Homework problems ##4 and 5 Math 536 Due Friday, Oct. 2, 2009

- 4. Let Y be a Riemann surface and let Γ be a group which acts biholomorphically, freely and properly discontinuously on Y. In class we showed, for the special case where Y is an open subset of **C**, that there is a natural atlas on Y/Γ .
 - (a) Generalize the construction given in class to define a natural atlas on Y/Γ .
 - (b) Show that Y/Γ is Hausdorff in the topology defined by the natural atlas, and is therefore a Riemann surface in a natural way.
 - (c) Show that the projection $p: Y \to Y/\Gamma$, defined by taking p(y) to be the orbit of y for every $y \in Y$, is an analytic map of Riemann surfaces.
- **5.** This problem concerns the Riemann sphere $\widehat{\mathbf{C}} := \mathbf{C} \cup \infty$.
 - (a) Show that every rational function f on \mathbf{C} extends uniquely to a meromorphic function \hat{f} on $\hat{\mathbf{C}}$.
 - (b) Let $P_1, \ldots, P_m, Q_1, \ldots, Q_n$ be distinct points of $\widehat{\mathbf{C}}$, let $d_1, \ldots, d_m, e_1, \ldots, e_n$ be positive integers, and suppose that $d_1 + \cdots + d_m = e_1 + \cdots + e_n$. Show that there exists a meromorphic function on $\widehat{\mathbf{C}}$ of the form \widehat{f} , where f is rational on \mathbf{C} , such that \widehat{f} has a zero of order d_i at each P_i , a pole of order e_j at each Q_j , and no other zeros or poles. (This will go much better if you think about multiplication and division of meromorphic functions rather than addition.)
 - (c) Show that every meromorphic function g on $\widehat{\mathbf{C}}$ has the form $g = \widehat{f}$ for some rational function f on \mathbf{C} . (First use results about analtic maps between Riemann surfaces, proved in class on Friday 9/25 or Monday 9/28, to show that g has only finitely many zeros P_1, \ldots, P_m and finitely many poles Q_1, \ldots, Q_n ; and that if d_i denotes the order of the zero of g at P_i , and e_j denotes the order of the pole of g at each Q_j , then $d_1 + \cdots + d_m = e_1 + \cdots + e_n$. Then consider g/\widehat{h} , where h is a suitably chosen rational function.)