Homework problems ##6 and 7 Math 536 Due Monday, Oct. 19, 2009

- **6.** (a) Let n be any positive integer. Prove that the map $z \to z^n$ from $\mathbb{C} \setminus \{0\}$ to itself is a covering map, using the method that was used in class to show that $\exp: \mathbb{C} \to \mathbb{C} \setminus \{0\}$ is a covering map. You will need to find an appropriate action of the group $\mathbb{Z}/n\mathbb{Z}$ on $\mathbb{C} \setminus \{0\}$. (A direct proof that the map is a covering map is possible, but part of the point of this problem is to adapt the method used in class.)
 - (b) Let f be a nowhere-vanishing holomorphic function on a simply connected open set in \mathbb{C} . Give a precise statement about the existence of an n-th root of f that follows from part (a).
- 7. Let $\Omega \subset \mathbf{C}$ be a lattice, let $p: \mathbf{C} \to \mathbf{C}/\Omega$ denote the orbit map, and let V denote the vector space consisting of all meromorphic functions on \mathbf{C}/Ω which have poles at most at $\bar{0} = p(0)$. Let W denote the vector space of all polynomials in 1/z with zero constant term, and let T denote the linear map defined by taking T(f) to be the principal part of $f \circ p$ at 0. It is essentially a special case of a result proved in class that the kernel of T consists of constant functions. (In class I considered only functions for which the order of the pole is subject to some bound; this guarantees finite-dimensionality but is not needed for injectivity.)
 - (a) Let W_0 denote the subspace of W consisting of polynomials for which the coefficient of 1/z is 0. Use residue calculus to show that the image of T is contained in W_0 . (This was sketched in class on September 4. Fill in details.)
 - (b) Show that $T: V \to W_0$ is surjective by showing that for every polynomial $A = A(1/z) \in W_0$ there is a two-variable polynomial Q_0 such that $T(Q_0(\overline{\mathcal{P}}, \overline{\mathcal{P}'})) = A$. From this argument and the description of the kernel of T given above, deduce that every function in V has the form such that $T(Q(\overline{\mathcal{P}}, \overline{\mathcal{P}'}))$ for some two-variable polynomial Q.