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Introduction

The ε-thin part of a hyperbolic manifold, for an arbitrary positive number ε, is defined
to consist of all points through which there pass homotopically non-trivial curves of length
at most ε. For small enough ε, the ε-thin part is geometrically very simple: it is a disjoint
union of standard neighborhoods of closed geodesics and cusps. (Explicit descriptions of
these standard neighborhoods are given in Section 1.) If ε is small enough so that the ε-thin
part of M has this structure then ε is called a Margulis number of M. There is a positive
number, called a 3-dimensional Margulis constant, which serves as a Margulis number for
every hyperbolic 3-manifold.

The results of this paper provide surprisingly large Margulis numbers for a wide class
of hyperbolic 3-manifolds. In particular we obtain the following result, which is stated as
Theorem 10.3:

Let M be a closed orientable hyperbolic 3-manifold whose first Betti number is at least
3. Then log 3 = 1.09 . . . is a Margulis number for M.

Knowing a Margulis number for a given manifold provides important geometric infor-
mation. For example, one can give an estimate of the volume of a hyperbolic manifold
M in terms of a Margulis number ε for M. One first observes that M must contain a
hyperbolic ball of radius ε/2; indeed, any point in the thick part of M is the center of
such a ball. The volume of this ball is a lower bound for the volume of M. This bound
can be improved by using an observation of Meyerhoff’s [Me]: the ratio of the volume of
M to that of the ball is at least d(ε/2), where d(r) is an explicitly given function which,
by a theorem of Böröczky, is a bound for the local density of a radius r sphere-packing in
hyperbolic space. This technique gives the following corollary (10.4) to Theorem 10.3:

Let M be a closed orientable hyperbolic 3-manifold whose first Betti number is at least
3. Then M contains a hyperbolic ball of radius 1

2
log 3 = .54 . . . and the volume of M is

greater than .92.
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The estimates given by the above results should be compared with other known esti-
mates and with known examples. The greatest known lower bound for the volume of an
arbitrary closed orientable hyperbolic 3-manifold, due to F. Gehring and G. Martin [GeM],
is .00115, improving an earlier estimate of .00082 by R. Meyerhoff. The smallest known
orientable hyperbolic 3-manifold in terms of volume was discovered by J. Weeks; it has
Betti number 0 and has a volume of approximately .94. A result of Shalen and Wagreich
[ShW] implies, for a 3-manifold M satisfying somewhat weaker hypotheses than those of
Theorem 10.3, that 1

2
log 3 is a Margulis number for M (so that M contains a hyperbolic

ball of radius 14 log 3).
It can be proved that log 3 is not a Margulis number for the complement of the figure

8 knot, and hence that it is not a Margulis constant. Furthermore, there is overwhelming
evidence, based on computer experiments by C. Hodgson and J. Weeks, that the largest
hyperbolic ball in the Weeks manifold has radius .51 . . . < 1

2
log 3. Thus Theorem 10.3,

and — according to the experimental evidence — Corollary 10.4 as well, become false if
one drops the topological restrictions on the manifold.

Theorem 10.3 is an application of a theorem on 2-generator Kleinian groups. We may
regard the orientable hyperbolic 3-manifold M as the quotient of the hyperbolic 3-space
H3 by a discrete group Γ of orientation-preserving isometries; from this point of view, ε is
a Margulis number for M if and only if, for any two non-commuting elements ξ and η of
Γ, every point of H3 is moved a distance at least ε by either g or h.

A 3-manifold is said to be topologically tame if it is homeomorphic to the interior of
a compact 3-manifold; a torsion-free Kleinian group Γ is topologically tame if H3/Γ is
topologically tame. We shall prove the following result, which is a stated as Theorem 9.1:

Let ξ and η be non-commuting isometries of H3. Suppose that ξ and η generate a
torsion-free discrete group which is topologically tame, is not co-compact and contains no
parabolics. Then every point of hyperbolic space is moved a distance at least log 3 by
either ξ or η; that is, we have

max
(
dist(z, ξ · z), dist(z, η · z)

)
≥ log 3

for any z ∈ H3.

In Section 10 we show (Proposition 10.2) that if M = H3/Γ has first Betti number at
least 3 then every two-generator subgroup of Γ is non-co-compact and topologically tame.
Thus Theorem 9.1 on two-generator groups implies Theorem 10.3 about Margulis numbers.

It is conjectured that any hyperbolic 3-manifold with finitely generated fundamental
group is topologically tame. If this were true it would allow one to generalize the above
result about Margulis numbers to any hyperbolic 3-manifold whose fundamental group has
no 2-generator subgroup of finite index.

We now describe the ingredients of the proof of our main theorem. The proof begins
with the observation (Propositon 9.2) that if ξ and η are non-commuting isometries of H3

and if the group which they generate is torsion-free, is not co-compact and contains no
parabolics then it is free of rank 2.

One novel feature of the proof is the use of a construction, due to Patterson and studied
extensively by Sullivan, of a geometrically natural measure on the limit set of a Kleinian
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group. We use such a measure to relate the combinatorial structure of the free group
of rank 2 to its action on its limit set. This part of the argument bears an intriguing
resemblance to the construction of a decomposition of the sphere in the Hausdorff-Banach-
Tarski paradox [Wag]. By viewing the free group of rank 2 as a set of reduced words in the
alphabet {x, y, x−1, y−1}, one obtains a decomposition of the group into four infinite sets
and a singleton {1}, where each of the infinite sets consists of all words beginning with a
given letter. This decomposition has the peculiar property that each of the infinite sets is
mapped onto the complement of another of the infinite sets under left multiplication by a
certain letter. For example, left multiplication by x−1 sends a word which begins with x
to a word which does not begin with x−1.

In the Hausdorff-Banach-Tarski construction one has a rank-2 free group acting by
isometries on the sphere. A choice of a point in a given free orbit determines an identi-
fication of the group with the orbit and hence induces a decomposition of the orbit. By
choosing a point from each orbit one obtains a decomposition of the sphere (ignoring the
countable subset of points with non-trivial stabilizer.) Since in this situation the group
action preserves the area measure of the sphere, one obtains a paradoxical conclusion.

In our situation we have a free group of rank 2 acting by isometries on hyperbolic
space, and hence acting by Möbius transformations on the sphere at infinity. Using a
generalization of Patterson’s construction we are able to construct a measure on the limit
set of our group which decomposes as a sum of four measures, each of which is transformed
to the complement of another by a generator or the inverse of a generator. The key to
this construction is the fact that the Patterson measures are obtained as limits of measures
which are supported on an orbit of the group, and hence reflect the combinatorial structure
of the group itself. It is necessary here to identify the group with an orbit by making a
choice of a point z in hyperbolic space.

This construction is especially interesting in the case where the Patterson measure that
admits the decomposition is equal to the area measure on the sphere at infinity. (Here
the sphere is given the round metric obtained by identifying H3 with a ball so that the
given point z is the center, and the area measure is normalized so as to have total mass
1.) In this case the “paradoxical” decomposition leads to an elementary proof of the
inequality max

(
dist(z, ξ · z), dist(z, η · z)

)
≥ log 3 By symmetry considerations together

with a measure-theoretic lemma one obtains a subset of the sphere which has area at
most 1/4 but whose image under one of the generators has area at least 3/4. A direct
computation then shows that this element moves the center a distance at least log 3.

Given a Patterson measure associated to a discrete group Γ, one can construct a posi-
tive, Γ-invariant (generalized) eigenfunction of the hyperbolic Laplacian by integrating the
hyperbolic Poisson kernel against the measure. This eigenfunction has a positive eigen-
value and therefore determines a superharmonic function on H3/Γ (which is a hyperbolic
manifold if Γ is torsion-free). This allows one to prove that if every superharmonic function
on H3/Γ is constant then the area measure is the unique Patterson measure associated to
Γ.

An argument due to Thurston shows that certain geometric conditions on the ends of a
complete hyperbolic manifold M = H3/Γ imply that all positive superharmonic functions
on M are constant. In our setting the appropriate condition is that there exist a sequence
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of singular surfaces having metrics of intrinsic curvature ≤ −1 and bounded genera, such
that every compact subset of M is “enclosed” in a homological sense by a surface in the
sequence. By a theorem of Canary’s, such a sequence exists if Γ is topologically tame,
contains no parabolics and has limit set equal to the entire sphere at infinity of hyperbolic
space. Thus we need only to establish the inequality in the conclusion of Theorem 9.1 in
the case that the limit set of Γ is a proper subset of the sphere at infinity, i.e. when Γ has
non-empty set of discontinuity.

Notice, however, that if the set of discontinuity is non-empty then the area measure
cannot be a Patterson measure. Our strategy is to reduce the case where Γ has non-empty
set of discontinuity to the more exotic case where the area measure is a Patterson measure
by considering limits of groups with non-empty set of discontinuity. There is an open
subset GF of the variety PSL2(C)×PSL2(C) consisting of all pairs of elements (ξ, η) such
that 〈ξ, η〉 is a free group of rank 2 having a non-empty set of discontinuity and containing
no parabolics. If (ξ, η) is any point in the closure GF (in the complex topology) of GF, then
〈ξ, η〉 is still free and discrete. It is easy to show that for any point z ∈ H3 the function
(ξ, η) 7→ max

(
dist(z, ξ · z), dist(z, η · z)

)
is a proper continuous function on GF with no

local minimum on GF. Hence it takes a minimum value at some point (ξ, η) in the frontier
B of GF. This reduces the proof of the inequality max

(
dist(z, ξ · z), dist(z, η · z)

)
≥ log 3

for the case (ξ, η) ∈ GF to the proof in the case (ξ, η) ∈ B. We then complete the proof
by showing that there is a dense Gδ in B consisting of points for which the area measure
is indeed a Patterson measure. We use Thurston’s criterion here as well; we show that,
for (ξ, η) in a dense Gδ subset of B, there exists a sequence of negatively curved singular
surfaces of bounded genera enclosing every compact set in H3/〈ξ, η〉. The proof of the
existence of this dense Gδ contains much of the technical work in the paper.

Each of the singular surfaces that we construct is a map of a closed surface into M =
H3/〈ξ, η〉. The domain surface is divided into “pairs of pants” by a family of “waist” curves
which are mapped to closed geodesics in M. Furthermore, the surfaces in the sequence are
girded in the sense that the lengths of the waist geodesics tend to 0 through the sequence.
The existence of a sequence of singular surfaces of this type is proved by means of a recent
result of Curt McMullen’s asserting the density of maximal cusps in B. The singular
surfaces are chosen to be invariant with respect to a canonical involution of M ; such an
involution exists because π1(M) is a 2-generator group. By combining this invariance
property with the fact that the waist lengths tend to 0, we show that any compact subset
of M is enclosed by some surface in the family.

Our construction of girded surfaces works only in the 2-generator case because it uses
the involution. However, we believe that a similar picture holds more generally. Let Γ
be any geometrically finite Kleinian group without parabolics, and let M be the manifold
defined by a generic point in the frontier of the set of quasi-conformal deformations of Γ.
We conjecture that M is girded, meaning that there exists a sequence of girded surfaces in
M such that every compact subset of M is enclosed by a surface in the sequence. For a
precise definition of a girded manifold, see 7.4.

It is worth noting that the singular surfaces which appear in the proof of Canary’s
theorem are not required to contain short geodesics. In general a topologically tame
manifold with geometrically infinite ends need not contain arbitrarily short geodesics, and
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thus need not be girded. Conversely, it is not clear in general whether a girded manifold
with finitely generated fundamental group is topologically tame.

The paper is organized as follows. In the first section we establish notation and collect
the basic facts about hyperbolic manifolds which will be needed in the paper. The next
two sections discuss the correspondence, via the Poisson kernel, between measures on the
sphere at infinity and eigenfunctions of the hyperbolic Laplacian in a Γ-equivariant setting.
In essence this material is classical potential theory, with the Poincaré ball replacing the
Euclidean ball.

In Section 4 we present Patterson’s ideas in a generalized setting to give a construction of
a Γ-invariant conformal density which respects a given decomposition of a discrete group
Γ. Section 5 contains the argument which is used in proving the main estimate in the
case where the area measure is the unique Patterson measure. In Section 6 we describe
Thurston’s geometric criterion which implies that every positive superharmonic function
is constant. We introduce the notion of a Bonahon surface and formulate the criterion in
terms of these surfaces.

In Section 7 we develop the notions that we use in constructing our girded surfaces.
Section 8 contains the proof of the existence of a dense Gδ in B consisting of girded
groups. In Section 9 we prove the main theorem and in Section 10 we give the applications
to closed manifolds.

The preprint of this paper contains a more self-contained and detailed discussion of
the topics in Sections 4 and 6 of the current version. In addition the preprint contains a
full development of the geometry of ultra-hyperbolic surfaces. The point of view taken in
the preprint is somewhat different from the one taken in [Bo], being based on “packing”
arguments similar to some that have been used by Thurston and Gromov.

During the course of this research we have benefited greatly from conversations with
Robert Brooks, Richard Canary, Craig Hodgson, Howard Masur, Curt McMullen, Robert
Meyerhoff, John Smillie and Jeff Weeks. We are indebted to Mohan Ramachandran for
guiding us through the maze of potential theory, and to Francis Bonahon for his patient
explanation of his ideas.

§1. Hyperbolic space and discrete groups

We establish some notation and conventions that will be used throughout the paper.

1.1. Hyperbolic space. Whenever we consider a metric space, we shall write dist(x, y) to
denote the distance function, provided that no confusion can result. In a metric space we
also write dist(x, S) to denote the distance from a point x to a closed set S. If S is a subset
of a metric space and r is a positive number, we shall denote the closed r-neighborhood of
S by nbhdr(S).

By a model of hyperbolic n-space, for n ≥ 2, we shall mean a complete, 1-connected
Riemannian n-manifold of constant sectional curvature −1. Throughout this paper we
shall fix, abstractly, a model Hn of hyperbolic space. Any two models of hyperbolic n-space
are isometric, and the isometry group of any model acts transitively on its orthonormal
frame bundle. It will frequently be useful to identify Hn, via a suitable isometry, with one
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of the standard concrete models. The concrete models which will be used most often are
the upper half-space model, which has underlying space Rn−1 × [0,∞), and the Poincaré

model, for which has underlying space is the open unit ball Bn ∈ Rn. The geodesics in
these models are intersections with lines or circles in the ambient euclidean space which
are orthogonal, respectively, to the plane xn+1 = 0 or the unit sphere. In studying convex
sets in Hn it is useful to consider the projective model, which also has underlying space
Bn, but with a metric for which the geodesics are intersections of euclidean geodesics with
Bn. For detailed descriptions of these spaces, and for general information on hyperbolic
geometry, the reader is referred to [F].

The sphere at infinity of Hn will be denoted by Sn−1∞ or simply S∞. The canonical
compactification of Hn, of which S∞ is the boundary, will be denoted Hn. Any self-
isometry γ of Hn extends to a conformal automorphism of Hn, which we denote γ̄. We
denote by γ∞ the conformal automorphism of S∞ obtained by restricting γ̄.

Given any point z ∈ Hn, there exists an isometry h from Hn onto the Poincaré model
Bn which maps z to 0. Furthermore, h is unique modulo composition with orthogonal
linear transformations of Rn. It follows that if we pull back the metric of Sn−1 = ∂Bn via
h̄, we obtain a metric on S∞ which is uniquely determined by the point z; we call it the
round metric centered at z.

Any isometry h of the upper half-space model onto Hn extends uniquely to a conformal
diffeomorphism of Rn−1 × [0,∞) onto Hn − {ζ}, where ζ ∈ S∞ is a point determined by
h. We shall say that h maps ∞ to ζ (or that h−1 maps ζ to ∞). Given any point ζ ∈ S∞,
there exists an isometry of Rn−1 × (0,∞) onto Hn which maps ∞ to ζ.

If A1 and A2 are points of H
n and B is a point of Hn, we denote by ∠A1BA2 the angle

between the ray from B to A1 and the ray from B to A2; here by the ray from B to Ai we
mean the (hyperbolic) ray starting at B and passing through Ai (if Ai ∈ Hn) or having
Ai as an endpoint (if Ai ∈ S∞).

1.2. Convexity. A subset K of Hn is termed convex if K 6= ∅ and if every line segment in
Hn with endpoints in K is itself contained in K; here a “line segment” may be an entire
line or a half-infinite ray. The convex hull of a non-empty subset X of Hn is defined to
be the intersection of all convex subsets of Hn containing X, and will be denoted hull(X).
We set hull(X) = hull(X) ∩Hn. Clearly hull(X) and hull(X) are convex.

Any isometry of Hn onto the projective model Bn extends to a diffeomorphism of Hn

onto Bn which maps convex subsets of Hn onto convex subsets (in the usual Euclidean
sense) of Bn. Hence any compact convex subset of Hn which has non-empty interior is
homeomorphic to a closed n-ball. It follows that any closed convex subset of Hn is the
intersection of Hn with a topological closed n-ball in Hn, and is therefore a contractible
n-manifold-with-boundary.

Proposition. If K is a convex subset of Hn, then for any positive number R the set
nbhdR(K) is convex.

Proof. It suffices to show that if α ⊂ Hn is a compact line segment then nbhdR(α) is
convex. This is in turn equivalent to showing that for any line ` ⊂ Hn the set `∩nbhdR(α)
is connected. If ϕ : Hn → R is the continuous function that assigns to each point of Rn its
minimum distance from α, we have ` ∩ nbhdR(α) = (ϕ | `)−1([0, R)). It therefore suffices
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to prove that the function ϕ | ` has no local maximum. This is an exercise in hyperbolic
geometry which we leave to the reader. ¤

1.3. Let γ be any non-trivial orientation-preserving isometry of H3. For any ε > 0 let us
write

Cε(γ) = {z ∈ H3 : dist(z, γ · z) ≤ ε}.

If γ is parabolic, i.e. if γ∞ has a unique fixed point ζ ∈ S∞, then Cε(γ) is a closed
horoball based at ζ.

If γ is loxodromic then γ∞ has exactly two fixed points, say ζ− and ζ+, in S∞. The line
A joining ζ− and ζ+ is by definition the axis of γ, and γ |A is a translation through some
distance length(γ). The distance from a point to its image under γ depends on the twist
angle of γ as well as on length(γ) and the distance of the point from the axis A. However,
the following result is sufficient to permit us to describe Cε(γ) in this case.

Proposition. Let γ be a loxodromic isometry of H3 with axis A. Then there is a mono-
tonically increasing continuous function f = fγ : [0,∞)→ [0,∞) such that dist(z, γ · z) =
f
(
dist(z, A)

)
for every point z ∈ Hn.

Proof. Left to the reader. ¤

It follows from the above proposition that if γ is loxodromic with axis A then we have
Cε(γ) = ∅ for any ε < length(γ), and for any ε ≥ length(γ) we have Cε(γ) = nbhdδ(Aγ),
where δ is a non-negative number depending on γ and ε. (In the notation of the proposition
we have δ = fγ(ε).)

1.4. By a Kleinian group we shall mean a discrete group of orientation-preserving isome-
tries of H3 which is non-elementary in the sense that it has no abelian subgroup of finite
index. If Γ is a Kleinian group we shall write ΛΓ for its limit set.

When Γ is a torsion-free Kleinian group we shall writeM(Γ) for the complete hyperbolic
3-manifold H3/Γ. The set hull(ΛΓ) is closed since ΛΓ is compact, and non-empty since Γ is
non-elementary. Thus the set nbhd1

(
hull(ΛΓ)

)
⊂ H3 is closed and has non-empty interior.

It is convex by Proposition 1.2, and is clearly Γ-invariant. Hence by 1.2, nbhd1
(
hull(ΛΓ)

)

is a contractible, Γ-invariant 3-manifold-with-boundary. We shall write

N(Γ) =
(
nbhd1

(
hull(ΛΓ)

))/
Γ ⊂M(Γ).

By the discussion above, N(Γ) is a 3-manifold-with-boundary and a deformation retract
of M(Γ).

1.5. Margulis numbers. The group of all orientation-preserving isometries of H3 is
isomorphic to PSL2(C). In PSL2(C), every element of order > 2 has an abelian centralizer.
Hence if Γ is a torsion-free Kleinian group, every non-trivial element of Γ lies in a unique
maximal abelian subgroup. If H is any maximal abelian subgroup of Γ then either H
is cyclic and H − {1} consists of loxodromic elements with a common axis, or H is free
abelian of rank 1 or 2 and H − {1} consists of parabolic elements with a common fixed
point in S∞. In the latter case H will be called a cuspidal subgroup of Γ.
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For any point P ∈M(Γ) we shall denote by short(P ) the infimum of the lengths of all
homotopically non-trivial loops based at P . Thus for any z ∈ H3 lying in the fiber above
P we have

short(P ) = inf
16=γ∈Γ

dist(z, γ · z).

We have 0 < short(P ) ≤ ∞, and short(P ) =∞ if and only if Γ = {1}. When Γ 6= {1}, the
infimum in the definition of short(P ) is realized. For any interval I ⊂ (0,∞) we denote
by MI(Γ) the set of all points P ∈M(Γ) such that short(P ) ∈ I. Thus for any ε > 0, the
set M(0,ε] consists of all points of M through which there pass homotopically non-trivial
closed curves of length ≤ ε. We call M(0,ε] the ε-thin part of M .

Let M̃(0,ε] denote the pre-image of M(0,ε] in Hn. Then by definition, M̃(0,ε] consists of

all points z ∈ H3 such that dist(z, γ · z) ≤ ε for some γ ∈ Γ− {1}. Hence we have

M̃(0,ε] =
⋃

16=γ∈Γ

Cε(γ).

For any maximal abelian subgroup H of Γ and for any fixed ε > 0, the family of sets
{Cε(γ) : γ ∈ Γ} is totally ordered by inclusion. It follows from the discreteness of Γ that
there is always a maximal set Cε(H) in this family. Thus for any ε > 0 we may write

M̃(0,ε] =
⋃

H

Cε(H),

where H ranges over all maximal abelian subgroups of Γ. The discreteness of Γ also
implies that the sets Cε(H) form a locally finite family. A positive number ε will be called
a Margulis number for M(Γ) if the sets Cε(H), where ε ranges over the distinct maximal
abelian subgroups of Γ, are pairwise disjoint. Equivalently, ε is a Margulis number for
M if for every point z ∈ H3 and every pair of non-commuting elements ξ, η of Γ, we
have max

(
dist(z, ξ · z) , dist(z, η · z)

)
≥ ε. There exists a positive number which is a 3-

dimensional Margulis constant in the sense that it is a Margulis number for every complete
hyperbolic 3-manifold. The existence of such a constant follows, for example, from [Be,
Theorem 5.4.5].

If ε is a Margulis number for M then each component of M(0,ε] has the form Cε(H)/H
for some maximal abelian subgroup H of Γ. When H is cuspidal, so that Cε(H) is a
horoball, we call Cε(H)/H a standard cusp neighborhood. When H consists of loxodromic
elements, it is cyclic. In this case it follows from Proposition 1.3 that Cε(H) = ∅ when ε
is less than the length of a generator of H, and that otherwise Cε(H) = nbhdδ(A), where
A is the axis of a generator of H and δ is a non-negative number depending on ε and
H. In particular, A/H is a simple closed geodesic of length ≤ ε and T = nbhdδ(A/H).
Topologically, T is a solid torus unless A/H has length ε, in which case T = A/H. When
H consists of loxodromic elements and Cε(H) 6= ∅, we call T = Cε(H)/H a tube.

1.6. If Γ is any Kleinian group and ε is any Margulis number forM(Γ), we shall denote by
M c
(0,ε](Γ) the union of all components ofM(0,ε](Γ) which are standard cusp neighborhoods.

We shall write
M c
{ε}(Γ) = ∂M c

(0,ε](Γ) ⊂ M{ε}(Γ),
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and
M c
[ε,∞)(Γ) =M(Γ)− intMc

(0,ε](Γ) ⊃M[ε,∞)(Γ).

Furthermore, if I is any of the intervals (0, ε], {ε} or [ε,∞), we set

N c
I (Γ) = N(Γ) ∩M c

I (Γ).

The pre-image of N c
I (Γ) in H3 will be denoted Ñ c

I (Γ).
For any Margulis number ε, the set N(0,ε](Γ) is a 3-manifold-with-boundary and a defor-

mation retract of M(0,ε](Γ). Indeed, each component of M c
(0,ε](Γ) has the form Cε(H)/H

for some maximal abelian subgroup H of Γ consisting of parabolic elements. The fixed
point ζ ∈ S∞ belongs to ΛΓ, and we have ΛΓ 6= {ζ} since Γ is non-elementary; hence
hull(ΛΓ) ∩ Cε(H) 6= ∅. Since hull(ΛΓ) and Cε(H) are compact and convex, it follows
that nbhd1

(
hull(ΛΓ)

)
∩ Cε(H) is a closed convex subset of H3 with non-empty interior,

and by 1.2 is therefore a contractible 3-manifold-with-boundary. Hence the quotient of
nbhd1

(
hull(ΛΓ)

)
∩ Cε(H) by the action of H is a 3-manifold-with-boundary and a defor-

mation retract of Cε(H)/H; our assertion follows.

1.7. Geometric finiteness. The Kleinian group Γ is said to be geometrically finite if
N c
[ε,∞)(Γ) is compact for some Margulis number ε.

If Γ is geometrically finite then it has only finitely many conjugacy classes of cuspidal
subgroups. Indeed, if ε is a Margulis constant, the sets Cε(H), where H ranges over the
cuspidal subgroups of Γ, form a locally finite family (1.5). Hence the corresponding cusp
neighborhoods Cε(H)/H form a locally finite family of subsets of M(Γ). For each H the
fixed point ζ of H belongs to ΛΓ, and ΛΓ 6= {ζ} since Γ is non-elementary; hence hull(ΛΓ)
contains a geodesic with one endpoint at ζ. It follows that Cε(H)/H ∩N c

[ε,∞)(Γ) 6= ∅ for

every H. Hence if N c
[ε,∞)(Γ) is compact then the family of cusp neighborhoods Cε(H)/H

is finite, establishing our assertion.

Lemma. Let H be a discrete group of parabolic isometries of the upper half-space model
of hyperbolic space, with common fixed point∞. Let Λ be a closed non-empty H-invariant
subset of R2 × {0} such that Λ/H is compact.

(i) If H is free abelian of rank 2 then R2 × {h} ⊂ hull(Λ ∪ {∞}) for all sufficiently
large h.

(ii) If H is infinite cyclic then there is an H-invariant strip S bounded by two (possibly
equal) parallel lines in R2 such that Λ ⊂ S and R2×{h}∩hull(Λ∪{∞}) = S×{h}
for all sufficiently large h.

Proof. By convexity, if a point P of upper-half space is contained in hull(Λ ∪ {∞}) then
so is the entire vertical ray beginning at P . Now suppose that α and β are points of Λ and
that the Euclidean distance from α to β is d. Let σ be the Euclidean line segment from
α to β. Since the hyperbolic geodesic from α to β is a Euclidean circle of radius d/2, it
follows that for all h > d/2 we have σ × {h} ⊂ hull(Λ ∪ {∞}).

Let γ ∈ H and α ∈ Λ and let ` be the line in R2 which contains the points γ̄n(α) for
n ∈ Z. Let d be the Euclidean distance from γ̄n(α) to γ̄n+1(α). By the observation above,
applied to each of the pairs {γ̄n(α), γ̄n+1(α)} we have ` × {h} ⊂ hull(Λ ∪ {∞}) for all
h > d/2.
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Suppose that H is free abelian of rank 2 with generators γ1 and γ2. Let d1 and d2
be the respective translation lengths of γ̄1 and γ̄2 acting on R2 × {0}. Let α be a point
of Λ. Let `n denote the γ̄1-invariant line through γ̄n2 (α). For all h > d1/2 we have that
`n × {h} ⊂ R2 × {h} ∩ hull(Λ ∪ {∞}). Every point of R2 lies on a line segment of length
d2 with endpoints in `n and `n+1 for some n ∈ Z. It follows that for h > d1/2 + d2/2 we
have R2 × {h} ⊂ hull(Λ ∪ {∞}).

Suppose that H is infinite cyclic with generator γ and that γ̄ acts on R2 × {0} as a
Euclidean translation through a distance d. The assumption that Λ/H is compact implies
that Λ is contained in a strip S bounded by γ̄-invariant lines `1 and `2. Since Λ is closed, the
lines `1 and `2 may be taken to contain points of Λ. If the Euclidean distance from `1 to `2 is
w then for all h > d/2+w/2 we have S×{h} ⊂ hull(Λ∪{∞}). On the other hand, S×[0,∞)
is a convex set containing Λ ∪ {∞}. Therefore R2 × {h} ∩ hull(Λ ∪ {∞}) = S × {h}. ¤

Recall that a topological 3-manifold N is said to be irreducible if every locally flat
2-sphere in N is the boundary of a 3-ball in N .

Proposition. Let Γ be a geometrically finite, torsion-free Kleinian group; set M =M(Γ)
and N = N(Γ). Then N c

[ε,∞) is compact whenever ε is a Margulis number for M . Fur-

thermore, for every sufficiently small Margulis number ε0 the following conclusions hold:

(i) N c
[ε0,∞)

is an orientable, irreducible 3-manifold-with-boundary and is a deforma-

tion retract of N and hence of M ; and
(ii) N c

{ε0}
is a compact 2-manifold-with-boundary, properly embedded in N , and is a

deformation retract of N(0,ε0] and hence of M(0,ε0].

Proof. Since Γ is geometrically finite, there is a Margulis number ε1 for M such that
N c
[ε1,∞)

is compact.

Let ε be any Margulis number. In order to show that N c
[ε,∞) is compact, we observe

that for any sufficiently small ε′ > 0 we have

Ñ c
[ε,∞) ⊂ nbhd1

(
hull(ΛΓ) ∩ M̃

c
[ε′,∞)

)
.

Hence we need only show that
(
hull(ΛΓ) ∩ M̃ c

[ε′,∞)

)
/Γ is compact for sufficiently small ε′.

In particular we may suppose that ε′ < ε1. Since
(
hull(ΛΓ) ∩ M̃ c

[ε1,∞)

)/
Γ is compact, and

since Γ has only finitely many conjugacy classes of cuspidal subgroups by 1.7, we need only

show that for any cuspidal subgroup H of Γ the set
(
hull(ΛΓ) ∩

(
Cε1(H)− Cε(H)

))/
H

has compact closure in M . For this we identify H3 with the upper half-space model by an
isometry mapping the fixed point of H to ∞ and set Λ = ΛΓ −{∞}. Let h and h1 be real
numbers so that the boundaries of the horoballs Cε(H) and Cε1(H) are identified with the
horizontal planes R2 × {h} and R2 × {h1} respectively. If H has rank 2 then

(
Cε1(H)− Cε(H)

)/
H ⊂

(
R2 × [h1, h]

)/
H,

the set on the right being compact. If H has rank 1 then

(
hull(ΛΓ) ∩

(
Cε1(H)− Cε(H)

))/
H ⊂

(
S × [h1, h]

)/
H,
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where S is the strip provided by the lemma. Again, the set on the right is compact.
Next we prove that for a sufficiently small Margulis number ε0 the set N

c
{ε0}

is a compact

2-manifold-with-boundary properly embedded in N (which by 1.4 is a 3-manifold-with-
boundary), and that N c

{ε0}
is a deformation retract of N(0,ε0]. This will establish assertion

(ii) of the proposition, since N(0,ε0] is a deformation retract of M(0,ε0] according to 1.6.
Since Γ has only finitely many conjugacy classes of cuspidal subgroups, it suffices to show
that for any cuspidal subgroup H of Γ there is a Margulis number εH such that for any
ε ≤ εH the set N ∩ (∂Cε(H)/H) is a properly embedded 2-manifold-with-boundary in N
and is a deformation retract of Cε(H)/H. Equivalently, we must show that for small enough
ε the set nbhd1

(
hull(ΛΓ)

)
∩∂Cε(H) is a contractible, properly embedded 2-manifold-with-

boundary in nbhd1
(
hull(ΛΓ)

)
.

We prove this by applying the lemma as before. The statement follows immediately
in the case where H is free abelian of rank 2. In the case that H is isomorphic to Z let
C denote the horoball R2 × [ec,∞), and D denote the region S × (0,∞) where S is the
strip provided by the conclusion of the lemma. We have hull(ΛΓ) ∩ C = D ∩ C. Hence
if C ′ denotes the horoball R2 × [ec+1,∞) ⊂ C, so that the minimum distance between
∂C and ∂C ′ is 1, we have nbhd1

(
hull(ΛΓ)

)
∩ C ′ = nbhd1(D) ∩ C ′. But nbhd1(D) is

bounded by two equidistant surfaces [F, p. 39] with the two boundary components of D
as axial planes; these equidistant surfaces are intersections of the upper half-space with
non-horizontal Euclidean planes E1 and E2 in R3.

We have C ′ = Cε(H) for some Margulis number εH ; and for any ε ≤ εH , the set
nbhd1

(
hull(ΛΓ)

)
∩ ∂Cε(H) is the closed strip in the horizontal Euclidean plane ∂Cε(H)

bounded by the lines ∂Cε(H)∩E1 and ∂Cε(H)∩E2. Hence nbhd1
(
hull(ΛΓ)

)
∩∂Cε(H) is

a contractible 2-manifold-with-boundary. By inspection we have that nbhd1
(
hull(ΛΓ)

)
∩

∂Cε(H) is properly embedded in nbhd1
(
hull(ΛΓ)

)
. This proves (ii) for small ε0.

We shall complete the proof by showing that (ii) implies (i). If (ii) holds for a given ε0
then in particular N c

{ε0}
is a deformation retract of N c

(0,ε0]
; thus N c

[ε0,∞)
is a deformation

retract of N , and hence (by 1.4) of M . In particular N c
[ε0,∞)

is aspherical. Since M is

covered by H3, every locally flat 2-sphere S in M(Γ) bounds a unique ball B ⊂ M ; if
S ⊂ Nc

[ε0,∞)
then B ⊂ N c

[ε0,∞)
by asphericity. Hence N c

[ε0,∞)
is irreducible. Since M is

orientable, so is N c
[ε0,∞]

. This establishes (i). ¤

1.8. The following proposition about 2-generator groups of isometries of H3 follows easily
from results which can be found in [Jør] and in [F, V.1].

If ` is any (geodesic) line in H3, we denote by τ` the 180◦ rotation about `. Thus τ` is
the unique element of order 2 in the group Isom (H3) whose fixed point set is `.

Proposition. Let ξ and η be two orientation-preserving isometries of H3. Suppose that
ξ∞ and η∞ have no common fixed point in S∞. Then there is a unique line ` ⊂ H3 such
that τ = τ` satisfies τξτ = ξ−1 and τητ = η−1.

If ξ and η satisfy the hypotheses of the above proposition, the line ` given by the
proposition will be denoted `(ξ, η). This line is the common perpendicular to the axes of
ξ and η, suitably interpreted in the degenerate cases where one or both of these isometries
are parabolic [Fe, III.3 and V.1].
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1.9. The line `(ξ, η) is easily seen to depend continuously on ξ and η in the following
sense. Suppose that ξ∞ and η∞ satisfy the hypotheses of Proposition 1.11, and let (ξi)
and (ηi) be sequences of isometries of H3 converging to ξ∞ and η∞ respectively, so that
ξi and ηi also satisfy the hypotheses of the proposition for large i. Let ζ+∞ and ζ−∞ denote
the endpoints of `(ξ∞, η∞). Then we may label the endpoints of `(ξi, ηi) (for large i) as
ζ+i and ζ−i in such a way that ζ+i → ζ+∞ and ζ−i → ζ−∞ as i→∞.

§2. The Poisson kernel

We shall need some elementary facts about the Poisson kernel for hyperbolic space. In
this section and the next we present the relevant material from a geometric point of view
which is natural for the applications in this paper.

2.1. We define a continuous function Π : Hn ×Hn ×Hn → R by

Π(z, z′, w) = exp
(
dist(z, w)− dist(z′, w)

)
.

From the hyperbolic law of cosines [F, p. 91] we have

cosh dist(z, w)

cosh dist(z′, w)
=
(
cosh dist(z, z′)− tanh dist(z, w) sinh dist(z, z′) cos∠z′zw

)−1
.

It follows that the function Π has a unique positive continuous extension Π:Hn ×Hn ×
Hn → R. The restriction of Π to a function on Hn ×Hn × S∞ will be denoted P. This
restriction is given explicitly by

(2.1.1) P(z, z′, ζ) =
(
cosh dist(z, z′)− sinh dist(z, z′) cos∠z′zζ

)−1

for any z 6= z′ ∈ Hn and any ζ ∈ Sn−1∞ ; and by P(z, z, ζ) = 1 for any z ∈ Hn and any
ζ ∈ Sn−1∞ .

2.2. It is immediate from the definition of the function Π that for any points z, z′, z′′, w ∈
Hn we have Π(z, z′′, w) = Π(z, z′, w)Π(z′, z′′, w). Hence in view of the continuity of Π we
have

P(z, z′′, ζ) = P(z, z′, ζ)P(z′, z′′, ζ)

for any z, z′, z′′ ∈ Hn and any ζ ∈ S∞.

2.3. There is a simple formula for the function P in terms of the upper half-space model.
Given any point ζ ∈ Sn−1∞ , let us fix an isometry J of Hn onto the upper half-space
model Rn−1 × (0,∞) which maps ζ to ∞ (see 1.1). The n-th coordinate function on
Rn−1 × (0,∞) pulls back via J to a function Im : Hn → (0,∞). The effect of replacing J
by another isometry mapping ζ to ∞ would be to multiply the function Im by a constant;
this is because a self-isometry of the upper half-space model that fixes ∞ is of the form
x 7→ ασ(x), where α is a positive constant and σ is a Euclidean isometry σ of Rn which
fixes the n-th standard basis vector. In particular, for any two points z, z′ ∈ Hn, the value
of the expression Im z

/
Im z′ depends only on the point ζ and not on the choice of J.
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Proposition. With the above conventions we have

P(z, z′, ζ) = Im z′
/
Im z

for any points z, z′ ∈ Hn.

Proof. We identify Hn with Rn−1× (0,∞) via the diffeomorphism J , and write z = (x, t)
and z′ = (x′, t′), where x, x′ ∈ Rn−1 and t, t′ > 0. We define two sequences (wj)j≥1 and
(w′j)j≥1 of points of Hn by wj = (x, j) and w′j = (x′, j). For each j, the vertical line
segments zwj and z′w′j are hyperbolic geodesic arcs; hence dist(z, wj) = log |j − zn| and
dist(z′, w′j) = log |j− z′n|. On the other hand, the horizontal line segment from wj to w

′
j is

an arc of hyperbolic length 1/j, and hence limj→∞ dist(wj , w
′
j) = 0. From the definition

of P we then have

P(z, z′, ζ) = lim
j→∞

exp
(
dist(z, wj)− dist(z′, wj)

)

= lim
j→∞

exp
(
dist(z, wj)− dist(z′, w′j)

)

= t′/t = Im z′
/
Im z.

¤

The function P is our version of the Poisson kernel. If Hn is identified with the Poincaré
model via an isometry which maps a given point z0 to the origin, then the hyperbolic
Poisson kernel P :Bn × S∞ → R discussed, for example, in [N] or [P] is given by

P (z, ζ) = P(z0, z, ζ).

This follows from the proposition above together with the calculation [N, Theorem 5.1.3]
that if V is the isometry from the Poincaré model to the upper half-space model which sends
the origin to the point (0, 1) ∈ Rn × (0,∞) and maps ζ to ∞ then P

(
V −1(z), ζ

)
= Im z.

2.4. Conformal expansion factors. Consider a point z ∈ Hn and an isometry γ : Hn →
Hn. By 1.1, γ induces a conformal diffeomorphism γ∞ of S∞. If we equip S∞ with the
round metric centered at z, then at each point ζ ∈ S∞, the map γ∞ has a well-defined
conformal expansion factor λ > 0. (This means that the tangent map dγ∞ : Tξ(S∞) →
Tγ∞(ξ)(S∞) satisfies |dγ∞(v)| = λ|v| for every tangent vector v at ζ, where | · | denotes
length in the round metric.) We shall denote the conformal expansion factor of γ∞ at ζ
by λγ,z(ζ). Thus λγ,z is a smooth positive-valued function on S∞.

Note that if ζ is a fixed point of γ then dγ∞(ζ) is a linear automorphism of Tξ(S∞)

and we have λγ,z(ζ) = | det dγ∞(ζ)|1/(n−1). Thus in this case λγ,z(ζ) may be calculated
without reference to the round metric or the point z.

Proposition. Let z be any point of Hn and let γ be any isometry of Hn. Then we have
λγ,z(ζ) = P(z, γ

−1z, ζ) for every point ζ ∈ S∞.

Proof. The corresponding statement for the Poincaré model is given in [N, Lemma 3.4.2].
This together with 2.2 gives the proposition. ¤
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2.5. The Laplacian. For any Riemannian n-manifold M we have a Laplacian operator

∆ = ∗d ∗ d : C∞(M)→ C∞(M),

where * is the Hodge star and d denotes exterior differentiation.
Using Proposition 2.3, one shows the following by a straightforward calculation in the

upper half-space model. (See [N, Theorem 5.1.3]).

Proposition. For any z ∈ Hn, and ζ ∈ S∞ and any real number r, the function φζ :
Hn → R defined by φζ(z) = P(z0, z, ζ)r satisfies the equation ∆φζ = −r(n− r − 1)φζ .

Proposition 2.5 is the starting point for the use of the Poisson kernel in constructing
solutions to the equation ∆φζ = −r(n − r − 1)φζ (“generalized eigenfunctions” for the
Laplacian) with prescribed “boundary values.” From the point of view of the present
paper this construction is most naturally described in terms of the notion, first formalized
by Sullivan, of a “conformal density.” We shall discuss this in the next section.

§3. Conformal densities

In this section we discuss a Γ-equivariant potential theory in hyperbolic space, where
Γ is a Kleinian group. Our treatment, which roughly parallels the one given in Nicholls’s
recent book [N], is formulated in terms of Sullivan’s notion of a conformal density. This
makes the equivariant theory work out quite neatly. Our approach to the uniqueness of a
Γ-invariant conformal density when all Γ-invariant super-harmonic functions are constant
is somewhat different from the approach used in [N] and [Su1]. We show (Proposition
3.7) that an arbitrary (n − 1)-conformal density on Hn, not necessarily Γ-invariant, is
determined by the associated harmonic funtion. This works only when the degree of the
conformal density is n − 1, but is simpler than the arguments in [N] and [Su1] which
depend on the ergodicity of the action of Γ on its limit set with respect to the measure
class determined by the conformal density.

3.1. By a Borel measure on a locally compact metrizable space X we shall mean a measure
on the Borel subsets of X which is finite on the compact subsets of X. Measures will always
be understood to be non-negative: we shall have no occasion to consider signed measures.
If µ is a finite measure on a space X, the number µ(X) will be called the total mass of µ.
If µ is a measure, and f a measurable function, on a measurable space (X,B), and if ν is
the measure defined by ν(E) =

∫
E
fdµ for every E ∈ B, then we write dν = fdµ.

If x is a point of a locally compact metrizable space X, we denote by δx the Dirac
measure supported at x: by definition, for any Borel set E ⊂ X we have δx(E) = 1 if
x ∈ E and δx(E) = 0 otherwise.

If X and Y are locally compact metrizable spaces and f : X → Y is a homeomorphism,
then any Borel measure µ on Y gives rise to a measure on X, called the pull-back of µ and
denoted f∗µ. It is defined by (f∗µ)(E) = µ(f(E)) for any Borel set E ⊂ X.

3.2. Conformal densities. Let n be an integer ≥ 2, and letD be a number in [0, n−1]. By a
D-conformal density for the sphere at infinity Sn−1∞ ⊂ Hn we mean a familyM = (µz)z∈Hn
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of finite Borel measures on S∞ = Sn−1∞ , indexed by the points of Hn, such that for any
two points z, z′ ∈ Hn we have dµz′ = P(z, z′, ·)Ddµz.

A family M = (µz)z∈Hn of finite Borel measures on S∞ will be called a conformal

density if it is a D-conformal density for some D ∈ [0, n− 1].

The trivial conformal density is (0)z∈Hn ; it will be denoted by 0. Note that 0 is a D-
conformal density for every D ∈ [0, n− 1]. On the other hand, it is clear that a non-trivial
conformal densityM can be a D-conformal density for only one value of D; we call D the
degree of M.

If z0 is a point of Hn and µ is a finite Borel measure on S∞, then for any D ≥ 0 there
is a unique D-conformal density M = (µz) such that µz0 = µ. Indeed, uniqueness is clear
since for any z ∈ Hn we must have dµz = P(z0, z, ·)Ddµ. To prove existence, we define
µz, for each z ∈ Hn, to be the unique Borel measure such that dµz = P(z0, z, ·)Ddµ; using
2.3 we find that for any points z, z′ ∈ Hn we have

P(z0, z
′, ·)D = P(z0, z, ·)

DP(z, z′, ·)D,

and hence

dµz′ = P(z0, z
′, ·)Ddµ = P(z0, z, ·)

DP(z, z′, ·)Ddµ = P(z, z′, ·)Ddµz,

so that (µz) is the required conformal density.

If M = (µz) is a conformal density then all the measures µz, z ∈ Hn, have the same
support; this follows from the definition, since the function P(z, z′, ·) is strictly positive on
S∞ for all z, z′ ∈ Hn. The common support of the µz will be called the support of M and
will be denoted suppM.

If M = (µz)z∈Hn and M′ = (µ′z)z∈Hn are two D-conformal densities for a given D, it
is clear that (µz + µ′z)z∈Hn is also a conformal density; it will be denoted M+M′. More
generally we can define the sum

∑n
i=Mi of any finite family (Mi)1≤i≤n of D-conformal

densities.

Now let M = (µz)z∈Hn be a D-conformal density and f a continuous positive-valued
function on S∞. For each z ∈ Hn let µ′z be the Borel measure defined by dµ′z = fdµz. It
is clear that N = (µ′z)z∈Hn is a D-conformal density; we shall indicate that N is defined
in this way from f and M by writing dN = fdM.

3.3. The area density. For any point z ∈ Hn, the round metric centered at z determines
an area measure on S∞. We let Az denote such an area measure normalized so as to have
total mass 1. It follows from Proposition 2.4 and the change-of-variable formula for the
Lebesgue integral that (Az)z∈Hn is an (n − 1)-conformal density. This will be called the
area density and will be denoted A.

3.4. Invariant Conformal Densities. Suppose that M = (µz) is a D-conformal density
and that γ:Hn → Hn is an isometry. Then the family of Borel measures (γ∗∞µγz)z∈Hn is
also a D-conformal density. Indeed, for any points z, z′ ∈ Hn and any continuous function
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f on S∞, we have

∫
fd(γ∗∞µγz′) =

∫
(f ◦ γ−1∞ )dµγz′

=

∫
f ◦ γ−1∞ (w)P(γz, γz′, w)Ddµγz(w)

=

∫
f ◦ γ−1∞ (w)P(z, z′, γ−1w)Ddµγz(w)

=

∫
fP(z, z′, ·)Dd(γ∗∞µγz).

We call (γ∗∞µγz) the pull-back of the conformal densityM, and we shall denote it by γ∗M.
Now let Γ be any group of isometries of Hn. A conformal density M will be termed

Γ-invariant if we have γ∗M = M for every γ ∈ Γ. The area density is clearly invariant
under the full group of isometries of Hn.

If a D-conformal density M = (µz) is Γ-invariant then for any z ∈ Hn and any γ ∈ Γ
we have d(γ∗µz) = dµγ−1z = P(z, γ

−1z, ·)D · dµz; hence in view of 2.4 we have

(3.4.1) d(γ∗µz) = λDγ,zdµz.

3.5. Eigenfunctions of the Laplacian. Let n ≥ 2 be an integer, and let D be a number
in the interval [0, n − 1]. Let M = (µz)z∈Hn be a D-conformal density. Let us consider
the non-negative-valued function u = uM on Hn defined by u(z) = µz(S∞). If we fix any
point z0 ∈ Hn, and set µ = µz0 , then according to the definition of a conformal density, u
may be written as

(3.5.1) u(z) =

∫

S∞

P(z0, z, ζ)
Ddµ(ζ).

For the area density A we clearly have uA ≡ 1.
According to Proposition 2.5, for any ζ ∈ S∞ the function φζ = P(z0, ·, ζ)D is C∞ and

satisfies ∆φζ = −D(n −D − 1)φζ . By differentiating under the integral sign in (3.5.1) it
follows that for any D-conformal density M the function u = uM is C∞ and satisfies the
equation

(3.5.2) ∆u = −D(n−D − 1)u.

In particular, if D = n− 1 then (3.5.2) says that u is harmonic.
IfM is invariant (3.4) under a group Γ of isometries of Hn, then for any γ ∈ Γ and any

z ∈ Hn we have

u(γz) = µγz(S∞) = (γ∗µz)(S∞) = µz(S∞) = u(z).

Thus u is Γ-invariant (i.e. constant on the orbits of Γ.)
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3.6. Proposition. Let f be a continuous function on S∞ and let N be the conformal
density defined by dN = fdA, where A is area density. Then the function ū : Hn → R,
defined by ū |Hn = uN and ū | S∞ = f , is continuous.

Proof. We identify Hn via a conformal diffeomorphism with the Poincaré model. Thus
S∞ is identified with the unit sphere Sn−1. We write A = A0. Since f is continuous and
u = uN is C∞, we need only show that if (zi) is a sequence of points in Hn converging to
a point ζ0 ∈ S∞, then u(zi) converges to f(ζ0). We set C = f(ζ0). For each i we have

u(zi) =

∫

S∞

P(0, zi, ζ)
n−1f(ζ)dA(ζ).

On the other hand, the integral
∫
S∞
P(0, zi, ζ)n−1dA(ζ) represents the total mass of Azi ,

which is 1. Hence

u(zi)− C =

∫

S∞

P(0, zi, ζ)
n−1(f(ζ)− C)dA(ζ).

To show that u(zi)→ C, it suffices to show that lim sup |u(zi)−C| < ε for any prescribed
ε > 0. Given ε, let U be a neighborhood of ζ0 in S∞ such that |f(ζ) − C| < ε for every
ζ ∈ U . We may take U to be the δ-neighborhood for some δ > 0 in the standard metric
on Sn−1; thus a point ζ lies in U if and only if ∠(ζ0, 0, ζ) < δ. We may write u(zi)−C as

∫

U

P(0, zi, ζ)
n−1(f(ζ)− C)dA(ζ) +

∫

S∞−U

P(0, zi, ζ)
n−1(f(ζ)− C)dA(ζ).

The first term in the above expression is bounded above in absolute value by ε. We shall
complete the proof by showing that the second term tends to 0 as i→∞.

Since f is continuous on S∞, it is enough to show that supζ∈S∞−U P(0, zi, ζ) tends to
0 as i→∞. This follows easily from the formula (2.1.1) for P. ¤

3.7. Proposition. IfM andM′ are (n− 1)-conformal densities for Hn such that uM =
uM′ , thenM =M′.

Proof. For the purpose of this argument we identify Hn with the Poincaré model Bn, so
that Hn is identified with Bn. Then any point in Hn may be written in the form tθ, where
θ ∈ Sn−1 and 0 ≤ t < 1.

We will use the following fundamental symmetry of the function P which follows directly
from the formula (2.1.1):

(3.7.1) P(0, tζ, θ) = P(0, tθ, ζ)

for any t ∈ [0, 1) and any ζ, θ ∈ Sn−1.
Now letM = (µz) be any (n−1)-conformal density and let f be any continuous function

on S∞. Let N be the conformal density defined by dN = fdA, where A is the area density.
By Proposition 3.6 the function ū : Hn → R, defined by ū |Hn = uN and ū | S∞ = f , is
continuous. Hence

(3.7.2)

∫
fdµ0 = lim

t→1−

∫
uN (tζ)dµ0(ζ).
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For any t < 1 we have, by (3.7.1) and the Fubini Theorem,

∫
uN (tζ)dµ0(ζ) =

∫ ∫
f(θ)P(0, tζ, θ)n−1dA(θ)dµ0(ζ)

=

∫ ∫
P(0, tθ, ζ)n−1dµ0(ζ)f(θ)dA(θ) =

∫
uM(tθ)f(θ)dA(θ).

If M′ = (µ′z) is a second conformal density such that uM = uM′ , then for any t < 1 we
have

∫
uN (tζ)dµ′0(ζ) =

∫
uM′(tθ)f(θ)dA(θ) =

∫
uM(tθ)f(θ)dA(θ) =

∫
uN (tζ)dµ0(ζ).

Taking limits as t→ 1, it follows by (3.7.2) that

∫
fdµ0 =

∫
fdµ′0

for every continuous function f on S∞. Hence µ0 = µ′0. By 3.2 it follows thatM =M′. ¤

3.8. We shall need the following elementary result concerning the degree of a Γ-invariant
conformal density, when Γ is a discrete group (cf. [N, Corollary 3.4.5]).

Proposition. Let Γ be a non-elementary discrete group of isometries of Hn. Then every
non-trivial Γ-invariant conformal density for Hn has strictly positive degree.

Proof. Suppose that there exists a non-trivial Γ-invariant conformal density of degree 0.
By definition, this means that there is a non-zero Γ-invariant finite Borel measure µ on
S∞.

Since Γ is non-elementary, some element γ of Γ is loxodromic; let P and Q be the fixed
points of γ∞. Then any point ζ ∈ S∞ − {P,Q} has a neighborhood U in S∞ such that
γk∞(U) ∩ U = ∅ for all k > 0. Since µ is finite and countably additive, it follows that
µ(U) = 0. This shows that suppµ ⊂ {P,Q}. But supp µ is non-empty and invariant under
Γ; thus S∞ contains a Γ-invariant subset of cardinality 1 or 2. Since Γ is discrete, it follows
that Γ has an abelian subgroup of finite index. This contradicts the hypothesis that Γ is
non-elementary, and the proposition is proved. ¤

3.9. A C∞ function f on a Riemannian manifold is termed superharmonic if it satisfies
the inequality ∆f ≤ 0.

Proposition. Let Γ be a non-elementary discrete group of isometries of Hn. Suppose
that every Γ-invariant positive-valued superharmonic function on Hn is constant. Then
any Γ-invariant conformal density for Hn is a constant multiple of the area density.

Proof. Suppose thatM = (µz) is a Γ-invariant D-conformal density for someD ∈ [0, n−1].
Since Γ is non-elementary, it follows from Proposition 3.9 that D 6= 0. We may assume
that M 6= 0, so that the function u = uM is positive-valued. By 3.5 u is Γ-invariant and
satisfies the equation ∆u = −D(n−D − 1)u; in particular u is superharmonic. Hence by
the hypothesis u is a constant C.
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Thus 0 = ∆u ≡ D(n − D − 1)u. Since D 6= 0 it follows that D = n − 1. Since
uM = C = uCA, Proposition 3.7 then guarantees that M = CA. ¤

Note that our approach to this uniqueness question is based on Proposition 3.7, which
applies to an arbitrary (n − 1)-conformal density. The support of the conformal density
M plays no role in the argument.

Another, somewhat less elementary, approach is found in the literature. Suppose that
M = (µz) is a Γ-invariant D-conformal density with suppM = ΛΓ. (A construction,
due to Patterson, of conformal densities with these properties will be discussed in the next
section.) Then any Γ-invariant D-conformal density supported on ΛΓ is a constant multiple
ofM provided that Γ acts ergodically on S∞ with respect to the measure class determined
by M [N, Theorem 4.2.1]. Suppose that A is a Γ-invariant subset of S∞ such that A and
S∞ − A are sets of positive measure with respect to this measure class. Let M′ be given
by dM′ = χAdM. Using points of density one can show that the ratio uM′/uM tends
to χA along almost all (µ0) rays from the origin in the Poincaré model. Given this, the
ergodicity follows if one knows that the ratio of any two positive Γ-invariant eigenfunctions
of ∆, with eigenvalue −D(n−D − 1), is bounded above and below by positive constants.
In [Su3] Sullivan uses this method to give examples of Kleinian groups Γ, for which there
exist unique Γ-invariant conformal densities of degree 2 supported on ΛΓ, but where these
conformal densities are not constant multiples of the area density. (In fact, for these groups
ΛΓ has area 0, although it follows from the existence of such conformal densities that ΛΓ
has Hausdorff dimension 2.)

§4. The Patterson construction

In this section we describe a construction first introduced by Patterson [P], and ex-
tensively studied by Sullivan ([Su1], [Su2], [Su3]), for associating to a Kleinian group Γ a
Γ-invariant conformal density supported on the limit set of Γ. By taking a slightly more
general point of view than Patterson’s, we are able to construct decompositions of a Pat-
terson density corresponding to decompositions of the group. In Section 5, by specializing
to the case of a free group, we shall obtain the paradoxical decomposition described in the
introduction.

4.1. Uniformly discrete sets. A subset W of Hn will be called uniformly discrete if there
is a number ε > 0 such that dist(z, w) > ε for any two distinct points z, w ∈ W . Such a
number ε will be called a modulus of discreteness for W .

If Γ is any discrete group of isometries of Hn, then for any w ∈ Hn, the orbit W = Γw
is a uniformly discrete set. (Indeed, since Γ is discrete and w has compact stabilizer in
the isometry group of Hn, the orbit Γw is discrete. Thus there is a number ε > 0 such
that nbhdε(w)∩Γw = {w}. Since Γ consists of isometries it follows that ε is a modulus of
discreteness.)

If W ⊂ Hn is any uniformly discrete set, the closure of W in Hn has the form W ∪ Λ,
where Λ is a closed subset of S∞. We call Λ the limit set of W . Note that Λ is empty if
and only if W is finite.

If Γ is a discrete group of isometries, the limit set of any orbit of Γ is the limit set of Γ.
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4.2. The main result of this section is:

Proposition. Let W be an infinite, uniformly discrete subset of Hn, and let V be a
countable collection of subsets of W . Suppose that W ∈ V. Then there exist a number
D ∈ [0, n − 1] and a family (MV )V ∈V of D-conformal densities for Hn, indexed by the
collection V, satisfying the following conditions.

(i) MW 6= 0.

(ii) For any finite family (Vi)1≤i≤m of disjoint sets in V such that V =
∐m
i=1 Vi ∈ V,

we haveMV =
∑m
i=1MVi .

(iii) For any V ∈ V and any isometry γ:Hn → Hn such that γV ∈ V, we have
γ∗∞(MγV ) =MV .

(iv) For any V ∈ V, the support of MV is contained in the limit set of MV . In
particular, for any finite set V ∈ V we haveMV = 0.

Before turning to the proof of the Proposition, let us point out one of its consequences.
If Γ is any non-elementary discrete group of isometries of Hn, then any orbit W of Γ is
uniformly discrete by 4.1 and infinite because Γ is non-elementary. Thus we may apply
Proposition 4.2 toW , taking V to be any countable collection of subsets ofW withW ∈ V

(for example V = {W}). This gives a conformal densityM =MW . It follows from 4.2(iii)
thatM is Γ- invariant. In particular the support ofM is Γ- invariant. On the other hand,
we have suppM 6= ∅ by 4.2(i); and by 4.2(iv) we have suppM ⊂ ΛΓ. Since the action of
Γ on ΛΓ is topologically minimal, it follows that suppM = ΛΓ.

In particular, taking V = {W}, we obtain the following.

Corollary. (Patterson [P]) If Γ is any non-elementary discrete subgroup of isometries of
Hn, there is a Γ-invariant conformal density for Hn whose support is ΛΓ. ¤

The rest of this section is devoted to the proof of the proposition. We are given an
infinite, uniformly discrete set W ⊂ Hn and a countable collection V of subsets of W ,
with W ∈ V.

4.3. The Poincaré Series. For any point z ∈ Hn and any s ≥ 0 we denote by Σ(z, s) the
sum of the “Poincaré series” for the uniformly discrete set W . That is,

Σ(z, s) =
∑

w∈W

e−s dist(w,z)

where we interpret the sum as a non-negative number or +∞.

The following properties of Σ(z, s) are immediate from the definition.

4.3.1. For any z ∈ Hn and any s ≥ s′ ≥ 0 we have Σ(z, s′) ≥ Σ(z, s).

4.3.2. For any z, z′ ∈ Hn and any s ≥ 0 we have

Σ(z′, s) ≤ es dist(z,z
′)Σ(z, s).
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Lemma. There is a unique non-negative number D ≤ n − 1 such that, for every point
z ∈ Hn, the sum Σ(z, s) is finite for all s > D and infinite whenever 0 < s < D.

Proof. First we note that Σ(z, s) is finite for s > n−1. This is proved, in the case thatW is
an orbit of a discrete group, in [N, Theorem 1.6.1]. The proof applies as well to an arbitrary
uniformly discrete set. Briefly, the idea is that the Poincaré series converges as long as s
is larger than the exponential growth rate of the number NR of points of W in the ball of
radius R about z. The uniform discreteness ofW implies that NR cannot grow faster than
the volume V (R) of a ball of radius R. However, we have V (R) = An

∫ r
0
sinhn−1 x dx,

where An is a number depending only on the dimension n. Hence for all R we have
V (R) ≤ Bne

(n−1)R, where Bn is again a number depending only on n.
It now follows from (4.3.1) and the discussion in 4.3 that for each z ∈ Hn there is a

unique number Dz ≤ n−1 such that Σ(z, s) <∞ for all s > Dz and Σ(z, s) =∞ whenever
0 < s < Dz . It follows from 4.3.2 that Dz is independent of z. ¤

The number D given by the lemma is called the critical exponent of W .

4.4. The critically divergent case. The construction of the conformal densities in the
statement of Proposition 4.2 is simplest in the case where Σ(z,D) is infinite for every
z ∈ Hn. We sketch the construction in this case before discussing the general case.

First we define a family of measures µV,z,s on Hn by

µV,z,s =
1

Σ(z, s)

∑

w∈V

e−s dist(w,z)δw,

for z ∈ Hn and s > D.
Now fix an arbitrary point z0 ∈ Hn and let (sj)j≥0 be a decreasing sequence of real

numbers converging to D such that the sequence of measures (µV,sj ,z0) is a weakly con-
vergent sequence. Let µV,z0 denote the limit. The condition Σ(z,D) =∞ implies that the
support of µV,z0 is contained in S∞.

It is immediate from the definition that for all s > D

dµV,z′,s = Π(z, z′, ·)s dµV,z,s.

This implies first of all that the sequence (µV,z,sj ) is weakly convergent for each z ∈ Hn.
Furthermore, letting µV,z denote the limit of the sequence (µV,z,sj ), and viewing these
measures as measures on S∞, we obtain the formula

dµV,z′ = P(z, z
′, ·)DdµV,z.

In particular, MV = µV,z is a D-conformal density.

4.5. Adjustment functions. The above construction must be modified in the case where
Σ(z,D) < ∞; the idea, invented by Patterson, is to perturb the terms in the sum Σ(z, s)
to obtain an expression Σ′(z, s) that is always finite when s > D and infinite when 0 ≤
s ≤ D. In our formulation, we show that for a suitably chosen real-valued function α the
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construction sketched above can be carried out with dist(z, w) replaced by α(dist(z, w))
throughout.

If α is any real-valued function on [0,∞), then for any point z ∈ Hn and any s > 0 we
define

Σ(α, z, s) =
∑

w∈W

e−sα
(
dist(w,z)

)

where we again interpret the sum as a non-negative number or +∞. Note that if id denotes
the identity function on [0,∞) then Σ(id, z, s) = Σ(z, s) for any z and s.

We define an adjustment function to be a C1 real-valued function α on [0,∞) such that
(i) α(0) = 0, (ii) 0 ≤ α′(t) ≤ 1 for all t > 0, and (iii) limt→∞ α′(t) = 1. In particular an
adjustment function α must satisfy 0 ≤ α(t) ≤ t for all t ≥ 0. The identity function on
[0,∞) is obviously an adjustment function.

The following generalizations of 4.3.1 and 4.3.2 hold for any adjustment function α.

4.5.1. For any z ∈ Hn and any s ≥ s′ ≥ 0 we have Σ(α, z, s′) ≥ Σ(α, z, s).

4.5.2. For any z, z′ ∈ Hn and any s ≥ 0 we have

Σ(α, z′, s) ≤ es dist(z,z
′)Σ(α, z, s).

Indeed, 4.5.1 is immediate; and 4.5.2 follows from the observation that, by virtue of
condition (ii) in the definition of an adjustment function, we have

∣∣α
(
dist(w, z)

)
− α

(
dist(w, z′)

)∣∣ ≤ | dist(w, z)− dist(w, z′)| ≤ dist(z, z′)

for any w ∈W .
We also have the following extension of 2.1.

Lemma. For any adjustment function α, the function Π̄α : Hn ×Hn ×Hn → R defined
by

Π̄α(z, z
′, w) = exp(α(dist(z, w))− α(dist(z′, w)))

for (z, z′, w) ∈ Hn ×Hn ×Hn, and

Π̄α(z, z
′, ζ) = P(z, z′, ζ)

for (z, z′, ζ) ∈ Hn ×Hn × S∞, is continuous.

Proof. It is enough to prove that if (zi), (z
′
i) and (wi) are sequences of points in Hn which

converge respectively to points z ∈ Hn, z′ ∈ Hn and ζ ∈ S∞, then

lim
i→∞

exp
(
α
(
dist(zi, wi)

)
− α

(
dist(z′i, wi)

))
= P(z, z′, ζ).

By definition, we have

lim
i→∞

exp
(
dist(zi, wi))− dist(z′i, wi)

)
= P(z, z′, ζ).

In particular, dist(zi, wi)− dist(z′i, wi) converges. Since α
′(t)→ 1 as t→∞ we have

lim
i→∞

α
(
dist(zi, wi)

)
− α

(
dist(z′i, wi)

)

dist(zi, wi)− dist(z′i, wi)
= 1.

The result follows. ¤
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4.6. Lemma. There exists an adjustment function α such that, for every z ∈ Hn, we
have Σ(α, z, s) <∞ for all s > D, and Σ(α, z, s) =∞ whenever 0 ≤ s ≤ D.

Proof. First consider an arbitrary adjustment function α. Since α(t) ≤ t for all t ≥ 0, we
have Σ(α, z, s) ≥ Σ(z, s) for all s; hence Σ(α, z, s) = ∞ when 0 ≤ s < D. Now suppose
that s > D and choose a positive number k < 1 such that sk < D. Since limt→∞ α′(t) = 1,
there is a constant C such that α(t) ≥ kt− C for all t ≥ 0. Hence, for s > D, we have

Σ(α, z, s) ≤ eCsΣ(z, sk) <∞.

Thus we need only to construct α so that Σ(α, z,D) = ∞. We first dispose of the
special case D = 0. Since W is infinite, it is clear that Σ(z, 0) = +∞ for every z. Hence
in the case D = 0 we may take α to be the identity function.

Now suppose that D > 0. If α is any adjustment function, it follows from 4.5.2 that
Σ(α, z,D) is either finite for all z ∈ Hn or infinite for all z ∈ Hn. Hence we need only show
that for a given point z ∈ Hn there is an adjustment function α such that Σ(α, z,D) = +∞.

Let (θm)m≥1 be a strictly increasing sequence of positive numbers which converge to 1.
For each m ≥ 1 we set sm = θmD. Since 0 < sm < D, the sum

Σ(z, sm) =
∑

w∈W

e−sm dist(w,z)

is infinite. Hence there is a finite subset Xm of W such that

∑

w∈Xm

e−sm dist(w,z) ≥ m.

Let (Rm)m≥1 be a monotone increasing sequence of positive numbers tending to +∞,
such that for each m ≥ 1 and each w ∈ Xm we have dist(z, w) ≤ Rm. Let β be any
continuous, monotone increasing real-valued function on [0,∞) such that β(Rm) = θm for

all m > 0 and β(t) < 1 for all t ≥ 0. Then α(t) =
∫ t
0
β(u) du is an adjustment function

and α(t) ≤ θmt whenever 0 ≤ t ≤ Rm. For each m > 0 and each w ∈ Xm we have
dist(w, z) < Rm, and hence

α
(
dist(w, z)

)
D ≤ θmD dist(w, z) = sm dist(w, z).

Thus

Σ(α, z,D) ≥
∑

w∈Xm

e−Dα(dist(w,z)) ≥
∑

w∈Xm

e−sm dist(w,z) ≥ m.

Since this holds for all m ≥ 1, we must have Σ(α, z,D) = +∞. ¤

For the rest of this section, we fix an adjustment function α constructed as in the lemma.
We shall write Σ′(z, s) = Σ(α, z, s) for all z and s.
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4.7. For any s > D and any V ∈ V we have

∑

w∈V

e−sα(dist(w,z)) ≤ Σ′(z, s) <∞

by Lemma 4.6. Hence we may define a Borel measure

∑

w∈V

e−sα(dist(w,z))δw

on Hn. This measure will be denoted µV,z,s. Its total mass is ≤ Σ′(z, s), with equality
when V =W .

4.8. For the rest of this section we fix, arbitrarily, a point z0 ∈ Hn.

Lemma. There exists a sequence (sj)j≥0 of real numbers with the following properties:
(i) sj > D for all j, and limj→∞ sj = D;
(ii) for every V ∈ V, the sequence (Σ′(z0, sj)

−1µV, z0, sj)j≥0 is a weakly convergent

sequence of Borel measures on Hn.

Proof. Let (ti) be any sequence of numbers > D such that limi→∞ ti = D. For any
V ∈ V, we have a sequence of measures (Σ′(z0, ti)

−1µV,z0,ti) which by 4.7 all have to-
tal mass ≤ 1. Given any V ∈ V, there is a subsequence (tij ) such that the sequence

(Σ′(z0, tij )
−1µV,z0,tij ) is weakly convergent. Since V is countable, the conclusion of the

lemma follows via diagonalization. ¤

For the rest of the section we fix a sequence (sj) having the above properties (i) and
(ii). For each j ≥ 0 we set Cj = Σ′(z0, sj). For each V ∈ V we let µ0V denote the weak

limit of the sequence ( 1Cj µV,z0,sj ); by definition, µ0V is a Borel measure on Hn.

4.9. Lemma. We have Cj → +∞ as j →∞.

Proof. By 4.6 we have Σ′(z0, D) = +∞. This implies the lemma since the terms of the
sum Σ′(z, s) =

∑
i∈I e

−sα(dist(wi,z)) are positive-valued continuous functions of s. ¤

4.10. Lemma. For each V ∈ V, the measure µ0V has support contained in S
n−1
∞ .

Proof. It is enough to show that µ0V (C) = 0 for any compact set C ⊂ Hn. The set V ∩ C
is finite since V is a subset of the uniformly discrete set W . We have

µV,z0,sj (C) =
∑

w∈V

exp(−sjα(dist(w, z))) ≤ card (V ∩ C)

for each j ≥ 0. Thus 1
Cj
µ0V (C) is at most 1

Cj
card (V ∩ C), which tends to 0 as j →∞ by

virtue of Lemma 4.9. Hence µ0V (C) = 0. ¤
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4.11. Lemma. For any V ∈ V and any point z ∈ Hn, the sequence ( 1Cj µV,z,sj ) converges

weakly to µV,z.

Proof. It is immediate from the definition that dµV,z,sj = Πα(z0, z, ·)sjdµV,z0,sj , where

Π̄α is the function given by Lemma 4.5. Setting µ0j = 1
Cj
µV,z0,sj and µj = 1

Cj
µV,z,sj , we

therefore obtain, for any continuaous function f on Hn and any j ≥ 0,

∫
f dµj =

∫
Πα(z0, z, ·)

sjf dµ0j .

Now since limj→∞ sj = D, and since f and Π are continuous on the compact space Hn,
we have Π̄α(z0, z, ·)sjf → Π̄α(z0, z, ·)Df uniformly. Since the µ0j converge weakly to µ0V ,
it follows that

lim
j→∞

∫
Πα(z0, z, ·)

sjf dµ0j =

∫
Πα(z0, z, ·)

Df dµ0V =

∫
PDf dµ0V .

The right-hand side of the last equation is equal to
∫
fdµV,z since MV = (µV,z) is a

D-conformal density. So we have

lim
j→∞

∫
fdµj =

∫
fdµV,z.

This proves the lemma. ¤

Proof of Proposition 4.2.. In light of Lemma 4.10, for each V ∈ V, the measure µ0V may
be regarded as a measure on S∞. According to 3.3, there exists for each V ∈ V a unique
D-conformal density MV = (µV,z) such that µV,z0 = µ0V . We shall prove Proposition 4.2
by showing that the family (MV ) of D-conformal densities satisfies conditions (i) - (iv) of
the proposition.

To prove (i) it is enough to show that µW,z0 6= 0. But as we observed in 4.7, for each
s > D and each z ∈ Hn, the measure µW,z,s has total mass Σ′(z, s); in particular, for
each j ≥ 0 the total mass of µW,z0,sj is Cj . Thus µW,z0 is the weak limit of a sequence of
measures of total mass 1, and therefore itself has total mass 1.

To prove (ii) we observe that if V =
∐m
i=1 Vi, where V and the Vi belong to V, then for

each s > D and each z ∈ Hn we have µV,z,s =
∑m
i=1 µVi,z,s by the definitions of µV,z,s and

µVi,z,s. Hence for each j ≥ 0 we have

1

Cj
µV,z,s =

1

Cj

m∑

i=1

µVi,z,s.

Using Lemma 4.11 we can take weak limits of both sides to obtain

µV,z =
m∑

i=1

µVi,z.
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This proves (ii).
To prove (iii) we must show that if V is a set in V and γ is a hyperbolic isometry such

that γV ∈ V, then for each z ∈ Hn we have γ∗∞µγV,γz = µV,z. If we think of µγV,γz and

µV,z as measures on Hn, then γ∗∞µγV,γz may be rewritten as γ̄∗µγV,γz . For each s > D we
have

γ̄∗µγV,γz,s =
∑

w∈V

e−sα(dist(γw,γz))γ̄∗(δγw) =
∑

w∈V

e−sα(dist(w,γz))δw = µV,z,s.

Hence for each j ≥ 0 we have

γ̄∗(
1

Cj
µγV,γz,sj ) =

1

Cj
µV,z,sj .

Using Lemma 4.11 we can take weak limits of both sides to obtain γ̄∗µγV,γz = µV,z, as
required.

To prove (iv) we consider an arbitrary set V ∈ V. For any s > D, it follows from the
definition of the measure µV,z0,s that the support of µV,z0,s is exactly V ∪ ΛV , the closure

of V in Hn. Hence supp 1
Cj
µV,z0,sj = V ∪ ΛV for each j ≥ 0. By Lemma 4.11 it follows

that supp µ0V ⊂ V ∪ ΛV . But supp µ0V ⊂ S∞ by 4.10, and hence supp µ0V ⊂ ΛV . This
implies (iv). ¤

§5. The paradoxical decomposition

This section is devoted to the proof of the following two results.

5.1. Proposition. Let Γ be a Kleinian group which is free on a generating set Ξ with k
elements, where 2 ≤ k <∞. Suppose that every Γ-invariant conformal density for H3 is a
constant multiple of the area density. Then for any z ∈ H3 we have

max
ξ∈Ξ

dist(z, ξ · z) ≥
1

2
log((k − 1)(2k − 1)).

5.2. Proposition. Let ξ and η be two orientation-preserving isometries of H3. Suppose
that the group Γ generated by ξ and η is discrete and is free on the generators ξ and η.
Suppose in addition that every Γ-invariant conformal density for H3 is a constant multiple
of the area density. Then for any z ∈ H3 we have

max(dist(z, ξ · z), dist(z, η · z)) ≥ log 3.

5.3. The key step in the proofs of Propositions 5.1 and 5.2 is the following lemma. When
the hypotheses of 5.1 or 5.2 are saøisfied, the lemma will give the “paradoxical” decompo-
sition of the normalized area measure on S∞ which was described in the introduction.
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Lemma. Let Γ be a Kleinian group which is free on a generating set Ξ. Set Ψ = ΞqΞ−1 ⊂
Γ. Let z0 be any point of H3. Then there exist a number D ∈ [0, 2], a Γ-invariant D-
conformal densityM = (µz) for H3 and a family (νψ)ψ∈Ψ of Borel measures on S∞ such
that

(i) µz0(S∞) = 1;
(ii) µz0 =

∑
ψ∈Ψ νψ; and

(iii) for each ψ ∈ Ψ we have

∫
(λψ,z0)

Ddνψ−1 = 1−

∫
dνψ.

If Ξ is a two-element set {ξ, η} and if z0 ∈ `(ξ, η) (see 1.8) then we also have
(iv) ∫

dνξ−1 =

∫
dνξ and

∫
dνη−1 =

∫
dνη.

Proof. Every element γ of Γ can be written uniquely as a reduced word ψ1 · · ·ψm, where
m ≥ 0, each ψi is an element of Ψ, and ψi+1 6= ψ−1i for i = 1, . . . ,m− 1. If γ 6= 1, i.e. if
m > 0, we shall call ψ1 the initial letter of γ. For each ψ ∈ Ψ, let Jψ denote the set of
non-trivial elements of Γ that have initial letter ψ. Then Γ is a finite disjoint union

{1} q
∐

ψ∈Ψ

Jψ.

Since Γ is discrete and torsion-free, it acts freely on H3. Hence the orbit W = Γz0 is a
disjoint union

(5.3.1) W = {z0} q
∐

ψ∈Ψ

Vψ

where Vψ = {γz : γ ∈ Jψ}. Let V denote the finite collection of all subsets of W which are
sub-unions of the above disjoint union; that is, W consists of all sets of the form

∐
ψ∈Ψ′ Vψ

or {z0} q
∐
ψ∈Ψ′ Vψ for Ψ′ ⊂ Ψ. We apply Proposition 4.2 with these choices of W and

V. We take D to be a number, and (MV )V ∈V a family of conformal densities, for which
conditions (i)–(iv) of 4.2 are satisfied. We writeMV = (µV,z)z∈Hn . We setM =MW , and
νψ = µVψ,z0 for each ψ ∈ Ψ. According to 4.2,M is Γ-invariant. It follows from condition
(i) of 4.2 and the definition of a conformal density that µz0 = µW,z0 6= 0; hence after
multiplying by a constant we may assume that µz0 has total mass 1. This is conclusion
(i) of the present lemma. We shall show that the other conclusions of the lemma also hold
with these definitions of M and of the νψ.

By (5.3.1) above and condition (ii) of 4.2, we have

µz0 = µW,z0 = µ{z0},z0 +
∑

ψ∈Ψ

µVψ,z0 .
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But µ{z0},z0 = 0 by condition (iv) of 4.2. Hence

µz0 =
∑

ψ∈Ψ

µVψ ,z0 =
∑

ψ∈Ψ

νψ

which is conclusion (ii) of the lemma.
It follows immediately from the definition of the sets Jψ that for each ψ ∈ Ψ we have

ψJψ−1 = Γ− Jψ,

so that
ψVψ−1 =W − Vψ.

Since W − Vψ = {z0} q
∐
ψ′ 6= ψVψ′ ∈ V, condition (iii) of 4.2 gives

(5.3.2) MVψ−1 = ψ∗∞(MW−Vψ).

On the other hand, by 4.2(ii) we have

M =MW−Vψ +MVψ .

Thus (5.3.2) can be rewritten in the form MV
ψ−1 = ψ∗∞(M−MVψ); and in particular we

have

(5.3.3) µV
ψ−1,ψ(z0)

= ψ∗∞(µz0 − µVψ,z0) = ψ∗∞(µz0 − νψ).

Since MV
ψ−1 is a D-conformal density, we have

dµV
ψ−1 ,ψ(z0) = P(z0, ψ

−1z0, ·)
DdµV

ψ−1 = λDψ,z0dµVψ−1 ,

where the last equality follows from Proposition 2.4. Hence, equating the total masses of
the two sides of (5.3.3), we obtain

∫
λDψ,z0dµVψ−1 =

∫
d(ψ∗∞(µz0 − νψ)) =

∫
d(µz0 − νψ) = 1−

∫
dνψ,

and conclusion (iii) of the lemma is established.
It remains to show that conclusion (iv) holds if Ξ = {ξ, η} and z0 ∈ `(ξ, η). Since the

involution τ = τξ,η satisfies τξτ = ξ−1 and τητ = η−1, we have τΓτ = Γ; furthermore,
τJξτ = Jξ−1 and τJητ = Jη−1 . On the other hand, since z0 ∈ `(ξ, η) we have τz0 = z0.
Hence Vξ−1 = {γz0 : γ ∈ Jξ−1} = {τγτz0 : γ ∈ Jξ} = τVξ. By condition (iii) of 4.2
it follows that τ∗∞MVξ = MV

ξ−1 . In particular, τ∗∞νξ = νξ−1 . Taking total masses of

both sides gives
∫
dνξ−1 =

∫
dνξ. The same argument shows that

∫
dνη−1 =

∫
dνη. This

establishes (iv) and completes the proof of the lemma. ¤

The proof of Propositions 5.1 and 5.2 will require combining Lemma 5.3.3 with the
elementary considerations covered by the following two lemmas.
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5.4. Lemma. Let µ and µ0 be measures of finite total mass on a measurable space (X,B).
Suppose that 0 ≤ µ0 ≤ µ. Let C be a Borel set such that µ(C) ≥ µ0(X). Let f be a
measurable, non-negative real-valued function on X such that inf f(C) ≥ sup f(X − C).
Then ∫

X

fdµ0 ≤

∫

C

fdµ.

Proof. We write µ = µ0 + µ1, where µ1 is again a measure on (X,B). We have

µ0(X − C) = µ0(X)− µ0(C) ≤ µ(C)− µ0(C) = µ1(C),

so that

∫

X−C

fdµ0 ≤ (sup f(X − C)) · µ0(X − C) ≤ (inf f(C)) · µ1(C) ≤

∫

C

fdµ1.

Hence

∫

X

f dµ0 =

∫

C

f dµ0 +

∫

X−C

f dµ0 ≤

∫

C

f dµ0 +

∫

C

f dµ1 =

∫

C

f dµ.

¤

5.5. Lemma. Let a and b be numbers such that 0 ≤ a ≤ 1
2
and 0 ≤ b ≤ 1, let γ be an

isometry of H3 and let z be a point in H3. Suppose that ν is a measure on S∞ such that
(i) ν ≤ Az,
(ii) ν(S∞) ≤ a, and
(iii)

∫
S∞

λ2γ,z dν ≥ b.

Then

dist(z, γ · z) ≥
1

2
log

a(1− b)

b(1− a)
.

Proof. We let h denote the constant dist(z, γ · z), and set c = coshh and s = sinhh. We
let λ denote the function λγ,z. We identify H3 conformally with the unit ball in R3 in
such a way that z is the origin (so that S∞ has the round metric centered at z) and γ−1 · z
is on the positive vertical axis.

According to 2.4, we have λ(ζ) = P(z, γ−1 · z, ζ) for all ζ ∈ S∞. Hence by (2.1.1), λ is
given by the formula

λ(ζ) = (c− s cosφ)−1

where φ = φ(ζ) is the angle between the positive vertical axis and the ray from the origin
through ζ; thus φ is the polar angle of ζ in spherical coordinates.

Set A = Az. Since S∞ has the round metric centered at z, the measure A is obtained
by dividing the area measure on the unit sphere by the area 4π of the sphere. In spherical
coordinates θ and φ on the unit sphere we have dA = (1/4π) sinφ dφdθ.
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Set φ0 = arccos(1 − 2a), and let C ⊂ S∞ denote the spherical cap defined by the
inequality φ ≥ φ0. Then we have

A(C) =
1

4π

∫ 2π

0

∫ φ0

0

sinφ dφdθ =
1

2
(1− cosφ0) = a.

Thus by hypothesis (ii) we have A(C) ≥ ν(S∞). Observe also that since λ is given by
the function (c− s cosφ)−1, which is positive and monotone decreasing for 0 ≤ φ ≤ π, we
have inf λ(C) ≥ sup λ(Ξ− C). Since we also have ν ≤ A by hypothesis (i), we may apply
Lemma 5.4 with f = λ2 to obtain

∫

S∞

λ2dν ≤

∫

C

λ2dA =
1

4π

∫ 2π

0

∫ φ0

0

sinφ

(c− s cosφ)2
dφdθ

=
1

2

∫ φ0

0

sinφ

(c− s cosφ)2
dφ =

1

2s
(

1

c− s
−

1

c− cosφ0
)

where the last step follows from the substitution u = c − s cosφ. Recalling that cosφ0 =
1− 2a and using hypothesis (iii), we find that

b ≤

∫

S∞

λ2dν ≤
a

(c− s)(c− s+ 2as)
.

After rewriting c and s respectively as 1
2
(eh + e−h) and 1

2
(eh − e−h), and simplifying, we

conclude that

e−2h ≤
a(1− b)

b(1− a)
.

¤

Proof of Proposition 5.1. Suppose that Γ and Ξ satisfy the hypotheses of the proposition,
and let z0 ∈ Hn be an arbitrary point.

We wish to show that

max
ξ∈Ξ

dist(z0, ξ · z0) ≥
1

2
log((k − 1)(2k − 1)).

In particular Γ and Ξ satisfy the satisfy the hypotheses of Lemma 5.3, and so there exist a
number D ∈ [0, 2], a conformal density M = (µz) and a family of Borel measures (νψ)ψ∈Ψ
(where Ψ = ΞqΞ−1), for which conclusions (i)–(iii) of 5.3 hold. But the hypotheses of 5.1
imply that M is a constant multiple of the area density A; hence D = 2. Since µz0 has
total mass 1 by 5.3(i), we must in fact have M = A.

By 5.3(ii) we have

1 =
∑

ψ∈Ψ

νψ(S∞) =
∑

ξ∈Ξ

(νξ(S∞) + νξ−1(S∞)).
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Hence for some ξ0 ∈ Ξ we have νξ0(S∞) + νξ−1
0

(S∞) ≤ 1
k . It follows that for some

ψ0 ∈ {ξ0, ξ
−1
0 } we have νψ0

(S∞) ≤ 1
2k .

We set λ = λψ0,z and ν = νψ0
− 1 . By 5.3(iii) we have

∫

S

λ2dν = 1− νψ0
(S∞) ≥ 1− (νξ0(S∞) + νξ0 − 1(S∞)) ≥ 1−

1

k
.

Furthermore, it follows from 5.3(ii) that ν ≤ µz0 = Az0 . Hence we may apply Lemma 5.5
with z = z0, γ = ψ0, a = 1

2k and b = 1− 1
k . This gives

dist(z, ψ0 · z) ≥
1

2
log((k − 1)(2k − 1)).

But since ψ0 = ξ±10 we have dist(z, ψ0 · z) = dist(z, ξ0 · z), and the conclusion follows. ¤

Proof of Proposition 5.2. Suppose that Γ, ξ and η satisfy the hypotheses of the proposition.
Let z0 ∈ Hn be any point; we wish to show that max(dist(z0, ξ ·z0), dist(z0, η ·z0)) ≥ log 3.
Set ` = `(ξ, η). It follows from Proposition 1.15 that

max(dist(z0, ξ · z0), dist(z0, η · z0)) ≥ max(dist(z1, ξ · z1), dist(z1, η · z1)),

where z1 denotes the orthogonal projection of z0 onto `. Hence we may assume without
loss of generality that z0 ∈ `.

In particular Γ and Ξ = {ξ, η} satisfy the hypotheses of Lemma 5.3, and so there exist a
number D ∈ [0, 2], a conformal densityM = (µz) and a family of Borel measures (νψ)ψ∈Ψ
(where Ψ = {ξ, ξ−1, η, η−1}), for which conclusions (i)–(iv) of 5.3 hold. But the hypotheses
of 5.2 imply that M is a constant multiple of the area density A; hence D = 2. Since µz0
has total mass 1 by 5.3(i), we must in fact have M = A.

By conclusions (ii) and (iv) of 5.3 we have

1 = 2νξ(S∞) + 2νη(S∞)

so that either νξ(S∞) or νη(S∞) is≤ 1/4. By symmetry we may assume that νξ(S∞) ≤ 1/4.
We set λ = λξ−1,z0 . By 5.3(iii) and (iv) we have

∫

S

λ2dνξ = 1− νξ−1(S∞) = 1− νξ(S∞) ≥ 3/4.

Furthermore, it follows from 5.3(i) that νξ ≤ A. Hence we may apply Lemma 5.5 with
ν = νξ, γ = ψ0, a = 1

4 and b = 3
4 . This gives

dist(z0, ξ
−1 · z0) ≥ log 3.

Since dist(z0, ξ · z0) = dist(z0, ξ
−1 · z0), the conclusion follows. ¤
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§6. Bonahon surfaces and superharmonic functions

The results of Section 5 depend on the hypothesis that every Γ-invariant conformal
density is a constant multiple of the area density, where Γ is the given free Kleinian
group. According to Proposition 3.9, this is always true if every positive, Γ -invariant
superharmonic function on H3 is constant. Thus in order to apply the results of Section
5 one needs a geometric condition that guarantees that the hyperbolic manifold M(Γ)
admits no non-constant positive superharmonic functions. In this section we describe such
a condition. Very similar conditions have been used in Thurston [Th 8.12] and, later, in
Sullivan [Su3], Bohanon [Bo] and Canary [Ca1].

For our applications we need only consider Kleinian groups Γ which contain no parabol-
ics and satisfy M(Γ) = N(Γ). We will restrict attention to these groups whenever conve-
nient. While the complications which arise from the existence of parabolics can be dealt
with, it would unnecessarily complicate the exposition to do so here.

6.1. Let Σ be a closed 2-manifold, not necessarily connected. Let u ∈ H2(Σ;Z/2) denote
the fundamental class of Σ, i.e. the sum of the images under inclusion of the fundamental
classes of the components of Σ. A map f : Σ → M will be said to be null-homologous if
the class f∗(u) ∈ H2(M ;Z/2) is trivial. Suppose that f : Σ→M is a null-homologous map
and that P is a point of M − f(P ). We will say that P is strictly enclosed by f if the
class f∗(u) ∈ H2(M − {P};Z/2) is non-trivial, where we are regarding f as a map from
Σ to M − {P}. We will say that a point P ∈ M is enclosed by the null-homologous map
f if either P ∈ f(Σ) or P is strictly enclosed by f . A compact set K will be said to be
enclosed by f if every point of K is enclosed by f .

Proposition. Let Γ be a Kleinian group without parabolics such that M(Γ) = N(Γ).
Suppose that fj: Σj →M is a sequence of maps from closed 2-manifolds into M such that
every compact subset of M(Γ) is enclosed by some fj . If there exists a constant V such
that the volume of nbhd1 fj(Σj) is less than V for all j then every positive superharmonic
function on M is constant.

Proof. This statement is proved by an argument given in [Th, 8.12] and [Ca, Theorem 7.1].
In that argument it is assumed that M has k simply degenerate ends with neighborhoods
homeomorphic to S1 × [0,∞), . . . , Sk × [0,∞). The argument is applied to a sequence
of maps fj: Σ → M where Σ = Σj is the disjoint union of S1, . . . , Sk and where the
restriction of fj to Si is homotopic to the inclusion of Sj × {0} into M . The argument
uses two properties of these maps. First that there is a bound on the volume of the sets
nbhd1

(
fj(Σj)

)
and second that a flow line which exits an end of M must pass through

infinitely many of these sets. The second property follows immediately from our hypothesis
that every compact set in M is enclosed by one of the maps fj . ¤

The rest of this section is devoted to a description of a geometric construction, due to
Bonahon, of maps that satisfy the hypotheses of Proposition 6.1. The construction is a
simplification of Thurston’s construction of “pleated surfaces.”

6.2. Virtual triangulations. A mapping ϕ of an affine k-simplex ∆k into a topological
space X will be said to define a virtual k-simplex in X if ϕ is one-to-one on the interior of
each face of ∆k. Two maps ϕ : ∆ → X and ϕ′ : ∆′ → X will be said to define the same
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virtual simplex if there is an affine isomorphism I : ∆ → ∆′ such that ϕ ◦ I = ψ. By the
interior of the virtual simplex (defined by) ϕ : ∆ → X we mean the set ϕ(int ∆). The
dimension of ϕ is the dimension of ∆. A virtual simplex ϕ1 : ∆1 → X is called a face of
a virtual simplex ϕ if there is an affine isomorphism J of ∆1 onto a face of ∆ such that
ϕ ◦ J = ϕ1.

Let Σ be a topological 2-manifold-with-boundary. (We may have ∂Σ = ∅, and Σ may
be disconnected.) A virtual triangulation of Σ is a collection Φ of virtual simplices in Σ
such that

(i) Φ contains the faces of each simplex in Φ, and
(ii) as a set, Σ is the disjoint union of the interiors of the virtual simplices in Φ.

(Note that two faces of a simplex may coincide.)
For any integer i, the i-skeleton of Σ in a given virtual triangulation is defined to be

the union of the interiors of all the virtual simplices of dimension ≤ i; we denote it by
skeli(K). The virtual 0-simplices of Σ will be called vertices.

A virtual 1-simplex ϕ in the 2-manifold-with-boundary Σ may be regarded as a (non-
oriented) path in Σ. If ϕ is a homotopically trivial loop we shall say that it is degenerate.
A virtual triangulation will be termed non-degenerate if it has no degenerate 1-simplices.

6.3. Piecewise hyperbolic structures. Let ϕ : ∆→ Σ be a virtual 2-simplex in a topological
surface Σ. A homeomorphism h of ∆ = domainϕ onto a triangle in H2 which maps vertices
onto vertices will be said to define a hyperbolic structure on ϕ. Two such homeomorphisms
h and h′ will be said to define the same hyperbolic structure on ϕ if h′h−1 is an isometry of
hyperbolic triangles. If ψ : ∆1 → Σ is a 1-dimensional face of ϕ, any hyperbolic structure
on ϕ induces a linear metric on ∆1.

A virtual 1-simplex in the interior of a virtually triangulated surface Σ either occurs as
a face of two distinct 2-simplices or as two coincident faces of a single 2-simplex. Thus
if each 2-simplex in Σ is given a hyperbolic structure then for each interior 1-simplex
there are two linear metrics induced on ∆1. A piecewise-hyperbolic (PH) structure on Σ
is a family of hyperbolic structures on the virtual 2-simplices of Σ such that, for every
interior 1-simplex of Σ, the two induced linear metrics on ∆1 agree. A PH-structure on
Σ determines, in a natural way, the structure of a (necessarily incomplete) hyperbolic
2-manifold with geodesic boundary on Σ− skel0(Σ),

If ϕ: ∆→ Σ is a virtual 2-simplex and w is a vertex of ∆, we shall denote by θw(ϕ) the
angle in the hyperbolic triangle ∆ at the vertex w. For any vertex x of Σ we define the
angle sum at x in a given triangulation to be

∑
ϕ,w θw(ϕ), where ϕ ranges over all virtual

2-simplices of the given virtual triangulation, and w ranges over all the vertices of domϕ
which are mapped by ϕ to x. (Note that a given virtual 2-simplex ϕ can contribute as
many as three terms to this sum.) If x is a point of Σ which is not a vertex, we define the
angle sum at x to be 2π if x ∈ intΣ and π if x ∈ ∂Σ.

Let x be any point of Σ and let a denote the angle sum at x. If x ∈ int Σ we set
excess(x) = a − 2π. If x ∈ ∂Σ we set excess(x) = a − π. We call x a singular point if
excess(x) 6= 0. If x ∈ ∂Σ and excess(x) < 0, we call x a corner. We shall denote by singΣ
the set of all singular points of Σ. It is clear that the natural hyperbolic structure on
Σ− skel0(Σ) admits a unique extension to a hyperbolic structure on Σ− singΣ.

Given a virtual 2-simplex ϕ: ∆→ Σ in the PH surface Σ, a path in ϕ(∆) will be called
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geodesic if it has the form ϕ ◦ α for some geodesic path α (parametrized proportionally to
arc length) in ∆. A path in Σ will be termed piecewise geodesic (PG) if it is a composition
γ = (ϕ1 ◦ α1) ∗ · · · ∗ (ϕn ◦ αn) of finitely many geodesic paths supported in 2-simplices
of Σ. The length of γ is the sum of the lengths of the αi. Any two points in the same
component of Σ can be joined by a PG path, and it is not hard to show that a metric on
each component of Σ can be constructed by defining dist(x, y) to be the infimum of the
lengths of PG paths joining x and y. It is also not difficult to verify that this metric agrees
with the hyperbolic metric on the components of Σ− singΣ.

6.4. Ultrahyperbolic surfaces. We define an ultrahyperbolic structure on a virtually trian-
gulated surface Σ to be a PH structure such that excess(x) ≥ 0 for every x ∈ intΣ. The
ultrahyperbolic surfaces form a rich class of geometric objects which are natural gener-
alizations of hyperbolic surfaces. For example, by a generalization of the Gauss-Bonnet
theorem which applies to PH surfaces (c.f. [Bo, Lemme 1.9]), each component of a surface
with an ultrahyperbolic structure must have negative Euler characteristic. The fundamen-
tal geometric property of these surfaces which we will need here is the version of Bonahon’s
Bounded Diameter Lemma stated below.

Given an ultrahyperbolic surface Σ and a point P ∈ Σ we define short(P ) to be the
infinum of the lengths of homotopically non-trivial PG loops based at P . If I is an interval
contained in (0,∞) we define ΣI as in 1.5. In particular, for ε > 0, the ε-thin part of Σ is
the subset Σ(0,ε]. Given a PG path γ in Σ we define the length of γ modulo Σ(0,ε] to be

the length, i.e. the Lebesgue measure, of γ−1(Σ(ε,∞)). If P and Q are points of Σ then the
distance from P to Q modulo Σ(0,ε] is the infimum of the set of lengths modulo Σ(0,ε] of PG
paths from P to Q. The diameter of Σ modulo Σ(0,ε] is the supremum over all P,Q ∈ Σ
of the distance modulo Σ(0,ε] from P to Q.

The following result is due to Bonahon [Bo, Lemme 1.10].

Proposition. For each positive integer g and each positive number ε there exists a con-
stant D(g, ε) such that if Σ is a closed ultrahyperbolic surface of total genus g then the
diameter of σ modulo Σ(0,ε] is less than D(g, ε).

6.5. Hyperbolically simplicial surfaces. Let us consider a complete hyperbolic manifold
M = Hn/Γ. A map f of a virtually triangulated (not necessarily connected) surface Σ
into M will be called hyperbolically simplicial if for every virtual simplex ϕ : ∆ → Σ, the

map fϕ = f ◦ ϕ admits a continuous lift f̃ϕ : ∆ → Hn such that f̃ϕ(∆) is a hyperbolic

simplex and either (i) dim f̃ϕ(∆) < dim∆ or (ii) f̃ϕ maps ∆ homeomorphically onto

f̃ϕ(∆). If (ii) holds for every simplex of Σ we shall say that f is non-degenerate. If f is

non-degenerate then for each virtual 2-simplex ϕ the map f̃ϕ induces a hyperbolic structure
on the 2-simplex ∆ which is obviously independent of the choice of lift. The linear metric
induced on the domain of a 1-simplex ψ by an adjacent 2-simplex agrees with the linear

metric determined by f̃ψ. Thus a non-degenerate hyperbolically simplicial map from Σ
to M induces a PH structure on Σ. If we equip Σ with the PH structure induced by the
non-degenerate hyperbolically simplicial map f , then for every PG path γ in Σ, the path
f ◦ γ has the same length as γ. Hence if we give each component of Σ the metric defined
by its PH structure, the restriction of f to each component of Σ is distance-decreasing.
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By a hyperbolically simplicial surface in M we mean a pair (Σ, f), where Σ is a closed,
orientable surface equipped with a virtual triangulation, and f : Σ→M is a hyperbolically
simplicial map. We shall say that (Σ, f) is non-degenerate if the virtual triangulation of Σ
and the map f are non-degenerate. The Euler characteristic and the total genus of a hy-
perbolically simplicial surface (Σ, f) are defined respectively to be the Euler characteristic
and the total genus of the surface Σ.

Suppose we are given a hyperbolically simplicial surface (Σ, f). Then any small pertur-
bation of f |skel0 Σ can be extended over Σ to give a hyperbolically simplicial surface (Σ, f ′)
such that f ′ is homotopic to f . One first modifies f in a neighborhood of the 0-skeleton to
make it agree with f ′ on the vertices. The restrictions to skel1Σ and skel2 Σ can then be
successively modified to make them geodesic. The map f ′ can be made arbitrarily close
to f in the uniform topology by choosing the initial perturbation to be sufficiently small.

We will say that a hyperbolically simplicial surface (Σ, f) encloses a compact setK ⊂M
provided that the map f : Σ→M is null-homologous and encloses K.

6.6. Bohanon surfaces. A continuous map f of a topological 1-manifold S into a hyperbolic
3-manifold M will be called geodesic if for every component C of S there is a covering map
p : R → C such that f ◦ p is a geodesic. In the case where S is a simple closed curve,
i.e. is homeomorphic to S1, a geodesic map f : S →M is a re-parametrization of a closed
geodesic in M , and thus has a well-defined length.

A non-degenerate hyperbolically simplicial surface (Σ, f) inM will be called a Bonahon

surface if there is a closed 1-manifold S ⊂ Σ such that skel0(Σ) ⊂ S ⊂ skel1(Σ) and f | S
is geodesic. The following observation is contained in [Bo, Lemme 1.8].

Proposition. If (Σ, f) is a Bonahon surface in a complete hyperbolic manifold M , then
the PH structure induced on Σ by f is ultrahyperbolic.

Proof. We must show that the angle sum at any vertex x of Σ is at least 2π. Let e1, . . . , en
be the distinct oriented virtual 1-simplices of Σ having x as initial point. Then f maps each
ei to a geodesic path γi : [0, 1]→ Σ with initial point x. Let U denote the unit sphere in
the tangent space to the three manifold M at f(x). Let ui ∈ U be the normalized tangent
vector to γi at 0. Then the angle sum at x is equal to the length of a piecewise-geodesic
curve γ in U whose vertices are u1, . . . , un. Now according to the definition of a Bonahon
surface, the vertex x lies on a simple closed curve C ⊂ skel1(Σ) such that f |C is geodesic.
This implies that the curve γ passes through two antipodal points of U , and therefore has
length ≥ 2π. ¤

6.7. Neighborhoods of Bonahon surfaces. Let (Σ, f) be a Bonahon surface in M , and let
Σ be given the PH structure induced by f . Let ε be a positive number. We shall say that
(Σ, f) is ε-incompressible if for every homotopically non-trivial PG closed curve γ : S1 → Σ
of length < ε, the closed curve f ◦ γ is homotopically non-trivial in M .

The following proposition is proved in [Ca, Lemma 7.2]. (The pleated surface version is
found in [Th, 8.12.1].)

Proposition. For each positive integer g and each positive number ε there exists a con-
stant V (g, ε) such that if (f,Σ) is any ε-incompressible Bonahon surface of genus g in a
complete hyperbolic 3-manifold M then the volume of nbhd1(f(Σ)) is at most V (g, ε).
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6.8. The following Proposition, which is an immediate consequence of Propositions 6.1
and 6.7, gives a basic criterion for every positive superharmonic function on M(Γ) to be
constant.

Proposition. Let Γ be a Kleinian group without parabolics such that M(Γ) = N(Γ).
Suppose that there exist positive integers g1, . . . , gk and a real number ε such that every
compact subset of M(Γ) is enclosed by a system (Σ1, f1), . . . , (Σk, fk) of ε-incompressible
Bonahon surfaces such that the genus of Σi is less than gi. Then every positive superhar-
monic function on M(Γ) is constant.

6.9. Topological tameness. A 3-manifold is said to be topologically tame if it is homeo-
morphic to the interior of a compact 3-manifold. A Kleinian group Γ is topologically tame
if M(Γ) is topologically tame.

A Theorem due to R. Canary [Ca1] implies that if Γ is a Kleinian group without
parabolics such that M(Γ) = N(Γ) and if Γ is topologically tame then the hypotheses
of Proposition 6.8 hold. In particular we have the following special case of [Ca, Theorem
7.2].

Proposition. Let Γ be a Kleinian group without parabolics such that M(Γ) = N(Γ). If
Γ is topologically tame then every positive super-harmonic function on M(Γ) is constant.

In Section 8 we show, by quite different methods, that the hypotheses of Proposition
6.8 hold for most rank-2 free Kleinian groups which have no parabolics and lie on the
boundary of the space of rank-2 free geometrically finite groups. The proof of our main
theorem in Section 9 breaks into two cases which are handled respectively by the results
of Section 8 and the proposition above.

6.10. We conclude this section with a result that will be needed in Section 8.

Proposition. Let M be a 3-manifold with an involution T such that every connected
component of FixT is homeomorphic to R. Let (Σ, f) be a null-homologous hyperbolically
simplicial surface in M , and let TΣ be an orientation-preserving involution of Σ such that
f ◦ TΣ = T ◦ f . Suppose that for some component L of FixT there are exactly two fixed
points v+ and v− of TΣ which are mapped into L by f ; let s denote the compact arc in L
bounded by f(v+) and f(v−). Then (Σ, f) encloses s.

Proof. It is enough to prove that every point of s ∩ (M − f(Σ)) is strictly enclosed by
(Σ, f). Let P be any point of s∩ (M −f(Σ)). By a small perturbation, as described in 6.5,
one can approximate the map f arbitrarily well, in the uniform topology on the space of
maps of Σ into M , by a hyperbolically simplicial map f1 which is topologically transverse
to L and satisfies f1 ◦ TΣ = T ◦ f1. In particular, f1 maps the finite set FixTΣ into the
1-manifold FixT . Hence if f1 is close enough to f then f1 maps v+ and v− into distinct
components of L−{P} and maps the remaining fixed points of TΣ into (FixT )−L. Thus
the hypotheses of the theorem hold when f is replaced by f1. Furthermore, if f1 is close
enough to f then f1 maps Σ into M − {P} and is homotopic in M − {P} to f. Hence f1
strictly encloses P if and only if f does. Thus we may assume without loss of generality
that f is topologically transverse to L.

In this case the set f−1(L) is finite, and has even cardinality since (Σ, f) is null-
homologous. Let L+ and L− denote the components of L − {P} containing f(v+) and
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f(v−) respectively. To say that (Σ, f) encloses P is equivalent to saying that f−1(L+) (and
hence also f−1(L−)) has odd cardinality. But f−1(L+) is invariant under the involution
TΣ (since f ◦ TΣ = T ◦ f) and contains only one fixed point of TΣ, namely a. Hence
card f−1(L+) is indeed odd. ¤

§7. Girded surfaces and girded 3-manifolds

In this section we introduce a special class of Bonahon surfaces which will be used in
the proof of our main theorem.

7.1. Let ε be a positive number. By an ε-girded surface in M we mean a triple (Σ, f, S),
where (Σ, f) is a non-degenerate hyperbolically simplicial surface in M and S ⊂ Σ is a
closed 1-manifold, such that

(i) skel0(Σ) ⊂ S ⊂ skel1(Σ);
(ii) each component of Σ− S is homeomorphic to a sphere with three punctures;
(iii) f | S is geodesic, and f | C has length < ε/3 for each component C of S; and
(iv) for each component R of Σ−S, the map f |R induces an injective homomorphism

from π1(R) to π1(M).
The maps f | C, where C ranges over the components of S, are re-parametrizations of

closed geodesics. These closed geodesics will be said to be carried by (Σ, f, S). It follows
from condition (ii) above that S has 3g−3 components, where g is the genus of Σ. Hence if
k denotes the number of distinct closed geodesics carried by Σ, we have 1 ≤ k ≤ 3g− 3. It
follows from the definitions that if (Σ, f, S) is an ε-girded surface then (Σ, f) is a Bonahon
surface. Note also that since no component of Σ is a sphere, condition (iv) of the above
definition implies that the closed geodesics carried by (Σ, f, S) are non-trivial; in particular
the components of S are homotopically non-trivial in Σ.

7.2. Proposition. Let ε be a Margulis number for M , and let (Σ, f, S) be an ε/3-girded
surface in M . Then (Σ, f, S) is ε/3-incompressible.

Proof. Let γ : S1 → Σ be any homotopically non-trivial PG closed curve of length < ε/3.
If γ(S1) is disjoint from S, then by 7.1(iv), f ◦ γ is homotopically non-trivial in M .

Now suppose that γ(S1) meets a component C of S. Then f(γ(S1)) meets the set
f(C), which by 7.1(iii) is the support of a closed geodesic of length ε/3 inM . In particular
f(γ(S1)) meets M(0,ε/3]. But since γ has length < ε/3 and f is distance-decreasing,

f(γ(S1)) has diameter < ε/3 and hence f(γ(S1)) ⊂ nbhdε/3(M(0,ε/3]) ⊂ M(0,ε). Since ε is

a Margulis number for M , the component T of M(0,ε) containing f(γ(S
1)) is a Margulis

tube, and the core of T is the only closed geodesic meeting T . Hence if S ′ ⊃ C denotes
the union of all components of S that meet γ(S1), then f(S′ ∪ γ(S1)) ⊂ T .

Let Z denote the connected set S ′∪γ(S1). Since Z is a finite union of geodesic arcs, it is
a subcomplex of Σ in some triangulation. Hence there is a connected neighborhood U of Z
in Σ such that Z carries π1(U). We may take U to be a compact 2-manifold-with-boundary
contained in f−1(T ). Now we let U ′ denote the 2-manifold-with-boundary obtained by
adjoining to U all disk components of Σ − U , and we let U ′′ denote the complement in
U ′ of a regular neighborhood of S ′ in intU ′. Then π1(U

′) is carried by Z ⊂ f−1(T ), and
hence (f |U ′)#(π1(U ′)) ⊂ π1(M) is cyclic. On the other hand, it follows from 7.1(iv) and
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the construction of U ′′ that f induces an injection from the fundamental group of each
component of U ′′ into π1(M). Hence each component of U ′′ has cyclic fundamental group
and must therefore be an annulus.

This implies that U ′ has Euler characteristic zero. Since Σ has genus > 1, U ′ must
be an annulus. Since C is a homotopically non-trivial simple closed curve in U ′, it is
a topological core of U ′. But γ is a homotopically non-trivial closed curve in U ′ and is
therefore homotopic in U ′ to a power of C. As f | C is a non-trivial closed geodesic, and
as the complete hyperbolic manifold M necessarily has torsion-free fundamental group, we
conclude that f ◦ γ is homotopically non-trivial as required. ¤

7.3. Proposition. Let M be a hyperbolic 3-manifold and let ε be a Margulis number
for M . Let (Σ, f, S) be an (ε/3)-girded surface of total genus g in M . Let α1, . . . , αk
be the distinct geodesics carried by (Σ, f, S), and let Ti denote the component of M(0,ε]

containing αi. Then f(Σ) ⊂ nbhdD(T1 ∪ · · · ∪ Tk), where D = D(g, ε/3) in the notation of
Proposition 6.4.

Proof. In the metric defined by the PH structure of Σ induced by f , we have by Proposition
6.4 that the diameter of Σ modulo Σ(0,ε/3] is less than D = D(g, ε/3).

Thus Σ = nbhdD(Σ(0,ε/3]). Since f is distance-decreasing it follows that f(Σ) ⊂
nbhdD(f(Σ(0,ε/3])). In order to prove the proposition, it therefore suffices to show that
f(Σ(0,ε/3]) ⊂ T1 ∪ · · · ∪ Tk.

Let x be any point of Σ(0,ε/3]. Then there is a closed curve γ : S1 → Σ which passes

through x, is homotopically non-trivial in Σ and has length < ε/3. If γ(S1) intersects
S then x is in the ε/3-neighborhood of S; since f is distance-decreasing it follows that
f(x) ∈ nbhdε/3(αi) for some i. Since the closed geodesic αi has length < ε/3 it is clear
that nbhdε/3(αi) is contained in M(0,ε] and hence in Ti; thus f(x) ∈ Ti in this case.

Finally, suppose that γ(S1) is disjoint from S. Then γ is contained in some component R
of Σ−S. Since γ is homotopically non-trivial in Σ, the graph G = γ(S1) is non-contractible
in R (i.e. the inclusion G → R is not homotopic to a constant). Hence G contains a simple
closed curve C ′ which is non-contractible in R. By condition (ii) in the definition of an
ε-girded surface, R is homeomorphic to a sphere with three punctures, and hence C ′ is
parallel in Σ to a component C of S. Since γ has length < ε/3, the curve C ′ has length
< ε/3, and x lies in the ε/3-neighborhood of C ′. Hence there is a loop γ ′ based at x which
is freely homotopic to the simple closed curve C and has length < ε. Now f ◦γ ′ has length
< ε and is freely homotopic to αi. Hence f(γ ′(S1)) ⊂ Ti. In particular f(x) ∈ Ti. ¤

7.4. Girded manifolds. An ε-girded surface is said to enclose a set if its underlying hyper-
bolically simplicial surface is null-homologous and encloses the set. Let M be a complete
hyperbolic 3-manifold. We shall say thatM is girded if there exist an integer g and a point
P0 ∈ M such that for every ε > 0 there is an ε-girded surface of total genus at most g
which encloses P0. A Kleinian group Γ will be termed girded if the hyperbolic 3-manifold
M(Γ) is girded.

Proposition. If a complete hyperbolic 3-manifold M is girded then every positive super-
harmonic function on M is constant.

Proof. LetM be a complete hyperbolic 3-manifold and let ε be a Margulis constant forM .
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We will show that every compact set in M is enclosed by an ε/3- girded surface of total
genus at most g. Any ε/3-girded surface is ε/3-incompressible by Proposition 7.2 and is by
definition a Bonahon surface. The proposition then follows immediately from Proposition
6.8.

Let K be a compact set in M . By enlarging K if necessary we may assume that K
is connected and that P0 ∈ K. Set D = D(g, ε/3), in the notation of Proposition 6.4.
Since nbhdD(K) is compact there are only finitely many components of M(0,ε] which meet
nbhdD(K). Each of these is a tube around a geodesic of length less than ε. Let ε′ < ε/3
be a positive number which is less than the length of the core geodesic of any of the
components of M(0,ε] which meets nbhdD(K). Thus if α is a geodesic of length less than ε′

then the component T of M(0,ε] which contains α is disjoint from nbhdD(K); equivalently,
nbhdD(T ) is disjoint from K.

Now it follows from Proposition 7.3 that any ε′-girded surface is disjoint from K. Let
(Σ, f, S) be an ε′-girded surface of total genus at most g that encloses the point P0. Since
the set of points of M which are enclosed by (Σ, f, S) is open and closed in M − f(Σ) and
since K is connected and contains P0 it follows that (Σ, f, S) encloses K. An ε′-girded
surface is also ε/3-girded. Thus we have constructed an ε/3-girded surface of total genus
at most g that encloses K, as desired. ¤

§8. Girded groups are dense

8.1. We shall let F denote the abstract free group on two generators x and y. We fix an
identification of the group of orientation-preserving isometries of H3 with PSL2(C). The
representations of F in PSL2(C) are in 1-1 correspondence with points of the complex
affine variety V = PSL2(C) × PSL2(C); the representation ρ = ρξ,η corresponding to a
point (ξ, η) of V is defined by ρ(x) = ξ, ρ(y) = η. We shall always understand V to be
endowed with the complex topology. We shall denote by D the set of all points (ξ, η) ∈ V
such that ρξ,η is a faithful representation with discrete image, i.e. such that the group
〈ξ, η〉 generated by ξ and η is a Kleinian group which is free of rank 2. According to [Ch],
D is a closed subset of V . We shall denote by GF the set of all points (ξ, η) ∈ D such
that 〈ξ, η〉 is a geometrically finite group (1.7) without parabolic elements. It follows from
[Mar, Theorem 8.1] that GF is an open subset of V . We shall denote by B the frontier of
GF in V ; thus B = GF−GF.

8.2. The purpose of this section is to prove the following result.

Theorem. There is a dense Gδ-set C ⊂ B such that for every (ξ, η) ∈ C, the Kleinian
group 〈ξ, η〉 is girded.

8.3. Note that for any (ξ, η) ∈ B, the hyperbolic 3-manifoldM(〈ξ, η〉) = H3/〈ξ, η〉 satisfies
H2(M(〈ξ, η〉);Z/2) ∼= H2(F ;Z/2) = 0 since F is free. Thus every hyperbolically simplicial
surface in M(〈ξ, η〉) is null-homologous. In order to prove that 〈ξ, η〉 is girded for a given
(ξ, η) ∈ B, it suffices to show that for every ε > 0, every compact subset of M(〈ξ, η〉) is
enclosed by some connected ε-girded surface of genus 2.

8.4. Since the details of the of the proof of Theorem 8.2 are rather involved, we begin with
a rough sketch of the argument. There are two main issues. First one must produce, for a
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generic point (ξ, η) ∈ B and an arbitrary ε > 0, a connected ε-girded surface of genus 2 in
the hyperbolic 3-manifold M = M(〈ξ, η〉). Second one must choose this girded surface to
enclose a prescribed point in M .

To deal with the first issue we observe that an ε-girded surface of genus 2 determines
three closed geodesics of length < ε inM ; since these geodesics are defined by simple closed
curves in the domain surface, their homotopy classes are of a restricted type. Conversely,
if one can realize a suitable triple of homotopy classes by a triple of geodesics of length < ε,
one can construct an ε-girded genus 2 surface in M . That such a triple of geodesics exists
for a generic (ξ, η) will be deduced from a recent result due to Curt McMullen, asserting
the density of “maximal cusps” in B (see Theorem 8.9 below).

To deal with the second issue, we choose our ε-girded surfaces to be equivariant with
respect to suitable involutions ofM and of the domain surface. We then apply Proposition
6.10 to conclude that our girded surfaces enclose appropriately defined “reference points”
in M . The existence of the appropriate involution of M follows from the results presented
in 1.8–1.15. This stage of the argument depends strongly on the hypothesis that F is a
2-generator group.

8.5. For the rest of the section we fix, arbitrarily, a base point w0 ∈ H3. We shall let pξ,η
denote the covering projection from H3 to M(〈ξ, η〉).

For any (ξ, η) ∈ D the group 〈ξ, η〉 is free of rank 2. In particular 〈ξ, η〉 is not solvable,
and hence ξ and η have no common fixed point. It follows by 1.8 that each (ξ, η) ∈ D

determines a line `(ξ, η) in H3. We shall write τξ,η = τ`(ξ,η); by 1.8, the involution τ = τξ,η
satisfies τξτ = ξ−1 and τητ = η−1. Since τξ,η normalizes 〈ξ, η〉, it induces an involution
Tξ,η of M(〈ξ, η〉).

We shall denote by F̂ the group defined by the presentation

〈x, y, t | t2 = 1, txt = x−1, tyt = y−1〉.

We may regard F̂ as a semi-direct product of the free group F = 〈x, y〉 by the cyclic group

〈t | t2 = 1〉. Thus F may be identified with an index-2 subgroup of F̂ . On the other hand,

if we rewrite the presentation for F̂ in terms of the generators t1 = t, t2 = tx and t3 = ty,

we obtain 〈t1, t2, t3 | t21 = t22 = t23 = 1〉, so that F̂ is a free product of three groups of order
2. It follows (for example by the Kurosh subgroup theorem [K, p. 34]) that every element

of finite order in F̂ is conjugate to one of the tj .
For every point (ξ, η) ∈ D the representation ρξ,η : F → PSL2(C) extends to a repre-

sentation ρ̂ = ρ̂ξ,η : F → PSL2(C) defined by ρ̂(x) = ξ, ρ̂(y) = η, ρ̂(t) = τξ,η. The index

of ρξ,η(F ) = 〈ξ, η〉 in F̂ξ,η = ρ̂ξ,η(F̂ ) = 〈ξ, η, τξ,η〉 is exactly 2; indeed, the index is at most

2 since F̂ has index 2 in F , and we cannot have Fξ,η = F̂ξ,η since Fξ,η is free and F̂ξ,η
contains an element of order 2. It follows that ρ̂ is a faithful representation with discrete
image.

Thus F̂ξ,η is a Kleinian group having exactly three conjugacy classes of elements of finite

order. Hence the set L(ξ, η) of fixed points of elements of F̂ξ,η is the union of a locally finite

disjoint family of lines in H3, each of which is the fixed point set of a unique element of F̂ξ,η;

and this family consists of exactly three F̂ξ,η-orbits of lines. Hence FixTξ,η = pξ,η(L(ξ, η))
is a disjoint union of three geodesics in M(〈ξ, η〉).
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Explicitly, the three conjugacy classes of elements of finite order in F̂ξ,η are represented
by the elements τξ,η,j = ρ̂ξ,η(tj) for j = 1, 2, 3. We have τξ,η,1 = τξ,η, τξ,η,2 = τξ,ηξ and
τξ,η,3 = τξ,ηη. We set `j(ξ, η) = Fix τξ,η,j. We have `1(ξ, η) = `(ξ, η). The components of
FixTξ,η are pξ,η(`j(ξ, η)) for j = 1, 2, 3. We shall write Lj(ξ, η) = pξ,η(`j(ξ, η)).

8.6. Proposition. For any (ξ, η) ∈ D and for j = 1, 2, 3, the line `j(ξ, η) is mapped
homeomorphically onto Lj(ξ, η) by pξ,η.

Proof. Since Lj(ξ, η) is a component of FixTξ,η, it is a closed subset of M(〈ξ, η〉). Hence
if the lemma were false, Lj(ξ, η) would be a closed geodesic, and `j(ξ, η) would be the axis
of a loxodromic element γ of F . Let us set ` = `j(ξ, η) and τ = τξ,η,j. Then τ fixes `

(pointwise) and hence so does the commutator [τ, γ] ∈ F̂ . Since F̂ is discrete it follows that

[τ, γ] has finite order. But the commutator subgroup of F̂ ∼= Z2 ∗ Z2 ∗ Z2 is torsion-free,

and hence γ must commute with τ . But the centralizer of τ in F̂ has order 2 (for example
by the Kurosh subgroup theorem) and γ has infinite order; this is a contradiction. ¤

8.7. We let P̃j(ξ, η) denote the point of `j(ξ, η) which is closest to the base point w0, and

we set Pj(ξ, η) = pξ,η(P̃ (ξ, η)) ∈ Lj(ξ, η). The points Pj(ξ, η), j = 1, 2, 3, will be called
the reference points of M(〈ξ, η〉). Thus M(〈ξ, η〉) contains exactly three reference points,
and there is one reference point in each component of FixTξ,η.

8.8. We shall let A denote the set of all points (ξ, η) ∈ D such that the group 〈ξ, η〉 contains
no parabolics. The following result, which will be needed for the proof of Theorem 8.2,
was announced in [Ber1]. A version of Bers’s λ-lemma can be used to complete the proof:
see [McM, Corollary 1.5].

Proposition. The set A ∩B is a dense Gδ in B. ¤

8.9. The following result, due to Curt McMullen, is the deepest ingredient in the proof of
Theorem 8.2. McMullen has informed us that the theorem below is proved by a general-
ization of the techniques of [McM].

Theorem. There is a dense subset E of B such that for every (ξ, η) ∈ E, the free Kleinian
group 〈ξ, η〉 is geometrically finite and has three distinct conjugacy classes of cuspidal
subgroups (1.5).

8.10. The proof of Theorem 8.2 will be proved by combining the results stated above with
the following result.

Proposition. Let (α, β) be a point of D such that 〈α, β〉 is geometrically finite and
contains three distinct conjugacy classes of cuspidal subgroups. Let ε be any positive
number. Then (α, β) has a neighborhood U = Uε(α, β) in B such that for every (ξ, η) ∈
A∩U , there is a connected ε-girded surface of genus 2 in M(〈ξ, η〉) which encloses at least
one of the reference points of M(〈ξ, η〉).

8.11. Before proving Proposition 8.10, let us give the

Proof that Proposition 8.10 implies Theorem 8.2. According to Theorem 8.9 there is a
dense set E ⊂ B such that for every (α, β) ∈ E, the group 〈α, β〉 is geometrically finite and
has three non-conjugate maximal cuspidal subgroups. For each ε > 0 and each (α, β) ∈ E,

41



Proposition 8.10 gives a neighborhood U = Uε(α, β) of (α, β) in B. For every ε > 0 the
set

Wε =
⋃

(α,β)∈E

Uε(α, β)

is open and dense in B. On the other hand, by Proposition 8.8, A ∩B is a dense Gδ in
B. Hence the set

C = A ∩
⋂

0<n∈Z

W1/n

is a dense Gδ in B.
To complete the proof it suffices to show that for every (ξ, η) ∈ C the group 〈ξ, η〉 is

girded. If (ξ, η) ∈ C then for every positive integer n there is a point (αn, βn) ∈ E such that
(ξ, η) ∈ A∩U1/n(αn, βn). According to the defining property of Uε(αn, βn) (see Proposition
8.10) this means that for every n > 0 there is a reference point zjn of M(〈ξ, η〉) which is
enclosed by a connected (1/n)-girded surface of genus 2 in M(〈ξ, η〉).

Since M(〈ξ, η〉) has only three reference points, it follows that there is a single reference
point z ofM which is enclosed by a connected (1/n)-girded surface of genus 2 for arbitrarily
large values of n; it follows at once that M(〈ξ, η〉) is girded. ¤

8.12. The rest of this section is devoted to the proof of Proposition 8.10. We suppose that
we are given a point (α, β) of D such that the free Kleinian group 〈α, β〉 is geometrically
finite and contains three distinct conjugacy classes of cuspidal subgroups. We set ρ̂0 = ρ̂α,β,
p0 = pα,β : H3 →M(〈α, β〉), and T0 = Tα,β .

8.13. Lemma. For each component L of FixT0 we have N(〈α, β〉)∩L 6= ∅. Furthermore,
there is a constant η > 0 such that for every ε < η and every component L of FixT0 we
have N[ε,∞)(〈α, β〉) ∩ L 6= ∅.

Proof. To prove the first assertion we choose a component ` of p−10 (L). Then ` is a
component of L(α, β), and hence by 8.5 we have ` = Fix τ for some order-2 element τ of

ρ̂0(F̂ ). Recall from 1.4 that the set Ñ(〈α, β〉) = p−10 (N(〈α, β〉)) = nbhd1(hull(Λ〈α,β〉)) is

〈α, β〉-invariant and convex. Since τ normalizes 〈α, β〉 (see 8.5), Ñ(〈α, β〉) is τ -invariant.

It follows that for any point z ∈ Ñ(〈α, β〉), the midpoint of the line segment joining z
to τz lies in N(〈α, β〉) ∩ L, and the first assertion is proved.

It follows from the first assertion that for any component L of FixT0 there is a number
ηL > 0 such that N[ηL,∞)(〈α, β〉) ∩ L 6= ∅. The second assertion now follows if we set
η = minL ηL, where L ranges over the three components of FixT0. ¤

8.14. Let ε0 be a 3-dimensional Margulis constant such that conclusions (i) and (ii) of
Proposition 1.7 hold with Γ = 〈α, β〉. According to 1.7 we may take ε0 to be arbitrarily
small. In particular we may suppose ε0 to be chosen so that N[ε0,∞)(〈α, β〉) ∩ L 6= ∅ for
every component L of FixT0.

By conclusion (i) of 1.7, J = N[ε0,∞)(〈α, β〉) is a compact, orientable, irreducible 3-
manifold-with-boundary. Furthermore, J is a deformation retract of M(〈α, β〉); in partic-
ular J is connected and π1(J) is a free group of rank 2. According to [He, Theorem 5.2], any
compact, connected, orientable, irreducible 3-manifold-with-boundary whose fundamental
group is free of rank 2 is a genus-2 handlebody.
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We set Σ = ∂J . Then Σ is a closed orientable surface of genus 2. Since the fundamental
group of a handlebody is carried by its boundary, and since J is a deformation retract of
M(〈α, β〉), the inclusion homomorphism π1(Σ)→ π1(M(〈α, β〉)) is surjective.

Hence Σ̃ = p−10 (Σ) is a connected covering surface of Σ. Clearly Σ̃ is invariant under

the action of F̂ on H3 defined by the representation ρ0. Restricting this action, we obtain

a natural action of F̂ on Σ̃.
Since the group 〈α, β〉 contains three conjugacy classes of cuspidal subgroups, the set

M c
(0,ε0]

(〈α, β〉) has three components. Each component of M c
(0,ε0]

(〈α, β〉) has the form

C/Π, where Π is a cuspidal subgroup of Γ and C is a horoball stabilized by Π. Since 〈α, β〉
is free, each of these groups Π is cyclic. Thus M(0,ε0](〈α, β〉) has the homotopy type of a
disjoint union of three circles. Hence if we set A = N{ε0}(〈α, β〉), it follows from conclusion
(ii) of 1.7 that A is a disjoint union of three annuli in Σ, all homotopically non-trivial in
M(〈α, β〉).

We set Ã = p−10 (A) ⊂ Σ̃ ⊂ H3. Each component Ã of Ã is contained in a unique

horoball in H3, which we denote by C(Ã). We denote the base point of C(Ã) in S∞
by ζ(Ã). The stabilizer of Ã in 〈ξ, η〉 is an infinite cyclic group consisting of parabolic

elements, and this group leaves C(Ã) invariant and fixes ζ(Ã).
Since the three annuli comprising A correspond to different conjugacy classes of (cusp-

idal) maximal infinite cyclic subgroups of Γ, their cores are non-contractible and (freely)
non-homotopic simple closed curves in M(〈α, β〉). In particular they are non-contractible
and non-homotopic in Σ. Hence each component of Σ−A is a planar surface with three
boundary curves, and at least two of the components of A are non-separating annuli in Σ.

It is apparent from the definitions of J and A that they are invariant under any self-
isometry of M(〈α, β〉). Thus in particular J is invariant under T0, so that T0 induces
an involution TΣ of Σ; and A is invariant under TΣ. (We shall sharpen this assertion in
Lemma 8.16 below.)

Observe also that since T0 is induced by an orientation-preserving isometry of H3, it is
itself orientation-preserving. It follows that T0 | J is orientation-preserving, and therefore
so is TΣ.

8.15. Lemma. For every component L of FixT0 we have card(L ∩ Σ) = 2.

Proof. Recall from 8.14 that we chose ε0 in such a way that J∩L = N[ε0,∞)(〈α, β〉)∩L 6= ∅
for every component L of FixT0. Since J ∩ L is a union of components of the fixed set of
the involution T0 |J of the compact 3-manifold-with-boundary J , it is a properly embedded
1-manifold-with-boundary in J ; it has no closed components since L is homeomorphic to
R by 8.6. Thus for each component L of FixT0, the set Σ ∩ L = ∂(J ∩ L) has non-zero,
finite, even cardinality. On the other hand, the sum of the cardinalities of Σ ∩ L as L
ranges over the three components of FixT0 is equal to card FixTΣ, the number of fixed
points of an orientation-preserving involution of a closed connected surface, which by the
Hurwitz branching formula is at most 6. Hence we must have card(Σ ∩ L) = 2 for each
component L of FixT0. ¤

8.16. Lemma. Each component of A is invariant under TΣ.

Proof. If the assertion is false then two components A1 and A2 are interchanged by TΣ.
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Since A has at least two non-separating components, A1 and A2 cannot both separate
Σ; since they are interchanged by the homeomorphism TΣ, they are both non-separating.
Hence Σ′ = Σ− (A1 ∪A2) is connected. Since neither A1 nor A2 can contain a fixed
point of TΣ, and since TΣ has six fixed points by Lemma 8.15, TΣ′ = TΣ | Σ′ is an
orientation-preserving involution, with six fixed points, of a connected surface having non-
empty boundary and Euler characteristic −2. It then follows from the Hurwitz branching
formula that Σ′/TΣ′ is a connected surface having non-empty boundary and Euler charac-
teristic 2. But no such surface exists. ¤

8.17. It follows from Lemma 8.16 that for each component A of A we may choose a TΣ-
invariant core curve SA. Having made such a choice, we set S =

⋃
A SA, where A ranges

over the components of A. It follows from 8.14 that the SA are homotopically non-trivial
curves in M(〈α, β〉), that at least two of the SA are non-separating curves in Σ, and that

each component of Σ− S is a three-punctured sphere. We set S = p−10 (S) ⊂ Σ̃.

Lemma. For each component R of Σ − S, the inclusion homomorphism from π1(R) to
π1
(
M(〈α, β〉)

)
is injective.

Proof. Since J is a deformation retract of M(〈α, β〉) by 8.14, it suffices to show that the
inclusion homomorphism π1(R) → π1(J) is injective. If it is not, it follows from the
loop theorem [He, Theorem 4.2] that some non-trivial element of ker(π1(R) → π1(J)) is
represented by a simple closed curve in R. Since R is a three-punctured sphere, every
simple closed curve in R is parallel to a component of ∂R ⊂ S. But every component of S
is homotopically non-trivial in M(〈α, β〉) and hence in J . ¤

8.18. Lemma. Every non-separating component of S meets FixTΣ in two points. If C is
a separating component of S then C is disjoint from FixTΣ, and each component of Σ−C
is TΣ-invariant.

Proof. It follows from Lemmas 8.15 and 8.16 that TΣ is an orientation-preserving involution
of Σ with six fixed points and that each component of S is invariant under TΣ. The Hurwitz
branching formula implies that the orbit surface Ψ = Σ/TΣ is a sphere. Let q : Σ → Ψ
denote the quotient map.

If C is any component of S, either C contains two fixed points of TΣ and TΣ reverses the
orientation of C, or C contains no fixed point of TΣ and TΣ preserves the orientation of C.
If C separates Σ then since the other components of S are TΣ-invariant, each component
of Σ−C must be TΣ-invariant; hence TΣ preserves the orientation of C. Conversely, if TΣ
preserves the orientation of C then q(C) is a simple closed curve and therefore separates
Ψ. Hence C = q−1(q(C)) separates Σ. ¤

8.19. Lemma. There is a TΣ-invariant virtual triangulation of Σ such that

(i) skel0(Σ) ⊂ S,

(ii) S ∪ FixTΣ ⊂ skel1(Σ), and

(iii) no virtual 2-simplex has more than one edge supported in S.

Proof. Let us label the components of S as C1, C2 and C3, where C1 and C2 are non-
separating curves in Σ, and C3 may or may not separate Σ.
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Consider the case in which C3 is non-separating. Then Σ − S has two components
Y1 and Y2, each of which is the interior of a compact planar sub-surface of Σ with three
boundary curves. Since the Ci are non-separating, TΣ reverses the orientation of Ci; hence
TΣ interchanges Y1 and Y2. By Lemma 8.18, each Ci contains two fixed points of TΣ.
Thus FixTΣ is a subset of ∂Y1 containing exactly two points of each component of ∂Y1.
It follows (see the figure) that Y1 has a virtual triangulation with FixTΣ as its 0-skeleton,
and in which no virtual 2-simplex has more than one edge supported in ∂Y1.

The induced triangulation of ∂Y1 is automatically TΣ-invariant, and hence the virtual
triangulation of Y1 extends to a unique TΣ-invariant virtual triangulation of Σ; this ex-
tended triangulation clearly has the required properties.

Now consider the case in which C3 separates Σ. For i = 1, 2, let Ji denote the component
of Σ − C3 containing Ci. As in the proof of Lemma 8.18 we observe that Ψ = Σ/TΣ is a
sphere and we let q : Σ→ Ψ denote the quotient map. Since Ji is TΣ-invariant by Lemma
8.16, Ji is a 2-fold branched cover of the disk q(Ji) ⊂ Ψ. But Ji is a genus-1 surface with
connected boundary, and it therefore follows from the Hurwitz branching formula that Ji
contains exactly three fixed points of TΣ. Hence there is a unique fixed point ui of TΣ lying
in Ji − Ci. Now let v be any point of C3. For i = 1, 2, there is a TΣ-invariant, properly
embedded arc αi in Ji which has v and TΣ(v) as endpoints and ui as an interior point:
we may in fact define αi = q−1(ai), where ai is an arc in q(Ji) joining q(v) to q(ui). If αi
separates Ji, then since TΣ clearly reverses the orientation of αi, it must interchange the
two components of Ji − αi; this implies that Ji has even genus, a contradiction. Hence αi
is a non-separating arc in Ji.

It follows that C ′3 = α1 ∪α2 is a non-separating simple closed curve in Σ. Furthermore,
since C ′3 intersects each Ji in an arc, it cannot be parallel to C1 or C2. Hence if we set
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S′ = C1∪C2∪C
′
3, then Σ−S′ has two components Y1 and Y2, each of which is the interior

of a compact planar sub-surface of Σ with three boundary curves. Since the components
of S′ are non-separating, TΣ reverses the orientation of each component of S ′; hence TΣ
interchanges Y1 and Y2. The set

K = ((FixTΣ) ∩ (C1 ∪ C2)) ∪ {v, TΣ(v)} ⊂ ∂Y1

contains exactly two points of each component of ∂Y1. It follows that Y1 has a virtual
triangulation with K as its 0-skeleton, and in which no virtual 2-simplex has more than
one edge supported in ∂Y1. Note also that the arc a = C3 ∩ Y1 is non-boundary parallel
in Y1; for otherwise a would be parallel to one of the αi, and this αi would separate Ji, a
contradiction. It follows that we may choose the virtual triangulation of Y1 in such a way
that a is contained in the 1-skeleton. As in the previous case, the induced triangulation of
∂Y1 is TΣ-invariant so that the virtual triangulation of Y1 extends to a unique TΣ-invariant
virtual triangulation of Σ; and again the extended triangulation clearly has the required
properties. ¤

8.20. For the rest of this section we fix a virtual triangulation of Σ having the properties
stated in Lemma 8.19. Since the virtual triangulation of Σ is TΣ-invariant, it induces an

F̂ -invariant virtual triangulation of Σ̃. We shall always understand Σ̃ to be equipped with
this virtual triangulation.

Let (ξ, η) be any point in D, and let f̃ be a map of Σ̃ into H3. We shall say that

f̃ is (ξ, η)-good if (i) f̃ is hyperbolically simplicial, (ii) f̃ | S̃ is geodesic and (iii) f̃ is F̂ -

equivariant with respect to the standard action of F̂ on Σ̃ and the action on H3 associated

to (ξ, η). Any (ξ, η)-good map f̃ : Σ̃ → H3 induces a hyperbolically simplicial map

f : Σ → M(〈ξ, η〉), and f | S is geodesic. The F̂ -equivariance of f̃ implies that f satisfies

Tξ,η ◦ f = f ◦ TΣ. If f̃ is non-degenerate (as a hyperbolically simplicial map) then so is f .

8.21. Lemma. For every (ξ, η) ∈ A there exists a (ξ, η)-good map f̃ = f̃ξ,η : Σ̃→ H3.

Proof. It follows from Lemma 8.19 that skel0(Σ̃) ⊂ S̃ ⊂ skel1(Σ̃). The first step in the

construction of f̃ is to construct a geodesic, F̂ -equivariant map f̃S : S̃ → H3.
Let us denote the components of S by C1, C2 and C3. For i = 1, 2, 3, we choose a

component S̃i of p−10 (Ci). We let Gi and Ĝi denote the stabilizers of S̃i in F and F̂

respectively. Then Gi is infinite cyclic, and it has index 2 in Ĝi since Ci is TΣ-invariant.

Hence Ĝi is either infinite cyclic or infinite dihedral. If γi denotes a generator of Gi then
γi has infinite order in F , and γi is not parabolic since (ξ, η) ∈ A. Hence γi has a unique

axis Zi ⊂ H3. Since Ĝi normalizes Gi, the line Zi is Ĝi-invariant.
Up to equivariant homeomorphism, each of the groups Z and D∞ has a unique properly

discontinuous action on R. Hence there is a Ĝi-equivariant homeomorphism f̃i : S̃i → Zi.

Using the maps f̃i we define f̃S as follows. Given any point u ∈ S̃ there exist an index

i ∈ {1, 2, 3} and an element γ of F̂ such that γ · u ∈ S̃i; the index i is uniquely determined

by u, but the element γ is not. We wish to define f̃S(u) = γ−1 · f̃i(γ · u). If γ1 is another

element of F̂ such that γ1·u ∈ S̃i, then δ = γ1γ
−1 belongs to Ĝi, and by the Ĝi-equivariance

of f̃i we have

γ−11 · f̃i(γ1 · u) = γ−1δ−1 · f̃i(δγ · u) = γ−1 · f̃i(γ · u).
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Thus fS is well-defined. It follows readily from the definition that it is F̂ -equivariant. The

next step is to extend f̃S to an F̂ -equivariant map of skel1(Σ̃) into H3. Let ϕ : ∆ → Σ̃

be a virtual 1-simplex in the virtual triangulation of Σ̃ which is not carried by S̃. Let

fϕ : ∆ → H3 denote the map which agrees with f̃S ◦ (ϕ | ∂∆) on the boundary of ∆,
and is geodesic in the sense that if we identify ∆ with an interval in R by any affine
homeomorphism then fϕ becomes a geodesic path (parametrized proportionally to arc

length). (In particular, if f̃S ◦ (ϕ | ∂∆) maps the two boundary points of ∆ to the same

point, then fϕ is constant.) There is a unique map f̃ (1) : skel1(Σ̃) → H3 such that

f̃ (1) | S̃ = f̃S and such that for every virtual 1-simplex ϕ in the virtual triangulation of Σ̃

which is not carried by S̃ we have f̃ (1) ◦ ϕ = fϕ. Since f̃S is F̂ -equivariant, so is f̃ (1).

To extend f̃ (1) to Σ̂ we may use the following construction. Let ϕ : ∆ → Σ̃ be any

2-simplex. Let m denote the baycenter of ∆. Let δ denote the convex hull of f̃ (1)(ϕ(∆(0)),
where ∆(0) denotes the set of vertices of ∆. Then δ is either a hyperbolic triangle, a
hyperbolic line segment or a point. If δ is a hyperbolic triangle we let µ denote its centroid
[F , p. 125]. If δ is a line segment we define µ to be its midpoint, and if δ consists of a single
point we define µ to be this point. Now we define a map fϕ : ∆ → δ by stipulating that

fϕ |∂∆ = f (1) ◦ (ϕ |∂∆), that f(m) = µ, and that for each affine segment σ ⊂ ∆ joining m
to a point in ∂∆, the map fϕ | σ be geodesic (in the above sense). Now there is a unique

map f̃ : Σ̃ → H3 such that f̃ | skel1(Σ) = f̃ (1) and such that for every virtual 2-simplex

ϕ in the virtual triangulation of Σ̃ we have f̃ (1) ◦ ϕ = fϕ. Since f̃ (1) is F̂ -equivariant, so

is f̃ . It is clear from the construction that f̃ is hyperbolically simplicial and that f̃ | S̃ is
geodesic. ¤

8.22 Lemma. Let (ξi, ηi)i≥1 be a sequence of points in A which converges in D to (α, β).

For each i ≥ 1 let f̃ i : Σ̃→ H3 be a (ξi, ηi)-good map. Let C̃ be any component of S̃ and

let Ã denote the unique component of Ã containing C̃. Then for any point z ∈ S̃ we have
limi→∞ f̃ i(z) = ζ(Ã) in H3. Furthermore, if z and z′ are distinct points of C̃ and U is any

neighborhood of ζ(Ã) in H, then we have f̃ i(z) 6= f̃ i(z′) for every i, and for sufficiently

large i the line joining f̃ i(z) to f̃ i(z′) is contained in U .

(The definition of ζ(Ã) was given in 8.14.)

Proof. Let F �

C denote the stabilizer of C̃ under the action of F on H3 defined by ρ0. By
8.14 and 8.17, F �

C is cyclic and is generated by a parabolic element h, and ρ0(h) fixes

ζ = ζ(Ã). For each i ≥ 1, since f̃ i is a (ξ, η)-good map, f̃ i(C̃) is a geodesic which

is invariant under ρξi,ηi(h). Thus f̃ i(C̃) is the axis of the isometry ρξi,ηi(h) (which is

loxodromic since (ξi, ηi) ∈ D). As i → ∞ we have ρξi,ηi(h) → ρ0(h). Hence if U is any

neighborhood of the fixed point ζ of ρ0(h) in H, the endpoints of the line f̃ i(C̃) lie in U

for all sufficiently large i. Hence for large i we have f̃ i(C̃) ⊂ U . This implies the first
assertion of the lemma.

To prove the second assertion we observe that since the geodesic map f̃ i | C̃ is F �

C -
equivariant, it is non-constant and is therefore a homeomorphism. This shows that for

every i we have f̃ i(z) 6= f̃ i(z′), and that f̃ i(C̃) is the unique line joining f̃ i(z) to f̃ i(z′).
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Since we have shown that f̃ i(C̃) ⊂ U for large i, the second assertion follows. ¤

8.23. Lemma. Let (ξi, ηi)i≥1 be a sequence of points in A which converges in D to (α, β).

For each i ≥ 1 let f̃ i : Σ → H3 be a (ξi, ηi)-good map, and let f i : Σ → M(〈ξi, ηi〉) be

the map induced by f̃ i. Let ε be any positive number. Then for all sufficiently large i the
triple (Σ, f i, S) is an ε-girded surface.

Proof. We must show that for sufficiently large i the hyperbolically simplicial surface
(Σ, f i) is non-degenerate and conditions (i)—(iv) of the definition 7.1 of an ε-girded sur-
face hold. Conditions (i) and (ii) are properties of the virtually triangulated surface
Σ and the 1-manifold S ⊂ Σ that have been established in 8.17 and 8.19. We claim
that condition (iv) holds for every i. Indeed, the isomorphisms ρ0 : F → 〈α, β〉 and
ρ(ξi,ηi) : F → 〈ξi, ηi〉 give rise to an isomorphism (well-defined modulo inner automor-

phisms) between 〈α, β〉 = π1(M(〈α, β〉)) and 〈ξi, ηi〉 = π1(M(〈ξi, ηi〉)). If we identify
π1(M(〈α, β〉)) and π1(M(〈ξi, ηi〉)) via this isomorphism, then the equivariance condition
in the definition of a good map implies that f# : π1(Σ) → π1(M(〈ξi, η〉i)) is identified
(modulo inner automorphisms) with the inclusion homomorphism π1(Σ)→ π1(M(〈α, β〉).
Our claim therefore follows from Lemma 8.17.

Next we show that condition (iii) in the definition of an ε-girded surface holds for large
i. It follows from the definition of a (ξ, η)-good map that for every i the map f i | S is
geodesic. Now let S be any component of S. Then S is a core curve of some component

A of A. Choose any component Ã of p−10 (A), and let F �

A denote the stabilizer of Ã in F .

Then F �

A is also the stabilizer of the component C̃ of S̃ contained in Ã. By 8.14, F �

A is

cyclic and is generated by an element h such that ρ0(h) is parabolic. Since (ξ
i, ηi)→ (α, β)

as i→∞, it follows that trace ρξi,ηi(h)→ trace ρ0(h) = ±2. Hence the translation length
of ρξi,ηi(h) approaches 0 as i → ∞. But the closed geodesic defined by the map f i | S is

C̃/F �

A. Hence the length of f i |S approaches 0 as i→∞, and is in particular < ε for large
i.

It remains to show that (Σ, f i) is non-degenerate for large i. Recall from the definition
(6.5) that for every virtual simplex ϕ : ∆ → Σ and every i, the map f iϕ = f i ◦ ϕ admits

a continuous lift f̃ iϕ : ∆ → Hn such that f̃ iϕ(∆) is a hyperbolic simplex and either (i)

dim f̃ iϕ(∆) < dim∆ or (ii) f̃ iϕ maps ∆ homeomorphically onto f̃ iϕ(∆). To say that (Σ, f i)
is non-degenerate for a given i means that (ii) holds for every virtual simplex ∆ of Σ. It
is clearly enough to show this for the case of a virtual 2-simplex. Since ∆ has only finitely
many simplices, it suffices to show that for each virtual 2-simplex ϕ there is an integer iϕ
such that (ii) holds for every i ≥ iϕ.

Let ϕ̃ be a virtual 2-simplex in Σ̃ that covers ϕ. Let vj (j = 1, 2, 3) denote the vertices

of ϕ̃. If (i) holds for a given i then the points f̃ i(v1), f̃
i(v2) and f̃ i(v3) are collinear in

H3. Thus we need only show that the f̃ i(vj) are non-collinear for large i. According

to conclusion (i) of Lemma 8.19, each vj lies in some component of S̃. It follows from
conclusion (iii) of Lemma 8.19 that at most two of the vj can lie in any given component

of S̃.
Consider first the case in which all the vj lie in three distinct components of S̃. Let

C̃j denote the component of S̃ containing vj , and let Ãj denote the component of Ã
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containing C̃j . Then the horospheres C(Ã1), C(Ã2) and C(Ã3) are distinct components

of p−10 (M{ε0}(〈α, β〉)). This implies that the base points ζ(Ãj) of the C(Ãj) are three

mutually distinct points in S∞. But by Lemma 8.22 we have for j = 1, 2, 3 that f̃ i(vj)→

ζ(Ãj) as i→∞. It follows that the three points f̃ i(vj), j = 1, 2, 3, are non-collinear when
i is large.

There remains the case in which two of the vj , say v1 and v2, lie in the same component

C̃ of S̃, and the third, say v3, lies in a component C̃ ′ 6= C̃ of S̃. Let Ã and Ã′ denote

the components of Ã containing C̃ and C̃ ′ respectively. Then ζ(Ã) and ζ(Ã′) are distinct
points of S∞ and hence have disjoint neighborhoods U and U ′ in H. By the first assertion

of Lemma 8.22 we have f̃ i(v3) ∈ U ′ for large i. On the other hand, the second assertion of

Lemma 8.22 implies that f̃ i(v1) 6= f̃ i(v2) for all i, and that for large i the line joining f̃ i(v1)

to f̃ i(v2) is contained in U . Since U ∩ U ′ = ∅ it follows that the f̃ i(vj) are non-collinear
for large i. ¤

8.24. Lemma. Let (ξ, η) be any point of A, let f̃ be any (ξ, η)-good map and let f : Σ→

M(〈ξ, η〉) be the map induced by f̃ . Let L be any component of FixTξ,η. Then FixTΣ ⊂ Σ
contains exactly two points, say P+ and P−, which are mapped into L by f . Furthermore,
the arc in L with endpoints f(P+) and f(P−) is enclosed by the singular surface (Σ, f).

Proof. To prove the first assertion we use the notation of 8.5: thus the components of
FixTξ,η are Lj(ξ, η) for j = 1, 2, 3.Wemust show that for each j there are exactly two of the
six fixed points of FixTΣ that are mapped by f into Lj(ξ, η). The equivariance condition in

the definition of a good map shows that f̃(`j(α, β)) = f̃(Fix τα,β,j) ⊂ Fix τξ,η,j = `j(ξ, η).
Hence f(Lj(α, β)) ⊂ Lj(ξ, η). In particular f maps Lj(α, β) ∩ Σ into Lj(ξ, η). But
Lj(α, β) ∩ Σ consists of fixed points of T0, and has cardinality 2 by Lemma 8.15. Thus
the first assertion is proved. Since T(ξ,η) ◦ f = f ◦ TΣ by 8.20, the second assertion follows
from the first by virtue of Proposition 6.10. ¤

Proof of Proposition 8.2. It suffices to prove that if ε is a positive number, and (ξi, ηi)
is a sequence of points in A which converges to (α, β), then for every sufficiently large i
there exists an ε-girded surface in M(〈ξ, η〉) which encloses at least one of the reference
points of M(〈ξ, η〉). According to Lemma 8.21, for each i there exists a (ξi, ηi)-good map

f̃ i : Σ̃ → H3. Let f i : Σ → M(〈α, β〉) denote the map induced by f̃ i. By Lemma 8.23,
(Σ, f i, S) is an ε-girded surface for every sufficiently large i. Thus in order to prove the
proposition it suffices to show that for every sufficiently large i the hyperbolically simplicial
surface (Σ, f i) encloses some reference point of M(〈ξi, ηi〉).

Recall from 8.17 that S has at least two non-separating components; by Lemma 8.18,
each such component contains at least two fixed points of TΣ. Thus card(S ∩FixTΣ) ≥ 4.
On the other hand, we have FixTΣ ⊂ FixT0, and T0 has three components. Hence there
must be two points P+, P− ∈ S ∩ FixTΣ that lie in the same component L of FixT0. By

Lemma 8.15 we must have L∩ Σ̃ = {P+, P−}. In the notation of 8.5, we have L = Lj0(ξ, η)

for some j0 ∈ {1, 2, 3}. Let us set ` = `j0(α, β), so that L = p0(`). Then Σ̃ meets ` in two

points P̃+ ∈ p
−1
0 (P+) and P̃− ∈ p

−1
0 (P+).

By 8.5, ` is the fixed line of τα,β,j0 = ρ̂0(tj0). For each i ≥ 1, we let `i denote the fixed
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line of τξi,ηi,j0 = ρ̂ξi,ηi(tj0), and set Li = pξi,ηi(`
i). Since f̃ i is F̂ -equivariant for every

i, we have f̃ i(P̃−), f̃
i(P̃ i+) ∈ `i. Hence f i(P−), f

i(P+) ∈ Li. If αi denotes the arc in Li

with endpoints f i(P−), f
i(P+), it follows from Lemma 8.24 that (Σ, f i) encloses αi. We

shall complete the proof of the proposition by showing that αi contains a reference point
of M(〈ξi, ηi〉) for sufficiently large i.

We have P̃−, P̃+ ∈ S̃ ⊂ Ã. Let C̃+ ⊂ Ã+ and C̃− ⊂ Ã− denote the components of S̃

and Ã containing P̃+ and P̃− respectively. Since Ã = p−10 (N{ε0}(〈α, β〉)) is invariant under

the action of F̂ on H3 defined by the representation ρ̂0, and since the involution τα,β,j0
fixes P̃− and P̃+, the sets Ã− and Ã+ are invariant under τα,β,j0. Hence ζ(Ã±), which is

the base point of the unique horoball C(Ã±) containing Ã±, is fixed by τα,β,j0. It follows

that each of the points ζ(Ã−) and ζ(Ã+) is an endpoint of the line `. We shall show that

ζ(Ã−) 6= ζ(Ã+), so that ζ(Ã−) and ζ(Ã+) are the two endpoints of `.

Since the horospheres C(Ã−) and C(Ã+) contain the endpoints of `, they meet ` orthog-
onally; hence each of these horospheres meets ` in at most a single point. Since P− 6= P+,

it follows that C(Ã−) 6= C(Ã+). Thus the horospheres C(Ã−) and C(Ã+) are distinct

components of p−10 (M{ε0}(〈α, β〉)). This implies that the base points ζ(Ã−) and ζ(Ã+)

of C(Ã−) and C(Ã+) are distinct. Thus ζ(Ã−) and ζ(Ã+) are indeed the two endpoints

of `. For each i ≥ 1, let P̃ i denote the point of `i that is closest to w0. By definition,

P i = pξi,ηi(P̃
i) is a reference point of M(〈ξi, ηi〉). Let P̃ denote the point of ` that is

closest to w0. By 1.9 we have `i → ` as i→∞, so that P̃ i → P̃ . On the other hand, since

P̃+ ∈ S̃+ and P̃− ∈ S̃−, Lemma 8.22 gives that f̃ i(P̃+) → ζ(Ã+) and f̃ i(P̃−) → ζ(Ã−)

in H as i → ∞. Thus we have a sequence of triples of points (f̃ i(P̃−), P̃
i, f̃ i(P̃+))i≥1;

the points in the i-th triple all lie in the line `i; and in the limit triple (ζ(Ã−), P̃ , ζ(Ã+)),

the point P̃ lies on the line ` ⊂ H3, whereas ζ(Ã−) and ζ(Ã+) are the endpoints of `. It

follows that for sufficiently large i the point P̃ i lies between f̃ i(P̃−) and f̃
i(P̃+)).

By Proposition 8.6 this means that for sufficiently large i the point P i lies between
f i(P−) and f

i(P+)), so that P i ∈ αi for large i, as required. ¤

§9. Estimates for geometrically finite groups

9.1. The following theorem is the main result of this paper.

Theorem. Let ξ and η be non-commuting isometries ofH3. Suppose that ξ and η generate
a torsion-free discrete group which is topologically tame, is not co-compact and contains
no parabolics. Then for any z ∈ H3 we have

max
(
dist(z, ξ · z), dist(z, η · z)

)
≥ log 3

The following two results are used in the proof of Theorem 9.1, and put the statement
in perspective.

9.2. Proposition. Let ξ and η be non-commuting isometries of H3 that generate a
torsion-free discrete group which is not co-compact and contains no parabolics. Then
〈ξ, η〉 is a free group on the generators ξ and η.
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Proof. Set Γ = 〈ξ, η〉. It follows from the hypotheses that the space M = H3/Γ is a
complete, non-compact, orientable hyperbolic 3-manifold without cusps. In particular, the
universal cover of M is homeomorphic to R3, so that M is irreducible; and Γ = π1(M)
has no free abelian subgroup of rank 2.

It follows from [BaS, Proposition 3 and Theorem A] that if M is any non-compact,
irreducible, orientable 3-manifold such that π1(M) has no free abelian subgroup of rank
2, then π1(M) is 2-free in the sense that each of its 2-generator subgroups is free of some
rank ≤ 2. (This fact is also implicit in [Tuc] and [JaS, Sect. VI.4].) Thus Γ is 2-free; since
Γ is itself generated by two non-commuting elements, it is a free group of rank 2. Hence
by [K, p. 59], Γ is in fact free on the given generators ξ and η. ¤

9.3. Proposition. Suppose that ξ and η satisfy the hypotheses of Theorem 9.1. Then
either the group 〈ξ, η〉 is geometrically finite, or we have M(〈ξ, η〉) = N(〈ξ, η〉).

Proof. Since Γ = 〈ξ, η〉 is not co-compact, it follows from Proposition 9.2 that Γ is a free
group. In particular, H2(Γ;Z) = 0.

According to 1.4, the set N = N(Γ) ⊂ M(Γ) is a 3-manifold-with-boundary and
a deformation retract of M(Γ). Thus N is aspherical and π1(N) ∼= Γ, and therefore
H2(N ;Z) ∼= H2(Γ;Z) = 0. If ∂N has a compact component, it follows that N is compact
(and has connected boundary); by the definition (1.7) this implies that Γ is geometrically
finite. On the other hand, if ∂N = ∅ then N = M(Γ). Hence to prove the proposition it
suffices to show that ∂N is compact.

Let Ω denote the set of discontinuity of Γ. The surface Ω/Γ inherits a conformal struc-
ture from Ω. According to the Ahlfors finiteness theorem [A], Ω/Γ is a hyperbolic Riemann
surface which has finite area in the Poincaré metric. Since Γ contains no parabolics, it
also follows from Ahlfors’s theorem that Ω/Γ has no cusps. Hence Ω/Γ is compact. We
shall prove that ∂N is compact by showing that there is a continuous map of Ω/Γ onto

∂N . For this purpose it suffices to produce a Γ-equivariant surjection Θ : Ω→ ∂Ñ , where

Ñ = nbhd1(hull(ΛΓ)) is the pre-image of N in H3. Recall from 1.4 that Ñ is convex.
For any point ζ ∈ Ω let Cζ denote the smallest horoball based at ζ which meets the set

Ñ . Then Cζ meets Ñ in a single point; for if z and z′ were distinct points of Ñ ∩Cζ then,
since a horoball is convex, the open line segment in H3 joining z to z′ would be contained

in Ñ ∩ intCζ , and the minimality of Cζ would be contradicted. We define Θ(ζ) to be the

point of intersection of Cζ with Ñ . It is clear that Θ(ζ) ∈ ∂Ñ ∩ ∂Cζ for each ζ ∈ Ω.

The function Θ:Ω → ∂Ñ is obviously Γ-equivariant. To see that it is surjective, we

observe that since Ñ is closed and convex, every point z ∈ ∂Ñ lies on the boundary of

a hyperbolic half-space Q ⊂ H3 with Ñ ∩ intQ = ∅. (One deduces the existence of such
a “supporting half-space” for a closed convex set in H3 from the corresponding fact in
Euclidean space by using the projective model as in 1.2.) Now let C denote the unique
horoball which is contained in Q and tangent to the plane ∂Q, and let ζ denote the base
point of C. It is clear that ζ ∈ Ω and that Θ(ζ) = z. Thus Θ is surjective.

It remains to show that Θ is continuous. For this purpose we identify H3 with the
upper half-space model R2 × (0,∞) by an isometry that maps some point of ΛΓ to ∞.
This guarantees that every vertical ray in R2×(0,∞) whose lowest point is in N is entirely
contained in N . Now let (ζi) be a convergent sequence in Ω with ζ∞ = lim ζi ∈ Ω. For
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1 ≤ i ≤ ∞ we set zi = Θ(ζi) and Ci = Cζi . The closure Ci of Ci in R2 × [0,∞) is a

Euclidean ball of some radius ri, tangent to R2 × {0} at ζi, and Ci ∩ N = {zi}. Since
the vertical ray with lowest point zi is contained in N , the point zi must lie on the closed
upper hemisphere Ui of the sphere ∂Ci.

We claim that ri → r∞ as i → ∞. If this is false then after passing to a subsequence
we can assume that ri → r for some r 6= r∞ in [0,∞]. If r > r∞ then for large enough
i we have U∞ ⊂ intCi, and in particular z∞ ∈ intCi. This is impossible since Ci ∩N =
{zi} ⊂ ∂Ci. Similarly, if r < r∞ then for large i we have Ui ⊂ intC∞, and again we obtain
a contradiction. This proves the claim.

Now suppose that (zi) does not converge to z∞. Then after passing to a subsequence we
may assume that zi → w for some point z ∈ N − {z∞}. Since zi ∈ Ci for 1 ≤ i <∞, and
since ζi → ζ and ri → r, we have z ∈ C∞. This is impossible since C∞∩N = {z∞}. Hence
we must have zi → z∞. This shows that Θ is continuous and completes the proof. ¤

9.4. By Proposition 9.3, the proof of Theorem 9.1 breaks up into two disjoint cases,
according to whether the group Γ = 〈ξ, η〉—which is free by 9.2—satisfies N(Γ) = M(Γ)
or is geometrically finite. The first case is covered by the following result.

Lemma. Let ξ and η be non-commuting isometries of H3 that freely generate a rank-2
free Kleinian group Γ which is topologically tame, contains no parabolics and satisfies
N(Γ) =M(Γ). Then for any z ∈ H3 we have

max
(
dist(z, ξ · z), dist(z, η · z)

)
≥ log 3.

Proof. According to Proposition 6.9 every positive superharmonic function on the manifold
M(Γ) is constant. Thus by Proposition 3.9, every Γ-invariant conformal density is a
constant multiple of the area density. By Proposition 5.2 we therefore have max

(
dist(z, ξ ·

z), dist(z, η · z)
)
≥ log 3 for every z ∈ H3. ¤

9.5. The following result covers the remaining case of Theorem 9.1.

Lemma. Let ξ and η be non-commuting elements in PSL2(C) that freely generate a rank-
2 free Kleinian group which is geometrically finite and contains no parabolics. Then for
any z ∈ H3 we have

max
(
dist(z, ξ · z), dist(z, η · z)

)
≥ log 3.

Proof. We use the notation of Section 8. Let a point z ∈ H3 be given. Let us define a
continuous non-negative-valued function f on V by

f(ξ, η) = max
(
dist(z, ξ · z), dist(z, η · z)

)
.

The proposition asserts that f(ξ, η) ≥ log 3 for all (ξ, η) ∈ GF; or, equivalently, that
f(ξ, η) ≥ log 3 for all (ξ, η) ∈ GF.

Every local minimum of the function f on V occurs at a point (ξ, η) such that either ξ
or η fixes z. Indeed, if (ξ, η) is a point of V where ξ(z) 6= z and η(z) 6= z, then there exist
a sequence (zi) of points on the open hyperbolic line segment between z and ξ(z) which

52



converges to ξ(z), and a sequence (wi) of points on the open segment between z and η(z)
which converges to η(z). If we choose sequences (αi) and (βi) of hyperbolic isometries
converging to the identity, such that αi(z) = zi and βi(z) = wi, then (αiξ, βiη) converges
to (ξ, η) as i→∞, and f(αiξ, βiη) < f(ξ, η) for all i. Hence (ξ, η) is not a local minimum
of f .

For any point (ξ, η) ∈ D, the elements ξ and η of PSL2(C) have infinite order in the
discrete group 〈ξ, η〉, and hence have no fixed points in H3. It follows that f has no local
minimum on the open subset GF of V .

On the other hand, f is a proper function on V ; indeed, for any B ≥ 0, the set f−1([0, B])
consists of all pairs (ξ, η) such that ξ and η each move the point z a distance at most B,
and this set is clearly compact. Hence f must take a minimum value on the closed set GF.
Since it has no local minimum on the open set GF, it must take its minimum value on B.
Hence we need only show that f(ξ, η) ≥ log 3 for all (ξ, η) ∈ B.

Let C ⊂ B denote the dense Gδ given by Theorem 8.2. Since f is continuous and C

is dense in B, we need only prove that f(ξ, η) ≥ log 3 for all (ξ, η) ∈ C. But for any
(ξ, η) ∈ C, the Kleinian group 〈ξ, η〉 is girded; hence by Proposition 7.4, every positive
superharmonic function on the manifold M(Γ) is constant. Thus according to Proposition
3.9, every 〈ξ, η〉-invariant conformal density is a constant multiple of the area density. By
Proposition 5.2 we therefore have

f(ξ, η) = max
(
dist(z, ξ · z), dist(z, η · z)

)
≥ log 3.

¤

Proof of Theorem 9.1. The theorem follows immediately from Propositions 9.2 and 9.3
and Lemmas 9.4 and 9.5. ¤

§10. Applications to closed hyperbolic manifolds

10.1. The following result is an immediate consequence of Theorem 9.1 and the definition
of a Margulis number given in Section 1.

Proposition. Let M = H3/Γ be a closed, orientable hyperbolic 3-manifold such that
every 2-generator subgroup of Γ = π1(M) has non-empty set of discontinuity in S∞. Then
log 3 is a Margulis number for M . ¤

10.2. In this section we shall prove the

Proposition. Let M be a closed, orientable hyperbolic 3-manifold such that the rank of
H1(M ;Q) is at least 3. Then every 2-generator subgroup of π1(M) is non-co-compact and
topologically tame.

10.3. By combining Propositions 10.1 and 10.2 one immediately obtains the following
result.

Theorem. Let M be a closed, orientable hyperbolic 3-manifold such that the rank of
H1(M ;Q) is at least 3. Then log 3 is a Margulis number for M . ¤
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10.4. Corollary. LetM be a closed, orientable hyperbolic 3-manifold such that the rank
of H1(M ;Q) is at least 3. Then M contains an isometric copy of a ball of radius 1

2
log 3

in H3. Hence the volume of M is greater than 0.92.

Proof. By Theorem 10.3, the number ε = log 3 is a Margulis number for M . Thus M(0,ε] is
a disjoint union of tubes in M , and in particular M(ε,∞] 6= ∅. It follows from the definition
ofM(ε,∞] that the (ε/2)-neighborhood of any point ofM(ε,∞] is isometric to a ball of radius

ε/2 in H3. This proves the first assertion.
To deduce the second assertion from the first, we use an observation due to Meyerhoff

[Me]. Using a result due to Böröczky [Bör], Meyerhoff shows that if a hyperbolic manifold
M contains a hyperbolic ball B(r) of a given radius r then the volume of M is at least
2Vol(T )/(6α−π), where α = 1

2 arcsec (2 + sech 2r), and T is a regular tetrahedron in H3

whose edges have length 2r. (This is equivalent to the inequality Vol(M) ≥ Vol(B(r))/d(r)
given on p. 277 of [Me]: the factor sinh(2r) − 2r in the definition of d(r) on p. 275 of
[Me] is equal by [F, p. 209] to 1

2 Vol(B(r)).) Taking r = 1
2 log 3, and using Lobachevsky

functions as in [F , Sect. IX.4] to compute the volume of a regular hyperbolic tetrahedron
with edges of length log 3, one obtains the estimate VolM > 0.92. ¤

Proof of Proposition 10.2. Let F be any 2-generator subgroup of Γ = π1(M). Since
H1(M ;Q) has rank at least 3, there is an epimorphism η : π1(M)→ Z such that η(F ) =
{0}. In particular, F has infinite index in Γ and is therefore non-co-compact. It remains
to show that F is topologically tame.

It follows from [He, Lemma 6.5] that η is induced by some map φ :M → S1 such that φ
is transverse to 1 ∈ S1 and the surface φ−1(1) is incompressible; that is, for each component
Σ of φ−1(1), we have π1(Σ) 6= {1}, and the inclusion homomorphism π1(Σ) → π1(M) is
injective.

Let (M̃1, p1) denote the covering space ofM corresponding to the subgroup Γ1 = ker η of

Γ. Then φ is covered by a map φ̃ from M̃1 to the universal cover R of S1. Let G be a graph
whose fundamental group is free of rank 2, and let ψ : G → M be a basepoint-preserving

map such that ψ#(π1(G)) = F . Since F ⊂ ker η, the map ψ admits a lift ψ̃ : G → M̃1.

Since G is compact, we have ψ̃(G) ⊂ φ̃−1([−D,D]) for some positive integer D. The

component of φ̃−1([−D,D]) containing ψ̃(G) is a compact 3-manifold-with-boundary K1
with ∂K1 ⊂ p−11 (φ−1(1)); hence ∂K1 is incompressible in M̃1. We define Γ2 ≤ Γ1 ≤ Γ to

be the image of the inclusion homomorphism π1(K1)→ π1(M̃1), so that F ≤ Γ2.

Let (M̃2, p2) denote the covering space of M̃1 corresponding to the subgroup Γ2. Then

M̃2 contains a submanifold K2 which is mapped homeomorphically onto K1 by p2. Thus

if we denote the boundary components of K2 by Σ̃1, . . . , Σ̃k, each Σ̃j is mapped homeo-

morphically by p2 onto a component Σj of ∂K. It is clear that K2 is a compact core of M̃2

in the sense that the inclusion homomorphism π1(K2)→ π1(M̃2) is an isomorphism. It is

also clear that the Σ̃j are incompressible.

Thus M̃2 is a hyperbolic 3-manifold having a compact core whose boundary is incom-
pressible. It follows from the main theorem of [Bo] that any such hyperbolic manifold is
topologically tame. On the other hand, Γ2 is contained in Γ1 and therefore has infinite

index in Γ; hence M̃2 has infinite volume. According to [Ca, Proposition 3.2], any cover-
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ing space, with finitely generated fundamental group, of an infinite-volume topologically
tame hyperbolic 3-manifold is itself topologically tame. Since F ≤ Γ2, it follows that F is
topologically tame, as required. ¤

A stronger version of Proposition 10.2 can be established: namely that under the same
hypothesis, every 2-generator subgroup of π1(M) is in fact geometrically finite. This can
be proved by combining results of [Th. Chapter 9] and [ScS]; see also [Ca2].
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