Homework problems \#\#6 and 7
 Math 536
 Due Monday, Oct. 19, 2009

6. (a) Let n be any positive integer. Prove that the map $z \rightarrow z^{n}$ from $\mathbf{C} \backslash\{0\}$ to itself is a covering map, using the method that was used in class to show that $\exp : \mathbf{C} \rightarrow \mathbf{C} \backslash\{0\}$ is a covering map. You will need to find an appropriate action of the group $\mathbf{Z} / n \mathbf{Z}$ on $\mathbf{C} \backslash\{0\}$. (A direct proof that the map is a covering map is possible, but part of the point of this problem is to adapt the method used in class.)
(b) Let f be a nowhere-vanishing holomorphic function on a simply connected open set in C. Give a precise statement about the existence of an $n-t h$ root of f that follows from part (a).
7. Let $\Omega \subset \mathbf{C}$ be a lattice, let $p: \mathbf{C} \rightarrow \mathbf{C} / \Omega$ denote the orbit map, and let V denote the vector space consisting of all meromorphic functions on \mathbf{C} / Ω which have poles at most at $\overline{0}=p(0)$. Let W denote the vector space of all polynomials in $1 / z$ with zero constant term, and let T denote the linear map defined by taking $T(f)$ to be the principal part of $f \circ p$ at 0 . It is essentially a special case of a result proved in class that the kernel of T consists of constant functions. (In class I considered only functions for which the order of the pole is subject to some bound; this guarantees finite-dimensionality but is not needed for injectivity.)
(a) Let W_{0} denote the subspace of W consisting of polynomials for which the coefficient of $1 / z$ is 0 . Use residue calculus to show that the image of T is contained in W_{0}. (This was sketched in class on September 4. Fill in details.)
(b) Show that $T: V \rightarrow W_{0}$ is surjective by showing that for every polynomial $A=$ $A(1 / z) \in W_{0}$ there is a two-variable polynomial Q_{0} such that $T\left(Q_{0}\left(\overline{\mathcal{P}}, \overline{\mathcal{P}^{\prime}}\right)\right)=A$. From this argument and the description of the kernel of T given above, deduce that every function in V has the form such that $T\left(Q\left(\overline{\mathcal{P}}, \overline{\mathcal{P}^{\prime}}\right)\right)$ for some two-variable polynomial Q.
