6. (a) Let \(n \) be any positive integer. Prove that the map \(z \to z^n \) from \(\mathbb{C} \setminus \{0\} \) to itself is a covering map, using the method that was used in class to show that \(\exp: \mathbb{C} \to \mathbb{C} \setminus \{0\} \) is a covering map. You will need to find an appropriate action of the group \(\mathbb{Z}/n\mathbb{Z} \) on \(\mathbb{C} \setminus \{0\} \). (A direct proof that the map is a covering map is possible, but part of the point of this problem is to adapt the method used in class.)

(b) Let \(f \) be a nowhere-vanishing holomorphic function on a simply connected open set in \(\mathbb{C} \). Give a precise statement about the existence of an \(n \)-th root of \(f \) that follows from part (a).

7. Let \(\Omega \subset \mathbb{C} \) be a lattice, let \(p: \mathbb{C} \to \mathbb{C}/\Omega \) denote the orbit map, and let \(V \) denote the vector space consisting of all meromorphic functions on \(\mathbb{C}/\Omega \) which have poles at most at \(\bar{0} = p(0) \). Let \(W \) denote the vector space of all polynomials in \(1/z \) with zero constant term, and let \(T \) denote the linear map defined by taking \(T(f) \) to be the principal part of \(f \circ p \) at \(0 \). It is essentially a special case of a result proved in class that the kernel of \(T \) consists of constant functions. (In class I considered only functions for which the order of the pole is subject to some bound; this guarantees finite-dimensionality but is not needed for injectivity.)

(a) Let \(W_0 \) denote the subspace of \(W \) consisting of polynomials for which the coefficient of \(1/z \) is 0. Use residue calculus to show that the image of \(T \) is contained in \(W_0 \). (This was sketched in class on September 4. Fill in details.)

(b) Show that \(T: V \to W_0 \) is surjective by showing that for every polynomial \(A = A(1/z) \in W_0 \) there is a two-variable polynomial \(Q_0 \) such that \(T(Q_0(\overline{P}, \overline{P})) = A \). From this argument and the description of the kernel of \(T \) given above, deduce that every function in \(V \) has the form such that \(T(Q(\overline{P}, \overline{P})) \) for some two-variable polynomial \(Q \).