected, and the assertion of the lemma is

immediate from the Seifert-van Kampen theorem. Hence we may assume that m ≥ 1.

Set r = rankπ1(Y ) and s = rankπ1(P ) = rankπ1(S). We have s ≥ m, with equality if

and only if S is planar.

Let us denote the components of X − P by Z0, . . . , Zn, where n ≥ 0, Z0 = Y , and Zj is a

solid torus for each j with 0 < j ≤ n. Let A0, . . . , Am denote the components of F , which

we index in such a way that Aj ⊂ Zj for 0 ≤ j ≤ n. For each i ∈ {0, . . . , m}, the annulus

Ai is contained in a unique component Zq(i) of X − P ; thus q : {0, . . . , m} → {0, . . . , n} is

a well-defined surjection, and our indexing of the Ai implies that q(i) = i for i = 0, . . . , n.

(In particular n ≤ m.)

For i = 0, . . . , m, fix a point ai ∈ Ai, and fix a loop αi in Ai, based at ai, which

represents a generator of π1(Ai, ai). Let β0 denote the constant path at a0, and for each

i with 0 < i ≤ m let βi denote a path in P from a0 to ai, which projects to an embedded

arc Bi in S. We may suppose the βi to be chosen so that the arcs Bi meet only at the

point a0. For i = 0, . . . , m let ci denote the element of π1(P, a0) represented by the loop

βi ∗αi ∗ βi. Then π1(P, a0) has a minimal generating set {x0, . . . , xs−1} such that xi = ci

for i = 0, . . . , m − 1.

For each i with n < i ≤ m, we fix a path γi in Zq(i) from aq(i) to ai, and define an element

ti ∈ π1(X, a0) by ti = [βq(i) ∗ γi ∗ βi], where brackets denote the based homotopy class of

a loop in X. We fix a generating set {y1, . . . , yr} for π1(Y, a0). For j = 1, . . . , n we fix

a loop ζj in Zj based at aj which represents a generator for the cyclic group π1(Zj , aj),

and we set zj = [βj ∗ ζj ∗ βj] ∈ π1(X, a0). Then π1(X, a0) is generated by the set

{x̂i : 0 ≤ i < s} ∪ {ŷk : 1 ≤ k ≤ r} ∪ {zj : 1 ≤ j ≤ n} ∪ {ti : n < i ≤ m},

where x̂i and ŷk denote the images of xi and yk under the inclusion homomorphisms from

π1(P, a0) and π1(Y, a0) to π1(X, a0).

For i = 0, . . . , m, let ĉi denote the image of ci under the inclusion homomorphism

π1(P, a0) → π1(X, a0). Since α0 is a loop in A0 ⊂ Y , and β0 is the constant path,

ĉ0 is a word in the ŷk. Likewise, for 0 < i ≤ n, since αi is a loop in Ai ⊂ Zi, the element

ĉi = [βi ∗αi ∗ βi] is a power of zi. Furthermore, if n < i ≤ m, and if we set j = q(i), then

ĉi = t−1
i uiti, where ui = [βj ∗ γi ∗ αi ∗ γi ∗ βj]. Since γi ∗ αi ∗ γi is a loop in Zj based at

ai, it follows that ui is a word in the ŷk if q(i) = 0, and is a power of zj if q(i) > 0.

In particular, the elements ĉ0, . . . , ĉm all lie in the subgroup of π1(X, a0) generated by the

ŷi, the zj and the ti. Since we have x̂i = ĉi for i = 0, . . . , m− 1, we deduce that π1(X, a0)
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is generated by the set

{x̂i : m ≤ i < s} ∪ {ŷk : 1 ≤ k ≤ r} ∪ {zj : 1 ≤ j ≤ n} ∪ {ti : n < i ≤ m}.

Hence

rank π1(X) ≤ (s − m) + r + n + (m − n) = r + s,

which is the conclusion of the lemma.

¤

The following lemma is a refined version of [8, Lemma 2.21].

Lemma 6.4. If W is a connected normal book of I-bundles, the rank of π1(|W|) is at

most 2χ̄(|W|) + 1.

Proof. Set W = |W|. If W is an I-bundle over a closed surface, we have rankπ1(W ) =

χ̄(W ) + 2; by normality we have χ̄(W ) > 0, so the conclusion holds in this case. Hence

we may assume that every page of W meets at least one binding.

Let p denote the number of pages of W. We shall recursively construct a finite sequence

of connected sub-books W1, . . . ,Wp of W, where Wi has exactly i pages. To begin the

recursion, we choose an arbitrary page P1 of W and define W1 to consist of P1 and the

bindings that meet it. Now assume that Wi has been constructed for a given i < p.

Since W has p pages, Wi is a proper sub-book of W. Since W is connected, |Wi| must

meet some page Pi+1 not contained in |Wi|. We define Wi+1 to consist of the pages and

bindings of Wi, the page Pi+1, and all bindings of W that meet Pi+1.

We set Wi = |Wi| for i = 1, . . . , p, and we let W0 denote some (arbitrarily chosen) binding

of W1. We shall show that for i = 0, . . . , p the rank of π1(Wi) is at most 2χ̄(Wi)+ 1. For

i = 0 this is obvious, and for i = p it is the conclusion of the lemma. It therefore suffices

to show that if 0 < k ≤ p and π1(Wk−1) has rank at most 2χ̄(Wk−1) + 1, then π1(Wk)

has rank at most 2χ̄(Wk) + 1.

The hypotheses of Lemma 6.3 hold if we set X = Wk, P = Pk, and Y = Wk−1. Hence

we have

rank π1(Wk) ≤ rank π1(Wk−1) + rankπ1(Pk)

≤ (2χ̄(Wk−1) + 1) + rankπ1(Pk).

Now since Pk is an I-bundle over a compact, connected surface with non-empty boundary,

we have rankπ1(Pk) = 1 + χ̄(Pk). But by the definition of a normal book of I-bundles

we have χ̄(Pk) ≥ 1, and hence

rank π1(Pk) ≤ 2χ̄(Pk).

It follows that

rank π1(Wk) ≤ (2χ̄(Wk−1) + 1) + 2χ̄(Pk) = 2χ̄(Wk) + 1,

as required. ¤



HYPERBOLIC VOLUME, HEEGAARD GENUS, AND RANKS OF GROUPS 10

Our next result is a analogue, in the context of the present section, of [8, Theorem 9.13].

Lemma 6.5. Assume that Conjecture 4.2 is true. Let M be a closed simple 3-manifold

with rank π1(M) ≥ 11. Suppose that dim H1(M ; Z2) ≥ 5, and that π1(M) has a subgroup

isomorphic to a genus-2 surface group. Then there is a connected, normal book of I-

bundles W with W = |W| ⊂ M such that ∂W is incompressible in M and χ̄(W ) = 2.

Proof. We shall adapt the proof of [8, Theorem 9.13]. The latter result has the same

conclusion as the present lemma, but in place of the hypothesis rank π1(M) ≥ 11,

that dim H1(M ; Z2) ≥ 5, and that Conjecture 4.2 is true, it has the hypothesis that

dim H1(M ; Z2) has rank at least 11. This hypothesis is used twice in the proof of [8,

Theorem 9.13]: once in the first sentence to allow the application of [8, Corollary 9.11],

and again in the fifth sentence of the fifth and final paragraph of the proof. The ap-

plication of [8, Corollary 9.11] requires only the lower bound of 5 for dim H1(M ; Z2).

Hence, under the hypotheses of the present lemma, the first four paragraphs of the proof

of [8, Theorem 9.13], and the first sentence of the fifth paragraph, go through without

change, and show that either (a) there is a connected, normal book of I-bundles W with

W = |W| ⊂ M such that ∂W is incompressible in M and χ̄(W ) = 2 (this is the case

m = 0 in the notation of the proof in [8]) or (b) there exist a finite-sheeted covering space
˜M of M and a connected normal book of I-bundles W with W = |W| ⊂ ˜M such that the

inclusion homomorphism π1(W ) → π1( ˜M) is surjective and χ̄(W ) ≤ 4. (Alternative (b)

corresponds to the case m > 0 in the notation of the proof in [8], and we take ˜M = Nm−1

in the notation of that proof. Since Nm−1 is closed, it is a finite-sheeted covering space

of M according to [8, 9.3].)

Now by Lemma 6.4 we have rankπ1(|W|) ≤ 2χ̄(|W|) + 1 ≤ 9. The surjectivity of

π1(W ) → π1( ˜M) therefore implies that rankπ1( ˜M) ≤ 9. On the other hand, since by

hypothesis we have rankπ1(M) ≥ 11, Conjecture 4.2 implies that rankπ1( ˜M) ≥ 10. This

is a contradiction, and the proof is complete. ¤

The following result follows from Lemma 6.5 above in exactly the same way that [8,

Corollary 9.14] follows from [8, Theorem 9.13].

Lemma 6.6. Assume that Conjecture 4.2 is true. Let M be a closed simple 3-manifold

with rank π1(M) ≥ 11. Suppose that π1(M) has a subgroup isomorphic to a genus-

2 surface group, and that dim H1(M ; Z2) ≥ 5. Then M contains either a connected

incompressible surface of genus 2 or a separating, connected incompressible surface of

genus 3. ¤

The following result is an analogue of [8, Proposition 10.5] in the context of the present

section.

Lemma 6.7. Assume that Conjecture 4.2 is true. Suppose that M is a closed orientable

hyperbolic 3-manifold with rank π1(M) ≥ 11. Suppose that π1(M) has a subgroup

isomorphic to a genus-2 surface group, and that dim H1(M ; Z2) ≥ 5. Then vol M ≥ 3.66.
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Proof. It follows from Lemma 6.6 that either

(i) M contains either a separating incompressible surface of genus 2 or 3, or

(ii) M contains a non-separating incompressible surface of genus 2.

Suppose that (i) holds but that vol M < 3.66. Let X1 and X2 denote the closures of the

components of M − S. According to [8, Theorem 10.4] (a result deduced from the main

result of [3]), each Xi has the form |Wi| for some book of I-bundles Wi. For i = 1, 2 we

have

χ̄(Xi) =
1

2
χ̄(S) ≤ 2.

By Lemma 6.4, applied to W = Wi, it follows that

rank π1(Xi) ≤ 2χ̄(Xi) + 1 ≤ 5

for i = 1, 2. Hence by the Seifert-van Kampen theorem,

rank π1(M) ≤ rank π1(X1) + rankπ1(X2) ≤ 10,

a contradiction to the hypothesis.

Now suppose that (ii) holds but that vol M < 3.66. Let X denote the connected manifold

obtained by splitting M along S. According to [8, Theorem 10.4] we have X = |W| for

some book of I-bundles W. We have

χ̄(X) =
1

2
χ̄(∂X) = χ̄(S) = 2.

By Lemma 6.4 it follows that

rank π1(X) ≤ 2χ̄(X) + 1 ≤ 5.

Hence

rank π1(M) ≤ rank π1(X) + 1 ≤ 6,

and again we have a contradiction. ¤

Proof of Proposition 6.2. Assume that the conclusion is false, i.e. that rankπ1(M) ≥ 11

and that dim H1(M ; Z2) ≥ 5. If π1(M) has a subgroup isomorphic to a genus-2 surface

group, then it follows from Proposition 6.7 that vol M ≥ 3.66 > 3.08, a contradiction to

the hypothesis.

There remains the possibility that π1(M) has no subgroup isomorphic to a genus-2 surface

group. Now since H1(M ; Z2) has rank at least 5, it follows from [18, Proposition 1.1]

that every subgroup of rank at most 3 in π1(M) has infinite index. But it follows from

[4, Proposition 7.3 and Remark 7.5] that if M is an orientable hyperbolic 3-manifold

without cusps such that π1(M) contains no genus-2 surface subgroup and such that

every subgroup of rank at most 3 in π1(M) has infinite index, then π1(M) is 3-free, in

the sense that each subgroup of rank at most 3 is free. And according to [8, Corollary

10.3], if a closed, orientable hyperbolic 3-manifold has 3-free fundamental group, then its

volume exceeds 3.08. Again the hypothesis is contradicted. ¤
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Since Conectures 4.2 and 4.3 are equivalent modulo the “rank equals genus” conjecture

1.1, Proposition 6.2 has the following immediate consequence.

Corollary 6.8. If Conjectures 1.1 and 4.3 are true, then for every closed, orientable

hyperbolic 3-manifold M with volume at most 3.08, either M has Heegaard genus at

most 10, or dim H1(M ; Z2) ≤ 4.
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