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Abstract. If M is a closed, orientable hyperbolic 3-manifold such that dimZp H1(M ;Zp) ≥ 5

for some prime p, then M contains a hyperbolic ball of radius (log 5)/4. There is also a related

result in higher dimensions.

Introduction

In [8, Proposition 5.4] it was shown that if M is an orientable hyperbolic 3-manifold,
and if for some prime p the Zp-vector space H1(M,Zp) has dimension at least 4, then M
contains a ball of radius (log 3)/4. This implies that the volume of M is greater than 0.11.
In this paper we shall prove:

Theorem A. Let M be a closed, orientable hyperbolic 3-manifold. Suppose that for some
prime p, the dimension of the Zp-vector space H1(M ;Zp) is at least 5. Then M contains
a hyperbolic ball of radius (log 5)/4. In particular, the volume of M is greater than 0.35.

By a hyperbolic ball in a hyperbolic n-manifold M we mean an open subset of M which
is path-isometric to an open ball in hyperbolic n-space Hn. The volume estimate in the
theorem can be deduced from the existence of a hyperbolic ball of radius (log 5)/4 by using
density estimates for sphere-packings as in [7] (see also [3]).
Theorem 6.1 of this paper asserts that the conclusion of Theorem A remains true under

the hypothesis that any three elements of π1(M) generate an infinite-index subgroup of
π1(M). The latter hypothesis is actually weaker than that of Theorem A; this is because,
according to [8, Proposition 1.1], if k is a positive integer and M is a closed, orientable
3-manifold such that dimZp H1(M ;Zp) ≥ k + 2 for some prime p, then any k elements of
π1(M) generate an infinite-index subgroup of π1(M). Thus Theorem A is in fact a special
case of Theorem 6.1.
We will also prove a related result in higher dimensions. Recall that the rank of a finitely

generated group F is defined to be the minimal cardinality of a generating set for F . A
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group Γ is said to be k-free, where k is a non-negative integer, if every subgroup of Γ with
rank at most k is free. We have:

Theorem B. Let M be a closed hyperbolic manifold of dimension n ≥ 3. Suppose that
π1(M) is 3-free. Then M contains a hyperbolic ball of radius

log 5

2(n− 1)
.

The first five sections of the paper are devoted to the proof of Theorem B. One regards
the hyperbolic n-manifoldM as a quotient Hn/Γ, where Γ is a discrete, torsion-free group
of isometries of Hn. For each maximal cyclic subgroup X of Γ and each λ > 0 one consid-
ers the set Zλ(X) consisting of all points of H

n that are moved a distance less than λ by
some non-trivial element of X. It is an elementary observation (Proposition 3.2) that ifM
contains no hyperbolic ball of radius λ/2 then the non-empty sets of the form Zλ(X) con-
stitute an open covering of Hn. The nerve of this covering is a simplicial complex K. The
geometric properties of the sets in the covering—which are fairly well-behaved neighbor-
hoods of the axes of the corresponding cyclic subgroups—impose topological restrictions
on K: it is connected, and the link of every vertex is connected.
As the sets in the covering are determined by certain maximal cyclic subgroups of Γ,

the vertices of K have a natural labeling by maximal cyclic subgroups. As Γ is 3-free,
the vertices of any 2-simplex of K generate a free group. However, if λ = (log 5)/(n− 1),
the discreteness of Γ can be used to show that this free group is never of rank 3: this
depends on Proposition 3.5, which is an elementary geometric argument based on ideas
that appeared in [4] and [8]. Thus in the labeling of the vertices of K by cyclic groups,
the three cyclic groups labeling the vertices of any given 2-simplex generate a free group
of rank 2. Using the topological properties of K and elementary facts about free groups,
one can conclude that the group generated by all the labeling cyclic groups—i.e. by all
cyclic groups X for which Zλ(X) 6= ∅—is locally a free group of rank 2. By pushing the
group theory a bit further one can then deduce that Γ is itself a free group of rank 2, and
this is impossible as Γ is the fundamental group of a closed aspherical manifold.
In Section 1 we prove some elementary properties of the sets Zλ(X), for X any cyclic

group of loxodromic isometries of Hn. In Section 2 we prove a purely topological result
about nerves of coverings of topological spaces. In Section 3 the results of the two preceding
sections are combined to establish the relevant topological properties of the complex K.
The proof of the geometric result alluded to above, Proposition 3.5, is also given. In Section
4 we establish the relevant facts about free groups and labeled complexes of groups. In
Section 5 the results of Sections 3 and 4 are combined to give the proof of Theorem B.
Actually this is all done in a somewhat more refined setting, and gives a result, Theorem

5.1, which is more technical than Theorem B but includes it as a special case. In Section
6 we will combine Theorem 5.1 with the specifically 3-dimensional results of [3] to deduce
Theorem 6.1 and hence Theorem A.
The following conventions will be used throughout the paper. The hyperbolic distance

in Hn will be denoted dist. If S is a subset of Hn and r is a positive number, nbhdr(P ) will
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denote the open r-neighborhood of S, i.e. the set of all points whose minimum distance
from S is strictly less than r.
If σ is a simplex in the simplicial complex K, the link of σ in K, denoted by linkK(σ),

consists of all simplices τ such that (i) σ ∩ τ = ∅ and (ii) σ and τ span a simplex of K.
The support of a simplex σ in K is the subcomplex of K consisting of σ and all its faces;
it will be denoted by |σ|.
If S is a subset of a group Γ, we denote by 〈S〉 the subgroup of Γ generated by S. (If

S = {x1, . . . , xr}, we may also write 〈x1, . . . , xr〉 for 〈S〉.)
Let z1, . . . , zr be elements of a group Γ. We shall say that z1, . . . , zr are independent

if they freely generate a (free, rank-r) subgroup of Γ. (Here we regard {z1, . . . , zr} as an
indexed r-tuple; in particular, if two of the zi coincide, then z1, . . . , zr are not independent.)
We are very grateful to Sa’ar Hersonsky for helping us with our 3-dimensional hyperbolic

trigonometry.

Section 1. Loxodromic isometries
and displacement cylinders

1.1. Recall that an isometry x of Hn is loxodromic if there is an x-invariant line A(x) in
Hn, and x acts on A(x) as a translation through some distance lengthx > 0. The line
A(x) is unique, and is called the axis of x.
If x is an isometry of Hn we define a continuous non-negative-valued function Dx on

Hn by Dx(P ) = dist(P, x · P ). Note that Dx = Dx−1 .

1.2. Suppose that x is loxodromic with length l. Let P be any point of Hn − A(x), and
let Q denote the point of A(x) closest to P . Set P ′ = x · P and Q′ = x · Q. We have
∠PQQ′ = ∠P ′Q′Q = π/2, dist(Q,Q′) = l, and dist(P,Q) = dist(P ′, Q′) = r, where
r = rx(P ) denotes the perpendicular distance from P to A(x). Let θ = θx(P ) denote the
dihedral angle between the planes PQQ′ and P ′Q′Q. Setting D = Dx(P ) = dist(P, P ′),
one sees by elementary hyperbolic geometry that

cosh dist(P, P ′) = cosh l + (sinh2 r)(cosh l− cos θ),

i.e.

(1.2.1) coshDx(P ) = cosh l + (sinh
2 rx(P ))(cosh l − cos θx(P )).

This formula is clearly valid for P ∈ A(x) if we assign an arbitrary value to θx(P ). In
particular we recover the familiar fact that dist(P, x ·P ) ≥ l for every point P ∈ Hn, with
equality if and only if P ∈ A(x).

1.3. Note that θx is constant on every ray which is perpendicular to A(x) and has its end-
point in A. If ρ is such a ray, the function rx|ρ maps ρ homeomorphically onto [0,∞) and
thus defines a coordinate r on ρ. It follows from (1.2.1) thatDx|ρ is a strictly monotonically
increasing function of r and goes to infinity with r.
(In the case where n = 3 and x preserves orientation, θx is constant on all of H

3. This
fact will not be used in the present paper.)
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1.4. Now for any loxodromic isometry x of Hn we define a non-negative-valued function
Ex on Hn by setting Ex(P ) = mind≥1 Dxd(P ) for every P ∈ Hn.

Proposition. Let x be a loxodromic isometry of Hn. Then Ex is continuous, and minP∈Hn Ex(P ) =
lengthx. Furthermore, for every C > 0 there exists R > 0 such that Ex(P ) > C for every
point P such that rx(P ) > R.

Proof. Set l = lengthx. Then lengthxd = dl for every integer d > 0. Hence for each d we
have minP∈Hn Dxd(P ) = dl, and so

min
P∈Hn

Ex(P ) = min
d>0

dl = l.

To show that Ex is continuous on Hn it suffices to show that it is continuous on the set
Hα = D−1

x ([0, α)) for each α > 0. For any integer d > α
l
we have Dxd(P ) ≥ dl > α for

every P ∈ Hn. It follows that for any p ∈ Hα we have Ex(P ) = min1≤d≤[α
l
] Dxd(P ); since

each of the functions Dxd(P ) is continuous on Hn, it follows that Ex is continuous on Hα.

Now let C be any positive constant, and let R be a constant such that (sinh2 R)(cosh l−
1) > coshC. Since xd has translation length dl, it follows from (1.2.1) that Dxd(P ) > C
for every positive integer d > 0 and for every P with rx(P ) ≥ R. Hence Exd(P ) > C
whenever rx(P ) ≥ R. ¤

1.5. Proposition. Let x be a loxodromic isometry of Hn. Let ρ be any ray in Hn which
has its endpoint in A(x) and is perpendicular to A(x); let us identify ρ isometrically with
[0,∞). Then f = Ex|ρ is monotonically increasing, and f(P ) tends to infinity with P .

Proof. According to 1.3, the function Dxd |ρ is strictly monotonically increasing for every
d > 0. Hence f = Ex|ρ = mind≥1 Dxd |ρ is also strictly monotonically increasing. The final
assertion of Proposition 1.4 implies that f(P ) tends to ∞ with P . ¤

For any loxodromic x and any λ > 0 we set Zλ(x) = E−1
x [0, λ).

1.6. Proposition. Let x be a loxodromic isometry of Hn. For any λ ≤ lengthx we have
Zλ(x) = ∅ . For any λ > lengthx the set Zλ(x) is an open contractible neighborhood of
A(x) and is contained in nbhdR A(x) for some constant R > 0. Furthermore, the frontier
of Zλ(x) in Hn is the set Qλ(x) = E−1

x ({λ}), and Qλ(x) is homeomorphic to Sn−2 ×R.

Proof. Set l = lengthx. Since minP∈Hn Ex(P ) = l by Proposition 1.4, we have Zλ(x) = ∅
for any λ ≤ l. On the other hand, since Dx is identically equal to l on A(x), we have
A(x) ⊂ Zλ(x) for any λ > l; in view of the continuity of Ex it follows that Zλ(x) is an
open neighborhood of A(x). To show that Zλ(x) is contractible in this case, we consider
any ray ρ ⊂ Hn which has its endpoint in A(x) and is perpendicular to A(x). It follows
from Proposition 1.5 that Zλ(x)∩ ρ is a half-open line segment with the same endpoint as
ρ; since this holds for every such ray ρ, the contractibility of Zλ(x) is clear.
It follows immediately from Proposition 1.4 that Zλ(x) ⊂ nbhdR A(x) for some constant

R > 0.
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The continuity of Ex implies that the frontier of Zλ(x) in Hn is contained in the set
Qλ(x) = E−1

x ({λ}). To prove the reverse inclusion, we consider any point P ∈ Qλ(x), and
we let ρP denote the unique ray in Hn which has its endpoint in A, is perpendicular to
A(x) and contains P . According to 1.5, the function f = Ex|ρP is strictly monotonically
increasing. Since f(P ) = λ, the monotonicity of f implies that P lies in the frontier relative
to ρP of the set f−1[0, λ) = Zλ(x) ∩ ρP . In particular, P lies in the frontier of Zλ(x) in
Hn.
It remains to show that Qλ(x) is homeomorphic to Sn−2 × R. For this purpose we

consider the set Q∗(x) ⊂ Hn consisting of all points whose perpendicular distance from
A(x) is 1. If P is any point of Qλ(x), and ρP is defined as above, then ρP ∩Q∗(x) consists
of a single point which we denote h(P ). This defines a continuous map h : Qλ(x)→ Q∗(x).
It follows immediately from Proposition 1.5 that h is a bijection. On the other hand, since
we have shown that Zλ(x) ⊂ nbhdR A(x) for some constant R > 0, it is clear that every
compact subset of Q∗(x) has bounded pre-image under h. But Qλ(x) is closed in Hn

since it is the frontier of Zλ(x). Thus Qλ(x) is locally compact and h is a proper map. It
follows that h is a homeomorphism. Since Q∗(x) is clearly homeomorphic to Sn−2 × R,
this completes the proof. ¤

We remark that in the case that n = 3 and x preserves orientation we have Zλ(x) =
nbhdR A(x) for some R > 0. This fact will not be used in the present paper.

1.7. For any loxodromic isometry x of Hn, it follows from 1.1 that Dxd = Dx−d for every
d > 0. This implies that Ex = Ex−1 , and hence that Zλ(x) = Zλ(x

−1) for every λ > 0.
Hence if X is any infinite cyclic subgroup of Γ with a loxodromic generator x we may
unambiguously write Zλ(X) = Zλ(x) for any positive number λ. This notation will be
used extensively in the next two sections.

Section 2. Nerves and connectedness

2.1. By an open covering of a topological space H we shall mean an indexed family (Ui)i∈I
of non-empty open sets in H such that

⋃
i∈I Ui = H. Note that we may have Ui = Uj

for distinct indices i and j. The nerve of the covering (Ui)i∈I is an abstract simplicial
complex with an indexed vertex set (vi)i∈I , where vi = vj if and only if i = j. A collection
{vi0 , . . . , vik} of vertices, where i0, . . . , ik are distinct indices in I, spans a k-simplex if and
only if Ui0 ∩ · · · ∩ Uik 6= ∅.
If H is connected, any open covering of H has connected nerve. (This depends on our

requirement that the sets in an open covering be non-empty.)

2.2. Proposition. Let (Ui)i∈I be a covering of a topological space H. Suppose that
(i) for every i ∈ I the set Ui is connected and has connected frontier, and
(ii) for any two distinct indices i, j ∈ I we have Ui 6⊂ Uj.
Then the link of every vertex in the nerve of (Ui)i∈I is connected.

Proof. Let K denote the nerve of (Ui)i∈I . Suppose that we are given a vertex of K, say
vs for some s ∈ I. Set C = linkK vs. We are required to show that C is a connected
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simplicial complex. Let us write the set of vertices of C as an indexed set (vi)i∈J , where
J is a subset of I. We have j ∈ J if and only if vs and vj span a 1-simplex of K; by the
definition of the nerve, this is equivalent to saying that j 6= s and Uj ∩ Us 6= ∅.
We denote by Q the frontier of Us in H. By hypothesis (i), Q is a connected space.

Consider the indexed family (Uj ∩ Q)j∈J of open sets in Q. We claim that this family is
an open covering of Q.
First we must show that Uj ∩ Q 6= ∅ for any j ∈ J . Since for j ∈ I we have j 6= s,

hypothesis (ii) implies that Uj 6⊂ Us. Since Uj is connected by hypothesis (i), and since
Uj ∩ Us 6= ∅ when j ∈ J , it follows that Uj meets the frontier Q of Us as required. Next
we must show that Q =

⋃
j∈J(Q ∩ Uj), i.e. that Q ⊂

⋃
j∈J(Uj). Given any point q ∈ Q,

we have q ∈ Uj for some j ∈ I; since q /∈ Us we have s 6= j. But since q ∈ U s we must
have Uj ∩ Us 6= ∅. This shows that j ∈ J , and completes the proof that (Uj ∩Q)j∈J is an
open covering of Q.
Let E denote the nerve of the covering (Uj ∩ Q)j∈J . Let wj denote the vertex of E

corresponding to the index j ∈ J . If wj0 , . . . , wjk span a k-simplex of E then (Q ∩ Uj0) ∩
· · · ∩ (Q ∩ Ujk) 6= ∅; hence in particular, (Uj0 ∩ · · · ∩ Ujk) ∩ Us 6= ∅, so that vj0 , . . . , vjk , vs
span a (k + 1)-simplex of K. This means that vj0 , . . . , vjk span a k-simplex of C. This
shows that E is simplicially isomorphic to a subcomplex of C containing all the vertices
of C.
Since Q is connected, the nerve E of the covering (Uj ∩Q)j∈J is connected. Thus there

is a connected subcomplex of C containing all the vertices of C. It follows that C is itself
connected. ¤

Section 3. Discrete groups
and coverings of hyperbolic space

3.1. In this section, M will denote a closed hyperbolic manifold of some dimension n ≥ 2.
We may regard M as the quotient of Hn by a co-compact, discrete, torsion-free group
Γ of isometries. We recall some elementary properties of Γ. Since Γ is co-compact, each
non-trivial element x of Γ is loxodromic. The centralizer C(x) of x is cyclic and consists
of all elements having the same axis as x. In particular C(x) is the unique maximal cyclic
subgroup containing x. For two non-trivial elements x and y of Γ we have C(x) = C(y)
if and only if x and y commute, or equivalently if and only if A(x) = A(y). Thus there
is a natural one-one correspondence between maximal cyclic subgroups of Γ and axes of
elements of Γ.

3.2. Proposition. Suppose that λ is a positive number such that M contains no hyperbolic
ball of radius λ

2 . Then we have

Hn =
⋃

X

Zλ(X),

where X ranges over all maximal cyclic subgroups of Γ.

Proof. Let P be any point of Hn. The hypothesis that M contains no hyperbolic ball of
radius λ

2 implies that dist(P, x0 ·P ) < λ for some x0 ∈ Γ− 1. (Indeed, if dist(P, x ·P ) ≥ λ
6



for every x ∈ Γ − {1} then by the triangle inequality B = nbhdλ/2(P ) is disjoint from
x·B = nbhdλ/2(x·P ) for every x ∈ Γ−{1}; hence the covering projection maps B injectively

into M , and its image is a hyperbolic ball of radius λ
2 .) Now by 3.1, X1 = C(x0) is a

maximal cyclic subgroup of Γ, and x0 is a positive power of some generator x1 ofX1. By the
definitions we have Ex1

(P ) ≤ Dx0
(P ) = dist(P, x0 ·P ) < λ, so that P ∈ Zx1

(P ) = ZX1
(P ).

Since P ∈ Hn was arbitrary, the conclusion of the lemma follows. ¤

3.3. Proposition. Suppose that X and X ′ are maximal cyclic subgroups of Γ, and suppose
that for some λ > 0 we have ∅ 6= Zλ(X) ⊂ Zλ(X

′). Then X = X ′.

Proof. Let x and x′ be generators of X and X ′ respectively, and set A = Ax, A
′ = Ax′ . By

Proposition 1.6 we have Zλ(X
′) ⊂ nbhdR A′ for some R > 0. Hence Zλ(X) ⊂ nbhdR A′.

Now let H
n
denote the union of Hn with the sphere at infinity Sn−1

∞ . We give H
n
the

natural topology, in which it is homeomorphic to a closed n-ball. Let Z denote the closure
of Zλ(X) in H

n
. Since Zλ(X) ⊂ nbhdR A′, we have Z ∩ Sn−1

∞ ⊂ A′ ∩ Sn−1
∞ = {P,Q},

where P and Q are the fixed points of x′ in Sn−1
∞ . Thus {P,Q} is invariant under x.

Hence x2 fixes P and Q. Since x2 is loxodromic with axis A it follows that P and Q are
the endpoints of A and hence that A = A′. By 3.1 this implies X = X ′. ¤

3.4. Suppose that λ is a positive number such that M contains no hyperbolic ball of
radius λ/2. Let X = Xλ(M) denote the set of all maximal cyclic subgroups X of Γ such
that Zλ(X) 6= ∅. Proposition 3.2 implies that the indexed family (Zλ(X))X∈X is an open
covering of Hn (see 2.1). We will denote the nerve of this covering by Kλ(M).

Proposition. Let λ be a positive number such that M contains no hyperbolic ball of radius
λ/2. Then K = Kλ(M) is a connected complex with more than one vertex, and the link of
every vertex of K is connected.

Proof. Since Hn is connected, the nerve of any open covering of Hn is connected. Set
X = Xλ(M) and K = Kλ(M). If K had only one vertex, we would have Hn = Zλ(X)
for some X ∈ X . This is impossible since by Proposition 1.6 we have Zλ(X) ⊂ nbhdR(A)
where A is the axis of a generator of X and R is some positive number. To show that the
link of every vertex of K is connected we apply Proposition 2.2. According to Proposition
1.6, for each X ∈ X the set Zλ(X) is contractible and hence connected, and its frontier is
homeomorphic to Sn−2 ×R and is therefore connected since n ≥ 3. Thus hypothesis (i)
of Proposition 2.2 holds. That hypothesis (ii) holds is precisely the content of Proposition
3.3. ¤

3.5. As we explained in the introduction, the following result is the basic geometric fact
underlying the proofs of Theorems A and B. The proof is a slight variant of the proof of
[8, Proposition 5.2 and Corollary 5.3]; see also [4].

Proposition. Let x1, . . . , xr be independent elements of Γ. Set

λ =
log(2r − 1)

n− 1
.
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Then Zλ(x1) ∩ · · · ∩ Zλ(xr) = ∅.

Proof. Suppose that P is a point of Zλ(x1) ∩ · · · ∩ Zλ(xr). For each i ∈ {1, . . . , r} we
have Exi(P ) < λ, and hence Dyi(P ) < λ for some positive power yi = xdii of xi. Clearly
y1, . . . , yr are independent. We fix a number λ

′ < λ such that dist(P, yi ·P ) = Dyi(P ) < λ′

for i = 1, . . . , r. It then follows by induction on m ≥ 1, using the triangle inequality and
the fact that the yi are isometries, that if γ ∈ Γ is given by a word of length m in y1, . . . , yr
then dist(P, γ · P ) < mλ′.
For eachm ≥ 1, let Sm denote the set of all elements of Γ that are expressible as reduced

words of length m in y1, . . . , yr. Since y1, . . . , yr are independent, Sm has cardinality
exactly (2r)(2r − 1)m−1. Let b be an open ball about P such that γ · b ∩ b = ∅ for every
γ ∈ Γ−{1}. Let ρ denote the radius of b, and v its volume. Then the balls γ · b for γ ∈ Sm

are pairwise disjoint and are contained in nbhdmλ′+ρ(P ). Hence

(2r)(2r − 1)m−1v ≤ vol nbhdmλ′+ρ(P ) < C exp (n− 1)(mλ′ + ρ),

where C is a constant depending only on the dimension n. Hence

(2r − 1)m < C ′ exp (n− 1)mλ′,

where C ′ is a constant depending on n and ρ but independent ofm. If in the last inequality
we take logarithms of both sides, divide by m and take limits as m → ∞, we obtain
log(2r − 1) ≤ (n− 1)λ′, which is impossible since

λ′ < λ =
log(2r − 1)

n− 1
.

¤

Section 4. Structure of 3-free groups

4.1. Let W be a subgroup of a group Γ, and let k be positive integer. We shall say that Γ
is k-free over W if every subgroup of Γ which containsW and has rank ≤ k is free (of some
rank ≤ k). Note that a group is k-free if and only if it is k-free over the trivial subgroup;
and that a k-free group is k-free over every subgroup.
A group Γ will be said to have local rank ≤ k, where k is a positive integer, if every

finitely generated subgroup of Γ is contained in a subgroup of rank ≤ k. The local rank is
the smallest integer k with this property, and is defined to be ∞ if no such integer exists.
Note that for a finitely generated group, the local rank is equal to the rank.
The following result plays the role of an induction step in the proofs of the two main

results of this section, Propositions 4.3 and 4.4.

4.2. Lemma. Let x, y and z be elements of a group Γ. Suppose that x and y do not
commute, and that x, y and z are not independent. Let A be a subgroup of Γ which contains
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x and y and has local rank 2. Suppose that Γ is 3-free over some finitely generated subgroup
J of A. Then the group 〈A ∪ {z}〉 is also of local rank 2.

Proof. Since 〈A ∪ {z}〉 contains the non-commuting elements x and y, it must have local
rank > 1. We must show that it has local rank ≤ 2.
Set B = 〈A ∪ {z}〉. Let B0 be any finitely generated subgroup of B. Then there is

a finitely generated subgroup A1 of A such that B0 is contained in the subgroup B1 =
〈{z} ∪ A1〉. After possibly replacing A1 by a larger finitely generated subgroup we may
assume that x, y ∈ A1 and that J ≤ A1. Since A has local rank ≤ 2, we may assume after
further enlarging A1 that A1 has rank ≤ 2. Hence B1 has rank at most 3. Since J ≤ B1,
and since Γ is 3-free over J , it follows that B1 is free of some rank at most 3. We claim
that B1 cannot have rank 3. This will imply that B1 ≥ B0 has rank ≤ 2, and will complete
the proof that B has local rank ≤ 2.
Assume that B1 is free of rank 3. Since A1 has rank ≤ 2 it is generated by two elements

u and v. Then u, v and z generate the rank-3 free group B1. Hence by [6, p. 59], B1

is freely generated by these three elements. Thus we may regard B1 as a free product
A1 ∗ 〈z〉. Now T = 〈x, y〉 ≤ B1 is free by the Nielsen-Schreier theorem, and has rank
≤ 2; since x and y do not commute, T must be free of rank exactly 2, and must therefore
be free on x and y. But since B1 has been identified with a free product A1 ∗ 〈z〉, the
subgroup 〈x, y, z〉 = 〈T ∪{z}〉 is identified with a free product T ∗〈z〉, and is therefore freely
generated by x, y and z. This is a contradiction since x, y and z are not independent. ¤

4.3. Let Γ be a group. By a Γ-labeled complex we shall mean an ordered pair (K, (Xv)v),
where K is a simplicial complex and (Xv)v is a family of cyclic subgroups of Γ indexed by
the vertices of K. If (K, (Xv)v) is a Γ-labeled complex then for any subcomplex L of K
we shall denote by Θ(L) the subgroup of Γ generated by all the groups Xv, where v ranges
over the vertices of L.

Proposition. Let (K, (Xv)v) be a Γ-labeled complex. Suppose that K is connected and
has more than one vertex, and that the link of every vertex of K is connected. Suppose
that for every 1-simplex e of K the group Θ(|e|) is non-abelian and Γ is 3-free over Θ(|e|).
Suppose also that there is no 2-simplex σ of K such that Θ(|σ|) is free of rank 3. Then
Θ(K) has local rank 2.

Proof. We shall say that a subcomplex L of K is good if (i) L is connected and contains
more than one vertex, (ii) Θ(L) has local rank 2, and (iii) Γ is 3-free over some finitely
generated subgroup of Θ(L).
If e is any 1-simplex of K, then Θ(|e|) is by definition generated by two elements, and

the hypothesis of the lemma implies that Θ(|e|) is non-abelian; in particular Θ(|e|) has
local rank 2. The hypothesis also implies that Γ is 3-free over Θ(|e|). Thus |e| is a good
subcomplex of K. It now follows from Zorn’s Lemma that there exists a maximal good
subcomplex L0 of K. We shall complete the proof by showing that L0 = K.

4.3.1. Claim. The complex L0 is a full subcomplex of K. (This means that any simplex
whose vertices lie in L0 is itself a simplex of L0.)

9



To prove this claim, suppose that σ is a simplex whose vertices lie in L0. Set L = L0∪|σ|.
It is clear that L satisfies condition (i) of the definition of a good complex, since L0 does,
and that Θ(L) = Θ(L0). Hence L is good; by the maximality of L0 we have L0 = L, so
that σ ∈ L0. This proves Claim 4.3.1.

4.3.2. Claim. If e is any 1-simplex of L0, then linkK(e) ⊂ L0.

To prove this claim, let u and v denote the vertices of e, and let w be any vertex in the
link of e. Let xu, xv and xw be generators of Xu, Xv and Xw respectively. The vertices
u, v and w span a 2-simplex σ. We set L = L0 ∪ |σ|. We shall show that L is good; by the
maximality of L0 this means that L = L0, so that w ∈ L0. Since L0 is full in K, the claim
will then follow.
Condition (i) of the definition of a good complex is clear. Condition (iii) is also clear

since Θ(L) ≥ Θ(L0). To verify condition (ii), note that Θ(L) = 〈Θ(L0) ∪ {xw}〉. We shall
apply Lemma 4.2, with A = Θ(L0) and with x = xu, y = xv, z = xw, to show that Θ(L)
has local rank 2.
By the hypothesis of the proposition, the group Θ(|e|) = 〈xu, xv〉 is non-abelian; that

is, xu and xv do not commute. Since L0 is good, Γ is 3-free over some finitely generated
subgroup J of Θ(L0). Finally, since u, v and w span a 2-simplex σ, the hypothesis of the
proposition implies that Θ(σ) = 〈xu, xv, xw〉 is not free of rank 3, and so xu, xv and xw
are not independent. It now follows from Lemma 4.2 that Θ(L) = 〈Θ(L0) ∪ {xw}〉 has
local rank at most 2, and the proof of Claim 4.3.2 is complete.

We now proceed to the proof that L0 = K, which will complete the proof of the
proposition. Note that since K is connected by the hypothesis of the proposition, and
since L0 is full and non-empty(!), we need only prove that for any vertex v0 of L0 we have
linkK(v0) ⊂ L0. Set C = linkK(v0) and D = C ∩ L0; we must show that D = C. Since
L0 is connected and contains more than one vertex, we must have D 6= ∅. Note also that
D is a full subcomplex of C since L0 is a full subcomplex of K. But C is also connected
by the hypothesis of the proposition. Hence in order to prove that D = C we need only
prove that for any vertex v ∈ D we have linkC(v) ⊂ D. If e denotes the 1-simplex joining
v0 to v, we have linkC(v) = linkK(e) ⊂ L0 by Claim 4.3.2, and hence linkC(v) ⊂ D as
required. ¤

4.4. Proposition. Let Θ be a normal subgroup of a finitely generated group Γ. Suppose
that Θ has local rank 2, and that Γ is 3-free over some finitely generated subgroup of Θ.
Suppose also that Θ contains an element x0 with the property that for every element γ ∈ Γ
which is not a power of x0, the element γx0γ

−1 does not commute with x0. Then Γ is a
free group of rank 2.

Proof. Let γ1, . . . , γr be a finite generating set for Γ, and set Θk = 〈Θ ∪ {γ1, . . . , γk}〉 for
k = 0, . . . , r. (In particular Θ0 = Θ.)

4.4.1. Claim. The group Θk has local rank 2 for k = 0, . . . , r.

By hypothesis, this claim holds for k = 0. We proceed by induction on k. Suppose that
0 < k ≤ r and that Θk−1 has local rank 2. Since Θ is normal in Γ and contains x0, the
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elements x0 and γkx0γ
−1
k belong to Θ and hence to Θi−1. We now wish to apply Lemma

4.2, taking x = x0, y = γkx0γ
−1
k , z = γk and A = Θk−1. By hypothesis Γ is 3-free over

some finitely generated subgroup J of Θ. It is obvious that x, y and z are not independent.
Thus if x and y do not commute, Lemma 4.2 guarantees that Θk = 〈Θk−1 ∪ {γk}〉 has
local rank ≤ 2, and the induction is complete in this case.
There remains the case in which x = x0 and y = γkx0γ

−1
k commute. In this case, the

property of x0 given in the hypothesis of the theorem implies that γk is a power of x0. But
in this case we have γk ∈ Θ ≤ Θk−1, so that Θk = Θk−1, and the induction step is trivial.
The proof of Claim 4.4.1 is therefore complete.

It is clear from the definition of the Θk that Θr = Γ. Applying Claim 4.4.1 with k = r
we conclude that Γ has local rank at most 2. Since Γ is finitely generated this means
rankΓ ≤ 2 < 3. But by hypothesis Γ is 3-free over some finitely generated subgroup of Θ.
Hence Γ is a free group. Since its local rank is 2, it is in fact free of rank 2. ¤

Section 5. The proof of Theorem B

5.1. The goal of this section is to prove the following theorem.

Theorem. Let M be a closed hyperbolic manifold of dimension n ≥ 3. Let us write
M = Hn/Γ, where Γ is a co-compact, discrete, torsion-free group of isometries of Hn. Set

λ =
log 5

n− 1
,

and suppose that the following condition holds:
(?) If x and y are non-commuting elements of Γ such that Zλ(x) ∩ Zλ(y) 6= ∅, then Γ is

3-free over 〈x, y〉.
Then M contains a hyperbolic ball of radius λ/2.

5.2. As we observed in 4.1, a group which is k-free is k-free over any subgroup. Hence
condition (?) of Theorem 5.1 always holds if Γ ∼= π1(M) is 3-free. Thus Theorem B of the
Introduction is a special case of Theorem 5.1. In Section 6 we will show how to deduce
Theorem A of the Introduction from Theorem 5.1.

Proof of Theorem 5.1. Suppose thatM satisfies the hypotheses of Theorem 5.1 but contains
no ball of radius λ/2, where

λ =
log 5

n− 1
.

Then in the notation of 3.4 we have a covering (Zλ(X))X∈X of Hn with index set X =
Xλ(M) and nerve K = Kλ(M). By definition the vertices of K are in natural one-one
correspondence with the maximal cyclic subgroups in the set X . If we denote by Xv ∈ X
the maximal cyclic subgroup corresponding to a vertex v, then (K, (Xv)v) is a Γ- labeled
complex in the sense of 4.3.
We shall show that (K, (Xv)v) satisfies the hypotheses of Proposition 4.3. By Propo-

sition 3.4, K is a connected simplicial complex with more than one vertex, and the link
11



of every vertex of K is connected. Now let e be any 1-simplex of K, and let v and w
denote its vertices. Let xv and xw be generators of Xv and Xw. We have v 6= w and
hence Xv 6= Xw; hence by 3.1 the elements xv and xw do not commute, and the group
Θ(|e|) = 〈xv, xw〉 is non-abelian. On the other hand, by the definition of the nerve K we
have Zλ(Xv)∩Zλ(Xw) 6= ∅, and so the hypothesis of the Theorem implies that Γ is 3-free
over 〈xv, xw〉. Finally, let σ be any 2-simplex of K, and let u, v and w denote its vertices.
Let xu, xv and xw be generators of Xu, Xv and Xw. By the definition of the nerve K we
have Zλ(Xu) ∩ Zλ(Xv) ∩Zλ(Xw) 6= ∅. Hence by Proposition 3.5, the elements xu, xv and
xw are not independent. By [6, p. 59] this means that Θ(|σ|) = 〈xu, xv, xw〉 is not a free
group of rank 3.
Thus Proposition 4.3 applies and we conclude that Θ(K) has local rank 2. We claim

that Θ = Θ(K) in fact satisfies all the hypotheses of Proposition 4.4. To show that Θ is
normal, observe that by definition Θ is generated by all the maximal subgroups in X . If a
maximal cyclic subgroup X belongs to X , i.e. if Zλ(X) 6= ∅, then for any γ ∈ Γ we have
Zλ(γXγ−1) = γ · Zλ(X) 6= ∅. Thus Θ is a normal subgroup of Γ.
We saw above that for any edge |e| of K the group Γ is 3-free over the 2-generator

subgroup Θ(|e|) of Θ(K). The only hypothesis of Proposition 4.4 left to check is the
existence of the element x0. We take x0 to be a generator of any group X0 ∈ X . If γ is an
element of Γ such that x = x0 and y = γkx0γ

−1
k commute, then by 3.1, the elements x0

and γkx0γ
−1
k generate the same maximal cyclic subgroup of Γ, so γkx0γ

−1
k = x±1

0 . Hence
γ2
k commutes with x0. Thus γk and x0 belong to C(γ2

k), which by 3.1 is a maximal cyclic
subgroup containing x0 and is therefore generated by x0. Hence γk is a power of x0.
It now follows from Lemma 4.4 that Γ is a free group of rank 2. However, this is

impossible, because Γ, as the fundamental group of a closed hyperbolic n-manifold, must
have cohomological dimension n ≥ 3, whereas a free group has cohomological dimension
1. This contradiction completes the proof of Theorem 5.1. ¤

Section 6. The proof of Theorem A

6.1. We shall prove the following result.

Theorem. Let M be a closed orientable hyperbolic 3-manifold. Suppose that every sub-
group of π1(M) whose rank is at most 3 is of infinite index in π1(M). Then M contains
a hyperbolic ball of radius (log 5)/4.

6.2. Now recall the statement of [8, Proposition 1.1]. Let M be a closed 3-manifold, let
p be a prime number, and let k be a positive integer. Suppose that either M is orientable
or p = 2. Suppose that the Zp-vector space H1(M ;Zp) has dimension at least k+2. Then
every subgroup of π1(M) having rank ≤ k is of infinite index.
In particular, if M is a closed, orientable, hyperbolic 3-manifold, and if H1(M ;Zp) has

dimension at least 5 for some prime p, then every subgroup of π1(M) having rank ≤ 3 is of
infinite index. Combining this with Theorem 6.1 we obtain Theorem A of the Introduction.

6.3. It remains to give the
12



Proof of Theorem 6.1. We can writeM = H3/Γ, where Γ is a co-compact, discrete, torsion-
free group of orientation-preserving isometries of H3. Recall that since Γ is co-compact,
every non-trivial element of Γ is loxodromic. In particular Γ contains no parabolic elements.
Set

λ =
log 5

2
.

We wish to apply Theorem 5.1 to conclude that M contains a hyperbolic ball of radius
λ/2. It suffices to show that condition (?) of 5.1 holds.
Suppose that x and y are non-commuting elements of Γ such that Zλ(x) ∩ Zλ(y) 6= ∅.

We must show that Γ is 3-free over 〈x, y〉. Let Θ be a subgroup of rank ≤ 3 containing x
and y. We are required to prove that Θ is free.
The hypothesis of the theorem guarantees that Θ has infinite index in Γ ∼= π1(M). Thus

Θ is not co-compact.
Let us choose a point P0 ∈ Zλ(x) ∩ Zλ(y). By the definition of Zλ(x) and Zλ(y) there

exist positive integers a and b such that Dxa(P0) < λ and Dyb(P0) < λ; that is,

max(dist(P0, x
a(P0)), dist(P0, y

b(P0))) < λ.

We observe that xa and yb do not commute. Indeed, it follows from 3.1 that C(xa) =
C(x) and that C(yb) = C(y). Hence if xa and yb were to commute then x and y would
also commute, which they do not.
Before showing that Θ is free we will show that it is freely decomposable, i.e. that it

is a free product of two non- trivial subgroups. Assume to the contrary that Θ is freely
indecomposable. According to [1], if Θ is any freely indecomposable, discrete, torsion-free
group of orientation- preserving isometries of H3, then Θ is topologically tame, that is,
the quotient hyperbolic 3-manifold H3/Θ is homeomorphic to the interior of a compact
3-manifold with boundary. Furthermore, according to [2, Proposition 3.2], if Θ is any
non-co-compact, topologically tame, discrete, torsion-free group of orientation-preserving
isometries of H3, then any finitely generated subgroup of Θ is topologically tame.
In particular, 〈xa, yb〉 is topologically tame. Of course, since Θ is non-co-compact,

〈xa, yb〉 is also non-co-compact. We now recall the statement of the main theorem of [3].
Let ξ and η be non-commuting orientation-preserving isometries ofH3. Suppose that 〈ξ, η〉
is discrete, torsion-free, topologically tame and non-co-compact, and contains no parabolic
elements. Then for any point P ∈ H3 we have

max(dist(P, ξ(P )), dist(P, η(P ))) ≥ log 3.

As we have checked the hypotheses of this statement for ξ = xa and η = yb we now have

max(dist(P0, x
a(P0)), dist(P0, y

b(P0))) ≥ log 3.

Since

λ =
log 5

2
< log 3,
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we have a contradiction. This proves that Θ is freely decomposable.
Thus we may write Θ = Θ1 ∗Θ2, where the Θi are non-trivial. By Grushko’s theorem

[9] we have rankΘ1 + rankΘ2 = rankΘ ≤ 3, and hence each Θi has rank at most 2. But
each Θi has infinite index in Γ = π1(M), since Θ does; and it follows from [5, Theorem
VI.4.1] that any infinite-index subgroup of rank ≤ 2 in the fundamental group of the closed,
orientable hyperbolic 3-manifold M is free. It follows that Θ1 and Θ2 are free, and hence
that Θ is free also. This completes the proof. ¤
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