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Introduction

In [14] a program was initiated for using the topological theory of 3-
manifolds to obtain lower bounds for volumes of hyperbolic 3-manifolds.
In [1], by a combination of new geometric ideas with relatively standard
(but specifically 3-dimensional) topological techniques, we showed that
every closed, orientable hyperbolic 3-manifold whose first Betti number
is at least 3 has volume exceeding 0.92. By contrast, the best known
lower bound [10,5] for the volume of an arbitrary closed hyperbolic 3-
manifold is approximately .0012.

In [3] we showed that every closed, orientable hyperbolic 3-manifold
whose first Betti number is 2 has volume exceeding 0.34. The proof de-
pended on supplementing the results and techniques of [1] with ingenious
elementary arguments due to Zagier [11] and numerical computations.

In the present paper we shall show that if one excludes certain spe-
cial manifolds, such as fiber bundles over S1, then the lower bound of
0.34 also holds for hyperbolic 3-manifolds with Betti number 1. The
proof depends heavily on the results of [1] and [3], but it involves much
deeper topological ideas than these papers. The new topological results
needed for the proof occupy most of the present paper. To some extent
these results have the flavor of general topology, but the proofs make
use of such specifically low-dimensional techniques as the characteristic
submanifold theory [9,8], the interaction between trees and incompress-
ible surfaces, and Scott’s theorem [12] that surface groups are locally
extended residually finite.

Before giving a precise statement of our main result we must review
a few elementary notions from 3-manifold theory.

Let M be a connected, closed, orientable topological 3-manifold. By
an incompressible surface in M we mean a closed, connected, orientable,
locally flat 2-manifold S ⊂M such that genusS > 0 and π1(S)→ π1(M)
is injective. Recall from [6, p. 62] that M contains a non-separating
incompressible surface if and only if H1(M ;Q) 6= 0.

A topological 3-manifold-with-boundary N is said to be boundary-

irreducible if for every component C of ∂M the natural homomorphism
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π1(C)→ π1(M), induced by inclusion, is injective. It is plain that if S is
an incompressible surface in a connected, closed, orientable 3-manifold
M , then each component of the manifold obtained by splitting M along
S is boundary-irreducible.

Throughout this paper we will let I denote the unit interval [0, 1] ⊂ R.
An I-bundle over a topological 2-manifold B is a locally trivial fiber
bundle over B with fiber I.

Definition. Let N be a compact, connected, orientable topological 3-
manifold with boundary. We shall say that N is a book of I-bundles if
it has the form N = E ∪ V , where
(i) E is an I-bundle over a non-empty compact 2-manifold-with-boundary

B;
(ii) each component of V is homeomorphic to D2 × S1;
(iii) the set A = E ∩ V is the inverse image of ∂B under the bundle

projection E → B; and
(iv) each component of A is an annulus in ∂V which is homotopically
non-trivial in V .

It follows from the above conditions that intE ∩ intV = ∅.
(The reason for calling N a “book of I-bundles” is that we may re-

gard N as the regular neighborhood of a complex X ⊂ N which, up to
homeomorphism, is obtained from the disjoint union of the 2-manifold B
with a 1-manifold C (the core of V ) by attaching ∂B to C via a covering
map. Thus X is a “book of surfaces”: B consists of its “pages” and C
is its “binding.” One obtains N from X by thickening up the pages to
form I-bundles and the binding to form solid tori.)

Note that in the definition of a book of I-bundles we do not require
B to be orientable or connected. Note also that we do allow V to be
empty, in which case N is an I-bundle over B. It is not hard to show
that a book of I-bundles is boundary-reducible if and only if there is
a component V0 of V which intersects E in a single annulus and this
annulus carries the fundamental group of V0. In particular, books of
I-bundles of this exceptional type do not arise from splitting closed
manifolds along incompressible surfaces.

Definition. Let S be an incompressible surface in a closed, orientable
topological 3-manifold M . Let N denote the manifold-with-boundary
obtained by splitting M along S. We shall say that S is a fibroid if each
component of N is a book of I-bundles.

Note that in particular S is a fibroid if each component of N is an
I-bundle. In this case S is either a fiber in a fibration of M over S1,
or the common boundary of two twisted I-bundles whose union is M .
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Incompressible surfaces of these types have been extensively studied and
are known to appear as exceptions in the statements or proofs of many
theorems about incompressible surfaces. Fibroids constitute a somewhat
larger but still very special class of incompressible surfaces. It is this
class that appears as exceptional in the main theorem of this paper.

Main Theorem. Let M be a closed, orientable hyperbolic 3-manifold.
Suppose that M contains a non-separating incompressible surface which
is not a fibroid. Then volM > 0.34.

There is no evidence that the conclusion of the above theorem is false
when the given surface is a fibroid. However, if it remains true it will
require a different proof in this case.

In the sequel to this paper we will investigate the case where M con-
tains a separating incompressible surface which is not a fibroid.

The above theorem will be proved in Section 11 by combining the
results of [3] with Theorem A below, a result which is of independent
interest.

By a closed curve in a topological space X we mean a map α : S1 → X.

Theorem A. LetM be a closed, orientable hyperbolic 3-manifold. Sup-
pose that M contains an incompressible surface S which is not a fibroid.
Let λ be a positive number less than log 3. Then either (i) M contains
a non-trivial closed geodesic of length < λ which is homotopic in M to
a closed curve in M − S, or (ii) M contains a hyperbolic ball of radius
λ/2.

The proof of Theorem A, which is given in Section 10, depends on a
geometric observation made in [2]. We may regard M as the quotient
of hyperbolic space H3 by a discrete torsion-free group of isometries.
For each maximal cyclic subgroup X of Γ, the elements of X have a
common axis AH3(X); and if X is “short” in the sense that it has a
generator of length < λ, then there is a neighborhood Zλ(X) of AH3(X)
in H3 consisting of all those points that are displaced a distance less
than λ by some element of X. According to [2, Proposition 3.2], if
conclusion (ii) of Theorem A does not hold then H3 is the union of the
sets Zλ(X) where X ranges over all short maximal cyclic subgroups of
Γ. In particular, the closures of the Zλ(X) form a locally finite family of
closed sets covering H3. In this paper we call this family a “plating” of
H3 rather than a “covering” in order to avoid confusion with the notion
of a covering space.

By an elementary construction that is reviewed in Section 3, any in-
compressible surface S in M defines an action of Γ ∼= π1(M) on a tree T .
If conclusion (i) of Theorem A does not hold then every short maximal
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cyclic subgroup X of Γ has an axis AT (X) in T , i.e. a line which is in-
variant under X and on which X acts by translations. A key ingredient
in the proof of Theorem A is Proposition 10.3, which implies—under
the hypothesis λ < log 3—that if X and Y are short maximal cyclic
subgroups of Γ such that Zλ(X) ∩ Zλ(Y ) 6= ∅, then AT (X) and AT (Y )
have a common edge in T . Proposition 10.3 is proved by combining the
geometrical results of [1] with an elementary fact about group actions on
trees ([4,Proposition 4.2], reproduced below as Proposition 2.6), and a
theorem of Simon’s on compactification of covering spaces of 3-manifolds
(a special case of [15, Theorem 3.1], re-interpreted in terms of trees in
Proposition 3.6 below).

It follows from all this that a counterexample to Theorem A would
give a plating Z of the universal covering space M̃ = H3 of M , indexed
by certain maximal cyclic subgroups of Γ, such that if the sets in the
plating corresponding to two maximal cyclic subgroups X and Y meet
each other then the axes of X and Y in T overlap at least in an edge.
Furthermore, the plating would be Γ-equivariant in a natural sense, and
the set corresponding to each maximal cyclic subgroup X would be X-
invariant and would have a compact quotient by X. One completes the
proof of Theorem A by showing that the existence of a plating with
these properties implies that the surface S from which the tree T is con-
structed is a fibroid. This step is embodied in Theorem 9.1. The latter
theorem is purely topological in statement and proof. It depends on the
hypothesis that M is simple (see 1.6), which is a topological consequence
of hyperbolicity. (Thurston’s uniformization theorem implies that any
simple 3-manifold which contains an incompressible surface has a hyper-
bolic structure, but the hyperbolic structure is not used in the proof of
9.1.)

Section 9 is devoted to the proof of Theorem 9.1. The proof involves
an intriguing set-theoretical manipulation that constructs from the given
plating Z a new plating W, indexed by edges of T . The plating W has
order at most 2, in the sense that every point lies in at most 3 = 2 + 1
sets of the plating. The proof that W has order at most 2 ultimately
depends on a simple combinatorial fact about trees which we prove as
Proposition 2.4. The plating W has formal properties, such as equivari-
ance, somewhat similar to those of Z; on the other hand, because it is
indexed by edges, W is related to the tree T in a simpler way than Z is.
This, together with the fact that W has order at most 2, allows one to
use 3-manifold arguments to prove that S is a fibroid. These arguments
are presented in Section 8, and are summed up in Proposition 8.2. It
is here that one uses the characteristic submanifold theory and Scott’s
theorem.
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In Section 1 we establish some conventions that are used in the paper.
In Sections 2 and 3 we prove the facts about trees and incompressible
surfaces that will be needed. In Section 4 we review a somewhat weak
and special form of the characteristic submanifold theory that is suffi-
cient for the applications that we need and less technical than the general
theory. In Sections 5 and 6 we develop a systematic theory of platings of
spaces that behave equivariantly under group actions; this facilitates the
manipulations in Sections 8 and 9. In Section 7 we prove some more spe-
cialized results about equivariant platings in the case where the group is
locally extended residually finite, and then deduce from Scott’s theorem
the result about platings of 2-manifolds that is needed in Section 8.

We are indebted to P. Papasoglou for pointing out that a finiteness
hypothesis is needed for some of the results in Section 2. We would also
like to thank Peter Scott for useful and encouraging discussions of the
material.

Section 1. Conventions

1.1. Since most of the work in the paper is topological, we have gen-
erally followed the standard conventions of topology. In particular a
manifold may have a boundary unless we specify otherwise. (In Sections
10 and 11, where we consider a hyperbolic manifold M , it is explicitly as-
sumed that M is closed. We do not have occasion to consider hyperbolic
manifolds with boundary.)

1.2. The outer category. The following conventions will be useful
for dealing with fundamental groups. Let Γ1 and Γ2 be groups. By
an outer homomorphism from Γ1 to Γ2 we mean an equivalence class
of homomorphisms from Γ1 to Γ2, where two homomorphisms h and
h′ are said to be equivalent if there is an inner automorphism i of Γ1
such that h′ = h ◦ i. This equivalence relation is respected by com-
position of homomorphisms; hence if f1 : Γ1 → Γ2 and f2 : Γ2 → Γ3
are outer homomorphisms between groups, there is a well-defined outer
homomorphism f2 ◦ f1 : Γ1 → Γ3. This defines a category in which the
objects are groups and the morphisms are outer homomorphisms. The
automorphism group of an object in this category is the familiar outer
automorphism group of a group.

An outer subgroup of a group Γ is a conjugacy class of subgroups of
Γ. A group in the conjugacy class will be said to realize the given outer
subgroup. If A and B are outer subgroups of Γ and if some represen-
tative of A is contained in a representative of B, we shall say that A is

contained in B. The index of an outer subgroup A is the index of an
arbitrary subgroup realizing A. If X is a genuine subgroup of Γ, the
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outer subgroup realized by X will often be referred to simply as “the
outer subgroup X.”

The image of an outer homomorphism f : Γ1 → Γ2 is well-defined as
an outer subgroup of Γ2; this outer subgroup will be denoted by f(Γ1).
If f(Γ1) is the outer subgroup Γ2 we shall say that f is surjective. The
kernel of an outer homomorphism is a well-defined normal subgroup of
Γ1. An outer homomorphism is injective if its kernel is trivial.

1.3. The fundamental group. If Ω is a path-connected space, we
shall often write π1(Ω) for the fundamental group of Ω with an unspeci-
fied base point. We regard π1(Ω) as an object in the category described
above. Any continuous map F : Ω1 → Ω2 between path-connected
spaces induces a well-defined outer homomorphism f] : π1(Ω1)→ π1(Ω2).
For example, the “homomorphisms” appearing in the definitions of in-
compressibility and boundary-irreducibility given in the introduction are
in reality outer homomorphisms.

If α : S1 → Ω is a closed curve in a path connected space Ω, the
outer homomorphism α] assigns to the clockwise generator of π1(S

1) a
conjugacy class in π1(Ω). This gives a bijective correspondence between
conjugacy classes in π1(Ω) and free homotopy classes of closed curves in
Ω.

1.4. Γ-spaces. Let Γ be a group. Recall that a Γ-set is a set equipped
with an action of Γ. If S is a Γ-set then for each s ∈ S we shall denote
the stabilizer of s in S by Γs.

A Γ-space is a topological space equipped with an action of Γ by
homeomorphisms.

A Γ-space C will be termed free if the action of Γ on C is free.
We shall say that a Γ-space C is uniform if there is a compact set

R ⊂ C such that Γ · R = C. If C is uniform then any closed, invariant
subset C ′ of C is uniform. (Indeed, if R ⊂ C is compact and Γ ·R = C,
then R′ = R ∩ C ′ is compact and Γ ·R′ = C ′.)

Note also that if C is a uniform Γ-space and Γ0 ≤ Γ is a subgroup of
finite index, then C is a uniform Γ0-space. Indeed, if Φ ⊂ Γ is a finite set
such that Γ0Φ = Γ, and if R ⊂ C is a compact set such that Γ ·R = C,
then R0 = Φ ·R is compact and Γ0 ·R0 = C.

1.5. Piecewise linear Γ-manifolds. Let Γ be a group and n a positive
integer. By a piecewise linear Γ-manifold of dimension n we shall mean
a PL n-manifold equipped with an action of Γ which is simplicial with
respect to some triangulation that defines the given PL structure of M .
In particular a PL Γ-manifold has the structure of a Γ-space.

If M̃ is a PL Γ-manifold which is free (as a Γ-space), then the quo-

tient space M̃/Γ is a PL manifold of the same dimension as M̃ , the
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manifold M̃ is a covering space of M via the quotient map p : M̃ →M ,
and the group of deck transformations is Γ. Conversely, the universal
covering space of a PL manifold is a free PL Γ-manifold in a natural
way, where Γ denotes the group of deck transformations. In this paper
the language of free PL Γ-manifolds will sometimes be more convenient
than the language of covering space theory.

If M̃ is a free PL Γ-manifold then there is a natural outer homomor-
phism ν : π1(M̃/Γ) → Γ. The kernel of ν is isomorphic to π1(M̃); in

particular, ν is an outer isomorphism if M̃ is 1-connected.

A PL Γ-manifold M̃ will be termed Γ-orientable if the action of Γ on
M̃ preserves orientation. Note that a free PL Γ-manifold M̃ is orientable
if and only if M̃/Γ is orientable.

1.6. A topological 3-manifold M is termed irreducible if M is connected
and every locally flat 2-sphere in M bounds a 3-ball. In this paper
we shall say that a PL 3-manifold M is simple if it has the following
properties:

(i) M is irreducible;

(ii) M is boundary-irreducible (see introduction); and

(iii) π1(M) contains no free abelian subgroup of rank 2.

This definition is more restrictive than the one used, for example, in
[8].

Note that if an orientable, closed PL 3-manifold M is simple then M
contains no incompressible tori.

Section 2. Trees

2.1. Graphs. By a graph we shall mean a CW complex of dimension
≤ 1. The 0-cells and 1-cells of a graph Ψ are called vertices and edges.
In particular, an edge is a subset of Ψ and is homeomorphic to an open
interval. The boundary of an edge is a subset of the 0-skeleton of Ψ
consisting of one or two points. An edge whose boundary is a single
point is called a loop. A vertex v of Ψ is called an end point if v is in
the boundary of a unique edge e, and e is not a loop.

2.2. Trees. A tree is a 1-connected graph. In particular a tree contains
no loops, and may therefore be regarded as a simplicial complex. If e
is an edge of a tree T then its closure ē is homeomorphic to a closed
interval.

If T is any tree we shall denote by E(T ) the set of all edges of T .

We may regard the real line R as a tree by triangulating it so that
the vertices are precisely the integer points. A line is a tree L which
is simplicially isomorphic to R. A translation of L is a simplicial au-
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tomorphism which is simplicially conjugate to an integer translation of
R.

A segment is a tree σ which is simplicially isomorphic to a (connected)
subcomplex of R; we may take the subcomplex to be one of the intervals
(−∞,∞), [0,∞) or [0, n], where n is a non-negative integer. In the latter
case we have n = card(E(σ)) < ∞; we shall refer to n as the length of
the finite segment σ. A segment of length 0 consists of a single vertex,
and will be termed degenerate.

A triod is a tree which is simplicially isomorphic to a cone on three
vertices. The cone point will be called the center of the triod. Note that
a triod contains exactly three segments of length 2.

A subcomplex of a tree T which is a segment (or a triod) will be called
simply a segment (or a triod) in T .

2.3. Proposition. Let V be a finite, non-empty collection of subtrees
of a tree T . Suppose that for all V, V ′ ∈ V we have V ∩ V ′ 6= ∅. Then
⋂

V is a subtree of T . In particular,
⋂

V 6= ∅.

Proof: It suffices to show that
⋂

V has exactly one connected compo-
nent. First we show that it has at most one. Let s and t be vertices of
⋂

V. Since T is a tree, there is a unique segment α ⊂ T with endpoints
s and t. Since each V ∈ V is connected we must have α ⊂ V for every
V ∈ V. Hence α ⊂

⋂

V. This shows that
⋂

V has at most one connected
component.

It remains to show that
⋂

V 6= ∅. If cardV ≤ 2 this is trivial. Suppose
that cardV = 3 and write V = {V, V ′, V ′′}. Let us choose vertices
s ∈ V ∩ V ′ and t ∈ V ∩ V ′′. There is a unique segment σ ⊂ T with
endpoints s and t. Since V is connected we have σ ⊂ V . Since V ′ and
V ′′ are connected and V ′ ∩ V ′′ 6= ∅, the set V ′ ∪ V ′′ is connected and
hence σ ⊂ V ′ ∪V ′′. Thus we may write σ as the union of the two closed
subsets σ∩V ′ and σ∩V ′′. Since σ is connected, these two subsets must
intersect, i.e. ∅ 6= σ ∩ V ′ ∩ V ′′ ⊂ V ∩ V ′ ∩ V ′′. This proves the assertion
when cardV = 3.

Finally, suppose that cardV = n > 3 and that the assertion is true for
sets of cardinality < n. Write V = {V1, . . . , Vn}, and set Wi = Vi ∩ Vn

for i = 1, . . . , n−1. Since we have proved the proposition for n = 2, each
Wi is a subtree of T . Since we have also proved the proposition for n = 3
we have Wi∩Wj = Vi∩Vj ∩Vn 6= ∅ for all i, j ∈ {1, . . . , n−1}. Hence by
the induction hypothesis we have ∅ 6= W1∩· · ·∩Wn−1 = V1∩· · ·∩Vn.

2.3.1. Corollary. Let L be a finite, non-empty collection of lines in
a tree T . Suppose that for all L,L′ ∈ L we have L ∩ L′ 6= ∅. Then
⋂

L is a (possibly degenerate and possibly infinite) segment in T . In
particular,

⋂

L 6= ∅.
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2.4. In Section 9 we shall need to apply Corollary 2.3.1 under the more
restrictive condition that E(L)∩E(L′) 6= ∅ for all L,L′ ∈ L. In this case
we will need to know exactly how the segment

⋂

L can degenerate. This
question is answered by the following result.

Proposition. Let L be a finite, non-empty collection of lines in a tree
T . Suppose that for all L,L′ ∈ L we have E(L) ∩ E(L′) 6= ∅. Let v be
a vertex of T . Then we have

⋂

L = {v} if and only if there is a triod
Y centered at the vertex v such that every segment of length 2 in Y is
contained in some line in L. If such a triod Y does exist, it is uniquely
determined by L, and it has the property that every line in L intersects
Y in a segment of length 2.

Proof: First suppose that there is a triod Y centered at {v} such that
every length-2 segment in Y is contained in a line in L. Let e0, e1, e2
be the edges of Y . Then there is a line L0 ∈ L containing e1 ∪ e2. By
Corollary 2.3.1,

⋂

L is a segment; clearly v ∈
⋂

L ⊂ L0. Hence if
⋂

L
is non-degenerate it must contain e1 or e2. But there is a line in L
which contains e0 and e2, and hence cannot contain e1; thus e1 6⊂

⋂

L.
Similarly e2 6⊂

⋂

L. Hence
⋂

L = {v}.
For the rest of the proof we assume that

⋂

L = {v}. We shall construct
a triod with the asserted properties, and prove that it is unique. We
begin by choosing an arbitrary line L0 ∈ L. Then L0 contains exactly
two edges of T incident to v, say f1 and f2. Now for i = 1, 2 there must
exist a line Li ∈ L which does not contain the edge fi; otherwise we
would have fi ⊂

⋂

L, contradicting the hypothesis.
Let us set σ0 = L1∩L2, σ1 = L0∩L2 and σ2 = L0∩L1. By Corollary

2.3.1, each σi is a segment. Each segment σi contains the vertex v, and
is non-degenerate by the hypothesis of the proposition. Hence each σi

contains an edge ei incident to v. The edge e1 is contained in L0, is
incident to v, and is distinct from f2 since f2 6⊂ L2. Hence e1 = f1.
Similarly e2 = f2.

For i = 1, 2 we have e0 ⊂ Li and ei = fi 6⊂ Li. Hence e0 is distinct
from e1 and e2. Thus Y = ē0∪ ē1∪ ē2 is a triod. Note that ē0∪ ē1 ⊂ L2,
ē0 ∪ ē2 ⊂ L1 and ē1 ∪ ē2 ⊂ L0. Thus every segment of length 2 in Y in
contained in Li, and is in fact equal to Y ∩ Li, for some i ∈ {0, 1, 2}.

Now let L be any line in L. We shall show that L meets Y in a length-
2 segment. Assume this is false. Then there are at least two edges of
Y that are not contained in L. Hence there is a length-2 segment in Y
that has no edges in common with L; we may write this length-2 segment
in the form Y ∩ Li for some i ∈ {0, 1, 2}. By Corollary 2.3.1, the set
σ = Li ∩ L is a segment in T . By the hypothesis of the Proposition,
σ is non-degenerate and contains v. But the two edges of Li that are
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incident to v are both contained in Y , and hence neither of them is an
edge of L. This is a contradiction.

It remains to prove the uniqueness assertion. Let Y ′ be any triod in
T , centered at v, such that every length-2 segment in Y ′ is contained in
a line in L. Since every line in L meets the closed star of v in a length-2
segment contained in Y , it follows that every length-2 segment in the
triod Y ′ is contained in the triod Y . This implies that Y = Y ′.

2.5. Γ-trees. Let Γ be a group. By a Γ-tree we mean a tree T equipped
with an action of Γ by simplicial automorphisms. Recall from [13] that
Γ is said to act without inversions on T if for every x ∈ Γ and every
edge e of T which is x-invariant, x fixes the vertices of T . In this case
we shall say that the Γ-tree T is non-inversive. Recall that if Γ acts
without inversions on T , then for every x ∈ Γ exactly one of the following
alternatives holds:
(i) Fix(x) 6= ∅; or
(ii) x is T -hyperbolic, i.e. there is a unique x-invariant line A ⊂ T ,

called the axis of x in T , and x|A is a non-trivial translation.
When x is T -hyperbolic, we shall denote the axis of x in T by AT (x).
A cyclic subgroup X of Γ will be termed T -hyperbolic if it has a T -

hyperbolic generator. Note that if X is a T -hyperbolic cyclic subgroup
then X is infinite cyclic. Furthermore, it is clear that all non-trivial
elements of X are T -hyperbolic and have the same axis in T . If a cyclic
subgroup X is T -hyperbolic we shall write AT (X) for the common axis
of the non-trivial elements of X.

2.6. Proposition. Let Θ be a group generated by two elements ξ and
η. Let T be a non-inversive Θ-tree, and suppose that ξ and η are both
T -hyperbolic. Suppose also that E(AT (ξ)) ∩ E(AT (η)) = ∅. Then Θ is
free on the generators ξ and η, and the action of Θ on T is free.

Proof: This is a special case of [4, Proposition 4.2].

Section 3. Surfaces in 3-manifolds

3.1. Bi-collared surfaces and dual graphs. Let M be an orientable
3-manifold without boundary. By a bi-collared surface in M we shall
mean a map c : S × [−1, 1] → M , where S is a 2-manifold without
boundary and c maps S× [−1, 1] homeomorphically onto a closed subset
of M . In the case that M has a PL structure, we shall say that c is a PL
bi-collared surface if S has a PL structure such that c is a PL map. The
set c(S ×{0}) is called the core of c. Any locally flat 2-manifold without
boundary embedded as a closed subset of M is the core of a bi-collared
surface c, and c is determined up to isotopy by the given 2-manifold.
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Studying bi-collared surfaces in M is therefore essentially equivalent
to studying locally flat orientable 2-manifolds without boundary in M .
However, for the constructions in this paper, including the construction
of the dual tree to an incompressible surface, it is more convenient to
take bi-collared surfaces as the basic objects.

A bi-collared surface in a closed, orientable 3-manifold M is said to be
incompressible if its core S is incompressible in the sense defined in the
Introduction. (In particular S is then connected and is not a 2-sphere.)

If M is an orientable 3-manifold without boundary and c : S ×
[−1, 1] → M is a bi-collared surface in M , we shall write |c| = c(S ×
[−1, 1]) and Split(c) = M − c(S × (−1, 1)). The 3-manifold Split(c) may
be thought of as being obtained by splitting M along the core of c.

We shall denote by Dual(c) the quotient space of M obtained by
identifying each component of the closure of M − |c| to a point, and
identifying c(S × {t}) to a point for each component S of S and each
t ∈ [−1, 1]. Then Dual(c) has the structure of a graph, of which the
vertices are in natural one-one correspondence with the components of
M − |c|, and the edges are in natural one-one correspondence with the
components of |c|. We shall denote by qc the quotient map from M to
Dual(c).

3.2. The tree associated to an incompressible surface. Now
let c be an incompressible bi-collared surface in a closed, orientable 3-
manifold M . Let M̃ denote the universal covering space of M , let p :
M̃ →M denote the covering projection, and let Γ ∼= π1(M) denote the
group of deck transformations. Let c̃ denote the bi-collared surface in
M̃ lying above c. Since M̃ is 1-connected, Dual(c̃) is also 1-connected;
that is, it is a tree. We shall write T (c) = Dual(c̃). The action of Γ on

M̃ induces a natural simplicial action without inversions on T (c). We
shall always regard T (c) as a non-inversive Γ-tree by equipping it with
this action.

For any vertex v of T = T (c) we shall denote by M̃v the set q−1c̃ ({v}).

Note that M̃v is a component of Split(c̃), and covers a component of
Split(c). This component of Split(c) will be denoted by Mv. For each

edge s of T we shall denote by M̃s the set q
−1
c̃ (s̄); this set is a component

of |c̃|, and covers a component of |c|, which will be denoted by Ms.

Let v be any vertex of T . The components of ∂M̃v are the sets of
the form M̃v ∩ M̃s, where s ranges over the edges incident to v. We
shall denote the set M̃v ∩ M̃s by ∂sM̃v. Each ∂sM̃v covers a compo-
nent of ∂ Split(c) = ∂|c|, which will be denoted by ∂sMv. Since c is

incompressible, the components of ∂M̃v are simply connected. As M̃ is
also simply connected, it follows from van Kampen’s theorem that M̃v
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is simply connected.

The group of deck transformations of the simply connected covering
space M̃v of Mv is Γv. Likewise, the group of deck transformations of the
simply connected covering space ∂sM̃v of ∂sMv is Γs. Thus we have a
natural outer isomorphism from π1(Mv) to Γv, which will be denoted by
νv, Similarly, there is a natural outer isomorphism νs,v : π1(∂sMv)→ Γs

for every edge s incident to v. We have a commutative diagram of groups
and outer homomorphisms

Γs −−−−→ Γv −−−−→ Γ
x





νs,v

x





νv

x





ν

π1(∂sMv) −−−−→ π1(Mv) −−−−→ π1(M)

where ν is the natural outer isomorphism between π1(M) and Γ, and
where the horizontal arrows in the bottom row represent outer homomor-
phisms induced by inclusion and those in the top row represent inclusions
of groups.

It follows from the commutativity of the right-hand half of the above
diagram that the outer subgroup im(π1(Mv) → π1(M)) of π1(M) is
mapped to the outer subgroup Γv of Γ by the outer isomorphism ν. In
particular an element x of Γ has a fixed point in T if and only if the
conjugacy class in π1(M) corresponding to the conjugacy class of x in Γ
is represented by a closed curve in Split(c).

3.3. Let Γ be a group. A Γ-tree is said to be minimal if it has no proper
Γ-invariant subtree.

Proposition. Let c be an incompressible bi-collared surface in a closed,
orientable PL 3-manifold M . Let Γ denote the group of deck transfor-
mations of the universal covering space of M . Then the Γ-tree T (c) is
minimal.

Proof: Let S denote the core of c. If S does not separate the given
closed 3-manifold M then T = T (c) contains only one Γ-orbit of vertices.
In this case T is obviously minimal. Now suppose that S separates M .
Since S is connected, there is only one Γ-orbit of edges in T . Hence
a proper Γ-invariant subtree would consist of a single vertex v, fixed
by the entire group Γ. Choose an edge e incident to v, and let w be
the second vertex of e. We have Γw = Γe. In view of the commuta-
tive diagram in 3.2, this implies that the natural outer homomorphism
π1(∂eMw) → π1(Mw), induced by inclusion, is an isomorphism. In
particular the inclusion homomorphism H1(∂eMw) → H1(Mw) is an
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isomorphism. According to Poincaré-Lefschetz duality, as Mw is a com-
pact 3-manifold whose boundary is ∂eMw, the groups H1(∂eMw) and
H1(Mw) can be isomorphic only if S has genus 0; but this contradicts
the incompressibility of c.

3.4. It is a standard observation that if an irreducible 3-manifold M
contains an incompressible surface S, there is a covering space of M
which deform-retracts to some surface that maps homeomorphically to
S under the covering projection. The following result is a somewhat
more precise formulation of this observation from the arboreal point of
view.

Proposition. Let c : S × [−1, 1] → M be an incompressible PL bi-
collared surface in a closed, irreducible, orientable PL 3-manifoldM . Let
M̃ denote the universal covering space of M , and let Γ denote the group
of deck transformations. Let s be any edge of T (c). Then M̃s/Γs is a

deformation retract of M̃/Γs, and M̃s/Γs is mapped homeomorphically

onto |c| under the induced covering map M̃/Γs → M . In particular,

M̃/Γs is homotopy equivalent to S.

Proof: The group Γs is the stabilizer of M̃s ⊂ M̃ in Γ. The man-
ifold M̃ is connected, and since c is incompressible, M̃s is also sim-
ply connected. By elementary covering space theory it follows that
π1(M̃s/Γs)→ π1(M̃/Γs) is an isomorphism, and that M̃s/Γs is mapped
homeomorphically onto |c| by the induced covering map. But the in-
compressibility of c also implies that S has positive genus; hence S is
aspherical and π1(S) is infinite. Since c : S × [−1, 1] → M induces a
monomorphism of fundamental groups, π1(M) is also infinite. It fol-
lows from the sphere theorem [6] that an irreducible, orientable PL
3-manifold with infinite fundamental group is aspherical. The covering
space M̃/Γs of the aspherical manifold M is automatically aspherical.

Thus M̃s/Γs ↪→ M̃/Γs is a map between aspherical triangulable spaces
which induces an isomorphism of fundamental groups, and is therefore
a homotopy equivalence.

3.4.1. In view of Proposition 3.4, 3-manifolds of the homotopy type of
closed surfaces arise naturally as covering spaces of manifolds containing
incompressible surfaces. The following result gives a property of such
manifolds that will be useful in Section 8.

Proposition. Let M be an orientable PL 3-manifold, let S be a closed,
connected, orientable surface, and suppose that η : M → S is a homo-
topy equivalence. Let F ⊂ M be a closed, connected, orientable PL
surface. Then either
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(a) F bounds a compact PL 3-manifold in M , or
(b) η|F : F → S has degree one.
If (b) holds then the inclusion F ↪→ M induces an epimorphism of
fundamental groups.

Proof: Suppose that (a) does not hold. Then the image u of the fun-
damental class of F in H2(M ;Z) is primitive, i.e. it is not of the form
nu0 with u0 ∈ H2(M ;Z) and n > 1. Now since η is a homotopy equiv-
alence we have H2(M ;Z) ∼= Z, and hence u is a generator of H2(M ;Z).
This shows that (b) holds.

Now assume that (b) holds but that F ↪→ M does not induce an
epimorphism of fundamental groups. Then η|F : F → S does not induce
an epimorphism of fundamental groups. Hence η|F lifts to some non-

trivial covering space S̃ of S. If S̃ is compact then the covering projection
S̃ → S has a finite degree d > 1; it follows that d divides the degree of
η|F : F → S, which contradicts (b). If S̃ is non-compact then H2(S̃) = 0
and hence η|F : F → S has degree 0, and again (b) is contradicted.

3.5. The following interesting property of the tree associated to an in-
compressible bi-collared surface will also be needed in Section 8.

Proposition. Let c : S× [−1, 1]→M be an incompressible bi-collared
surface in a closed, irreducible, orientable PL 3-manifold M . Let Γ
denote the group of deck transformations of the universal covering space
of M . Let s be any edge of T = T (c). Then the graph T/Γs is 1-
connected and has no end points.

Proof: Let M̃ denote the universal covering space of M . Let c̃/Γs

denote the bi-collared surface in M̃/Γs lying over c. We may identify
T/Γs canonically with Ψ = Dual(c̃/Γs).

To show that Ψ is 1-connected it suffices to show that every edge
separates. Let S denote the core of c and S̃ the core of c̃. The edges
of Ψ are in canonical one-one correspondence with the components of
S̃/Γs. To show that every edge e separates Ψ, it suffices to show that

every component of S̃/Γs separates M̃/Γs.

Let F̃0 denote the component of S̃ contained in M̃s and set F0 =
F̃0/Γs. By Proposition 3.4, F0 is a deformation retract of M̃/Γs. Now

let F denote an arbitrary component of S̃/Γs. Then either F = F0
or F ∩ F0 = ∅. In either case, F is isotopic to a surface disjoint from
F0. Since F0 carries H1(M̃/Γs;Z2), the mod 2 intersection number of F

with any class in H1(M̃/Γs;Z2) is zero. This implies that F separates

M̃/Γs.
It remains to show that Ψ has no end points. Suppose that Ψ does

have an endpoint and let v be a vertex of T which maps to it under the
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quotient map T → Ψ = T/Γs. Then M̃v/Γs ⊂ M̃/Γs is a component of
Split(c̃/Γs) whose boundary consists of a single component Φ of ∂|c̃/Γs|.
We may write M̃/Γs = (M̃v/Γs) ∪X, where X is a PL 3-manifold such

that X ∩ (M̃v/Γs) = ∂X = Φ. Since c is incompressible, π1(Φ) →
π1(M̃/Γs) is injective. Thus if ∗ is a base point in Φ we may identify

π1(M̃/Γs, ∗) with an amalgamated free product G = A ∗C B, where

A = π1(X, ∗), B = π1(M̃v/Γs, ∗) and C = π1(Φ, ∗). In particular we

have A ∩ B = C. But since M̃s/Γs ⊂ |c̃/Γs| ⊂ X, and since M̃s/Γs is a

deformation retract of M̃/Γs, we have A = G. Hence B = C, i.e. the

inclusion homomorphism π1(Φ, ∗)→ π1(M̃v/Γs, ∗) is an isomorphism. It

follows that every path in M̃v/Γs with end points in Φ is fixed-endpoint
homotopic to a path in Φ.

Now M̃v/Γs covers Mv. Since M̃v/Γs has connected boundary, so
does Mv. By the covering homotopy property, every path in Mv with
endpoints in ∂Mv is fixed-endpoint homotopic to a path in ∂Mv. In
particular the inclusion homomorphism π1(∂Mv) → π1(Mv) is surjec-
tive. It is injective since c is incompressible. Thus π1(∂Mv) → π1(Mv)
is an isomorphism, and hence so is H1(∂Mv) → H1(Mv). According
to Poincaré-Lefschetz duality, as Mv is compact, H1(∂Mv) and H1(Mv)
can be isomorphic only if ∂Mv has genus 0; but this contradicts the
incompressibility of c.

3.6. The tree T (c) associated with an incompressible bi-collared surface
c in a closed PL 3-manifold M gives a useful way of formulating certain
results about covering spaces of M . This is illustrated by the following
proposition, which will be used in Section 10.

By a handlebody we mean a compact 3-manifold which is homeomor-
phic to the regular neighborhood of a graph in R3.

Proposition. Let c be an incompressible bi-collared surface in a closed,
orientable 3-manifold M . Let Θ be a finitely generated subgroup of the
group Γ of deck transformations of the universal cover M̃ of M , and
suppose that the natural action of Γ on T = T (c) restricts to a free

action of Θ on T . Then the covering space M̃/Θ of M is homeomorphic
to the interior of a handlebody.

Proof: Let us fix a PL structure in which the bi-collared surface c is PL.
We can write M as a union M1∪M2, where M1 = |c| and M2 = Split(c).

Theorem 3.1 of [15] deals with a compact PL 3-manifold written in
the form M = M1∪M2, where the Mi are compact PL 3-manifolds. The
theorem gives sufficient conditions for a covering space of such a manifold
M , given in the form M̃/Θ where Θ is a finitely generated subgroup of

the group Γ of the universal covering space M̃ , to be homeomorphic to
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the interior of a compact 3-manifold. We shall show that the conditions
of [15, Theorem 3.1] hold under the hypotheses of Proposition 3.6 if M1

and M2 are defined as above and if Θ acts freely on T . Condition (i) of
[15, Theorem 3.1] asserts, in the orientable case, that M1 and M2 are
irreducible. This holds in our situation because M is irreducible and c
is incompressible.

Condition (ii), that the components of M1 ∩M2 are incompressible,
also follows from the incompressibility of c. Condition (iii) is equivalent

to the condition that if S̃ is any component of the preimage of M1 ∩M2

in M̃/Θ, the intersection of Θ with the stabilizer of S̃ in Γ is finitely

generated. In the notation of 3.2 we have S̃ = ∂sMv for some edge s
of T and some vertex v of s. The intersection of Θ with the stabilizer
of S̃ is Θs. Since Θ is assumed to act freely on T , the group Θs is
trivial. Finally, condition (iv) is equivalent to the condition that if A

is a component of the preimage of M1 or M2 in M̃/Θ, such that the
intersection ΘA of Θ with the stabilizer of A is finitely generated, then
A/ΘA is PL homeomorphic to a manifold of the form Q−K, where Q
is a compact manifold and K is a closed subset of ∂Q. We have either
A = Ms, where s is an edge of T , or A = Mv, where v is a vertex of
T . Hence ΘA is the stabilizer of s or v respectively, and is therefore
trivial since Γ acts freely on T . Thus A = A/ΘA is the universal cover
of a compact, irreducible manifold with non-empty boundary. By [16,
Theorem 8.1], A is PL homeomorphic to Q − K, where Q is a closed
3-ball and K is a closed subset of ∂Q.

Thus M̃/Θ is PL homeomorphic to the interior of some compact PL

3-manifold J . But by [16, Theorem 8.1], M̃ is homeomorphic to R3. It

follows that M̃/Θ is irreducible, and hence that J is irreducible. Fur-
thermore, π1(J) is isomorphic to the group Θ, which acts freely on the
tree T and is therefore a free group. It follows from [6, Theorem 5.2]
that if a compact, orientable, irreducible 3-manifold J has a free funda-
mental group then J is a handlebody or a 3-sphere. Since M contains
an incompressible surface, π1(M) is infinite, and thus J cannot be a
3-sphere.

Section 4. The characteristic submanifold

In 3.2 we considered an incompressible bi-collared surface c in a closed,
orientable 3-manifold M . For each edge s incident to a vertex v of
T = T (c), we defined a natural outer isomorphism νs,v : π1(∂sMv)→ Γs.
If s and e are two distinct edges incident to a vertex v of T , we will
need a topological interpretation of the outer subgroup ν−1s,v(Γs ∩ Γe)
of π1(∂sMv). This requires the use of the theory of the characteristic
submanifold [9,8]. The relevant material is reviewed below.
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4.1. The following relatively weak and special version of the character-
istic submanifold theorem of [9] or [8] contains the information that we
need.

Proposition. Let N be a simple, compact, orientable PL 3-manifold
with non-empty boundary. Then there exists a (possibly empty) com-
pact PL 3-manifold Σ ⊂ N having the following properties:
(i) Φ = Σ ∩ ∂N is a compact PL 2-manifold;
(ii) each component of the frontier ∂Σ− intΦ of Σ is an annulus A such

that the natural outer homomorphism π1(A)→ π1(N) is injective;
(iii) each component of Σ is either (a) a solid torus Σi such that Φi =

Σi∩Φ is a non-empty disjoint union of annuli, all homotopically non-
trivial in Σi, or (b) an I-bundle Σi over a non-simply connected,
compact, possibly non-orientable PL 2-manifold, such that Φi =
Σi ∩ Φ is the associated ∂I-bundle;

(iv) if C is any compact, connected, non-simply-connected, orientable
2-manifold, and F : (C × I, C × ∂I) → (M,∂M) is any map of
pairs such that the outer homomorphism F] : π1(C × I) → π1(M)
is non-trivial, and if F is not homotopic (as a map of pairs) to a
map from (C × I, C × ∂I) to (∂M, ∂M), then F is homotopic (as a
map of pairs) to a map from (C × I, C × ∂I) to (Σ,Φ).

Proof: This is included, for example, in the Characteristic Pair The-
orem stated in the introduction to Chapter V of [8]. In this theorem
one is given a pair (M,T ), where M is a sufficiently large, compact,
irreducible, orientable PL 3-manifold and T ⊂ ∂M is a 2-manifold with
boundary such that π1(Ti)→ π1(M) is injective for every component Ti

of T . Here we take (M,T ) = (N, ∂N). Since the compact, irreducible,
orientable PL 3-manifold N has non-empty boundary, it is automatically
sufficiently large. The injectivity condition is included in our definition
1.6 of a simple manifold. The conclusion of the Characteristic Pair The-
orem of [8] gives a pair (Σ,Φ) such that every component of Σ is either
an I-bundle or a Seifert fibered space. For every component Σi of Σ the
natural outer homomorphism π1(Σi)→ π1(M) is injective. In our case,
since M = N is simple, π1(Σi) has no free abelian subgroup of rank 2.
But the only Seifert fiber space whose fundamental group has no free
abelian subgroup of rank 2 is a solid torus. Now that it has been estab-
lished that the components of (Σ,Φ) are I-bundles and solid tori, the
information about how they intersect ∂N is included in the statement of
the Characteristic Pair Theorem of [8]. Conclusion (iv) is also included
in the latter statement.

If Σ is any submanifold ofN having the properties stated in the Propo-
sition above, we shall refer to the pair (Σ,Φ) as a characteristic pair of
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the simple manifold pair (N, ∂N). (This is a weaker definition than the
one given in [8] or [9]: we do not require Φ to be “perfectly embedded”
in the sense of [8]. In particular, with the present definition, (Σ,Φ) is
unique up to ambient isotopy. However, this definition is well-adapted
to the applications in the present paper.)

4.2. Proposition. Let c be an incompressible bi-collared surface in a
closed, orientable, irreducible PL 3-manifold M . Let v be any vertex
of T = T (c). Let (Σv,Φv) be a characteristic pair of (Mv, ∂Mv). Let s
and e be any two distinct edges incident to v. Then Γs ∩ Γe is finitely
generated. Furthermore, if Γs ∩ Γe 6= {1} then there is a component
Φe ⊂ ∂sMv of Φv such that the outer subgroup ν−1s,v (Γs∩Γe) of π1(∂sMv)
is contained in the outer subgroup im(π1(Φe)→ π1(∂sMv)).

Proof: According to the commutative diagram in 3.2, the outer iso-
morphism ν−1v : Γv → π1(Mv) carries the outer subgroup Γs onto the
outer subgroup im(π1(∂sMv)→ π1(Mv)). As ∂sMv is a boundary com-
ponent of the compact PL 3-manifold Mv and the natural outer homo-
morphism π1(∂sMv) → π1(Mv) is injective, it follows from [7, Proposi-
tion 1.4] that a subgroup realizing the outer subgroup im(π1(∂sMv) →
π1(Mv)) has finitely generated intersection with every finitely generated
subgroup of π1(Mv). Thus Γs has finitely generated intersection with
every finitely generated subgroup of Γv. But Γe ≤ Γv is isomorphic to
π1(∂eMv) and is therefore finitely generated. Thus Γs ∩ Γe is finitely
generated.

Now suppose that Γs ∩ Γe is non-trivial. Consider the PL 3-manifold
J = M̃v/(Γs ∩ Γe), which is a covering space of Mv. The universal

covering space of J is M̃v, and the group of covering transformations
obviously leaves both ∂sM̃v and ∂eM̃v invariant. It follows that ∂sM̃v

and ∂eM̃v project to distinct components Qs and Qe of ∂J , and that the
inclusion-induced outer homomorphisms π1(Qs)→ π1(J) and π1(Qe)→
π1(J) are both surjective. It follows from the incompressibility of c that
these outer homomorphisms are in fact both outer isomorphisms.

Since π1(Qs) ∼= π1(J) ∼= Γs ∩ Γe is finitely generated, there exists a
compact connected PL 2-manifold C ⊂ Qs such that π1(C) → π1(J)
is surjective. We may take C to have non-empty boundary, so that
C is homotopy-equivalent to a 1-complex. Since π1(Qe) → π1(J) is
surjective, the inclusion C ↪→ Qs is homotopic in J to a map of C into
Qe. Let F̃ : C × [0, 1]→ J be a homotopy such that F̃0 is the inclusion

and F̃1(C) ⊂ Qe. Then F̃ projects via the covering map p : J →Mv to
a homotopy F : C × [0, 1]→Mv.

Since the lift F̃ of F maps C × {0} and C × {1} to distinct compo-
nents Qs and Qe of ∂J , the map of pairs F : (C × [0, 1], C × {0, 1}) →
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(Mv, ∂Mv) is not homotopic to a map into (∂Mv, ∂Mv). Furthermore,
since we have assumed that Γs ∩ Γe is non-trivial, the outer homomor-
phism F] : π1(C× [0, 1])→ π1(M) is non-trivial. By Property (iv) of the

characteristic pair from 4.1, it follows that F = p ◦ F̃ is homotopic as a
map of pairs to a map into (Σv,Φv). In particular, p|C is homotopic in
∂sMv to a map of C into some component Φe ⊂ ∂sMv of Φv. Hence the
outer subgroup ν−1s,v(Γs ∩ Γe) = (p|C)](π1(C)) of π1(∂sMv) is contained
in the outer subgroup im(π1(Φe)→ π1(∂sMv)), as asserted.

4.3. The following characterization of books of I-bundles in terms of
the characteristic submanifold theory will be used in Section 8.

Proposition. Let N be a compact, simple, orientable, PL 3-manifold
with non-empty boundary. Let (Σ,Φ) be a characteristic pair of (N, ∂N),
and suppose that every component of ∂N − intΦ is an annulus. Then
N is a book of I-bundles.

Proof: Let W denote the union of all components of Σ which are solid
tori, and let E denote the union of all other components of Σ. Then
according to 4.1, each component of E is an I- bundle over a com-
pact PL 2-manifold-with-boundary, and intersects ∂N in the associated
∂I-bundle. Hence we may regard E as an I-bundle over a possibly dis-
connected PL 2-manifold-with-boundary B, and the frontier of B is the
preimage of ∂B under the bundle projection E → B.

Now let V denote the closure of N−E. The boundary of V is the union
of the three sets X = W ∩ ∂N , Y = ∂N − int Φ, and the frontier Z of
E in N . By 4.1, the components of X are annuli. The hypothesis of the
proposition says that the components of Y are annuli. The components
of Z are in particular components of the frontier of Σ, and are therefore
annuli by 4.1. Thus ∂V is a union of annuli in a natural way, and it
is clear that any component of intersection of two of these annuli is a
common boundary component. Thus each component of ∂V has Euler
characteristic 0. Since N is orientable it follows that ∂V is a disjoint
union of tori.

Let Vi be any component of V . It is clear from 4.1 that ∂Vi 6= ∅.
Choose any component S of ∂Vi. Then S is a torus. On the other
hand, by 4.1, each component of the frontier of Vi is an annulus A
such that the natural outer homomorphism π1(A)→ π1(N) is injective.
This implies that the natural outer homomorphism π1(Vi) → π1(N) is
injective. Since N is simple it follows that π1(Vi) has no free abelian
subgroup of rank 2. Hence the natural outer homomorphism π1(S) →
π1(Vi) has a non-trivial kernel. It then follows from the loop theorem
(see [6]) that there is a PL disk D ⊂ Vi such that ∂D = D ∩ ∂Vi is
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a homotopically non-trivial simple closed curve in S. If R is a regular
neighborhood of D in Vi, the closure of Vi−R is a PL 3-manifold whose
boundary contains a 2-sphere; using the irreducibility of N we conclude
that Vi − R is a ball, and hence that Vi is a solid torus. In view of the
definition it is now clear that N is a book of I-bundles.

Section 5. Platings

5.1. Let Ω be a topological space. Recall that a family of closed subsets
of Ω is said to be locally finite if every point of Ω has a neighborhood
which meets only finitely many sets in the family. By a plating of Ω
we shall mean a locally finite family C = (Ci)i∈I of non-empty closed
subsets of Ω, indexed by some set I, such that

⋃

i∈I Ci = Ω. (We have
avoided the word “covering” in this context because in the applications
Ω will often arise as a covering space.)

A plating C = (Ci)i∈I of a space Ω will be said to have finite order if
there is an integer m such that for any point P ∈ Ω there are at most
m+1 distinct indices i ∈ I for which P ∈ Ci. The smallest such integer
m will then be called the order of C.

5.2. Γ-platings. Now suppose that Γ is a group and that Ω is a Γ-
space. By a Γ-plating of Ω we shall mean a triple (I,G, C), where I is
a Γ-set, G = (Gi)i∈I is a family of subgroups of Γ and C = (Ci)i∈I is a
plating of Ω, and the following conditions are satisfied:

(i) Gi is contained in the stabilizer Γi of i for every i ∈ I;
(ii) γGiγ

−1 = Gγ·i for every i ∈ I and every γ ∈ Γ; and

(iii) γ ·Ci = Cγ·i for every i ∈ I and every γ ∈ Γ.

Recall that for any i in the Γ-set I, Γi ≤ Γ denotes the stabilizer of
i ∈ I. It is clear from the definition of a Γ-plating that Ci is invariant
under Gi.

5.3. Proposition. Let Γ be a group and let Ω be a uniform Γ-space.
Suppose that (I,G, C) is a Γ-plating of Ω. Then C has finite order.

Proof: Let R ⊂ Ω be a compact set such that Γ · R = Ω. Write C =
(Ci)i∈I . Let I0 denote the set of all indices i ∈ I such that Ci ∩R 6= ∅.
Since the plating C is by definition locally finite, the cardinality k of I0
is finite. In particular, for every P ∈ R there are at most k indices i
such that P ∈ Ci. It now follows from the equivariance condition (iii)
in the definition of a Γ-plating that for any P ∈ Ω there are at most k
indices i such that P ∈ Ci.

The order of a Γ-plating (I,G, C) of a uniform Γ-space Ω is defined to
be the order of C.
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5.4. Proposition. Let Γ be a group and let (I,G, C) be a Γ-plating
of a uniform Γ-space Ω, where C = (Ci)i∈I . Then the Γ-set I contains
only finitely many Γ-orbits.
More generally, for any positive integer d, let Jd denote the subset of

the Cartesian power Id consisting of all d-tuples (i1, . . . , id) such that
Ci1 ∩ · · · ∩ Cid 6= ∅. Then Jd is a union of finitely many Γ-orbits under
the diagonal action of Γ on Id.

Proof: Let R ⊂ Ω be a compact set such that Γ · R = Ω. Let Φd

denote the subset of Jd consisting of all d-tuples (i1, . . . , id) such that
Ci1 ∩ · · · ∩ Cid ∩ R 6= ∅. Since C is locally finite, Φd is finite. But for
any (i1, . . . , id) ∈ Jd there is a point P ∈ Ci1 ∩ · · · ∩Cid , and there is an
element γ of Γ such that γ ·P ∈ R. It follows that (γ · i1, . . . , γ · id) ∈ Φd.
This proves the final assertion of the proposition. Since the Ci are non-
empty according to the definition of a plating, we have J1 = I, and so
the first assertion is a special case of the final assertion.

5.5. Uniform Γ-platings. We shall say that the Γ-plating (I,G, C) of
Ω is uniform if for each i ∈ I the Gi-set Ci is uniform.

5.6. Induced platings of invariant subsets. Suppose that (I,G, C)
is a Γ-plating of a uniform Γ-space Ω, where C = (Ci)i∈I and G =
(Gi)i∈I . Suppose that Ω′ is a closed Γ-invariant subspace of Ω. Let
I ′ denote the set of all indices i ∈ I such that Ci ∩ Ω′ 6= ∅, and set
C′ = (Ci ∩ Ω′)i∈IΩ′ and G′ = (Gi)i∈Ω′ . Then it is clear that (I ′,G′, C′)
is a Γ-plating of Ω′ and that its order is at most the order of (I,G, C).
If (I,G, C) is uniform then it follows from 1.4 that (I ′,G′, C′) is uniform.

5.7. Boundary platings. Let Γ be a group, let Ω be a uniform Γ-
space, and let (I,G, C) be a Γ-plating of Ω, where C = (Ci)i∈I and
G = (Gi)i∈I . Let s be an index in I, and let Qs denote the frontier of
Cs. Since Cs is Gs-invariant by 5.2, Qs is also Gs-invariant. It follows
that the set Is ⊂ I, consisting of all indices i 6= s such that Ci∩Qs 6= ∅,
is also Gs-invariant, and therefore has the structure of a Gs-set. Let us
set Gs = (Gi ∩Gs)i∈Is and Cs = (Ci ∩Qs)i∈Is .

Proposition. With the above notation, (Is,Gs, Cs) is a Gs-plating of
Qs, and its order is strictly less than the order of (I,G, C). If (I,G, C)
is uniform then Qs is a uniform Gs-space.

Proof: Since the plating C is by definition a locally finite family of
closed subsets of Ω, it is clear that Cs is a locally finite family of closed
subsets of Qs. To show that Cs is a plating of Qs we must show that
Qs ⊂

⋃

i∈Is
Ci. For this purpose, note that the set Ds =

⋃

s6=i∈I Cs is
the union of a locally finite family of closed subsets of Ω and is therefore
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closed. Since Ω = Cs ∪ Ds, it follows that the frontier Qs of Cs is
contained in Ds. This immediately implies that Qs ⊂

⋃

i∈Is
Ci, so that

Cs is a plating of Qs. Since the triple (I,G, C) satisfies conditions (i)–
(iii) of Definition 5.2, the triple (Is,Gs, Cs) satisfies the same conditions
with Gs in place of Γ. Thus (Is,Gs, Cs) is a Gs-plating.

Now let m <∞ denote the order of C, and let P be any point of Qs.
There are at most m + 1 indices i ∈ I such that P ∈ Ci. But s is one
such index, since P ∈ Qs ⊂ Cs. Hence there are at most m indices i 6= s
such that P ∈ Qi. It follows at once that Cs has order at most m.

If (I,G, C) is uniform then by definition Cs is a uniform Gs-space.
Since Qs is a closed, Gs-invariant subset of Cs, it follows from 1.4 that
Qs is also a uniform Gs-space.

The Gs-plating (Is,Gs, Cs) will be called the boundary plating of Qs

induced by the Γ-plating (I,G, C) of Ω.

5.7.1. Doubly uniform platings. It will be convenient to formulate
a sufficient condition for a boundary plating to be uniform.

Let (I,G, C) be a Γ-plating of a Γ-space Ω, where G = (Gi)i∈I and
C = (Ci)i∈I . Note that for any two indices i, i′ ∈ I the set Ci ∩ Ci′ is
Gi ∩ Gi′ -invariant. We shall say that the Γ-plating (I,G, C) is doubly
uniform if for all i, i′ ∈ I the set Ci ∩ Ci′ is a uniform Gi ∩Gi′ -space.

Proposition. Let Γ be a group, and let (I,G, C) be a doubly uniform
Γ-plating of a Γ-space Ω, where C = (Ci)i∈I and G = (Gi)i∈I . Then
(I,G, C) is uniform. Furthermore, for any index s ∈ I, the boundary-
plating of the frontier of Cs induced by (I,G, C) is a uniform Gs-plating.

Proof: By applying the above definition when i = i′, we see that Ci is
a uniform Gi-space for every i ∈ I. This proves that (I,G, C) is uniform.

Now let s be any index in I, and let Qs denote the frontier of Cs and
let Is be defined as in 5.7. Since (I,G, C) is doubly uniform, Ci ∩ Cs is
a uniform (Gi ∩Gs)-space for every i ∈ Is. Hence by 1.4, the Gi ∩Gs-
invariant closed subset Ci ∩ Qs of Ci ∩ Cs is also a uniform (Gi ∩ Gs)-
space.

Section 6. Neighborhoods of platings

6.1. Let C = (Ci)i∈I be a plating of a topological space Ω. A neigh-

borhood of C is a family C ′ = (C ′i)i∈I of subsets of Ω, indexed by the
same set I, such that Ci ⊂ intC′i for every i ∈ I. A neighborhood
C′ = (C ′i)i∈I of C will be termed closed if C ′i is a closed subset of Ω for
every i ∈ I. Note that if a neighborhood C ′ of a plating C is closed and
is a locally finite family, then it is itself a plating of Ω.
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6.2. Now let Γ be a group and let (I,G, C) be a Γ-plating of a Γ-space
Ω. A neighborhood of (I,G, C) is a triple of the form (I,G, C ′), where
(i) C′ = (C ′i)i∈I is a neighborhood of C, and
(ii) γ ·Ci = Cγ·i for every i ∈ I.
Note that by definition a neighborhood of a Γ-plating involves the

same underlying Γ-set and the same indexed family of subgroups G as
the given Γ-plating.

If (I,G, C′) is a neighborhood of the Γ-plating (I,G, C) such that C ′ is a
locally finite family, we shall say that (I,G, C ′) is locally finite. Similarly,
if C′ is closed we shall say that (I,G, C ′) is closed. Note that any locally
finite closed neighborhood of a Γ-plating of Ω is itelf a Γ-plating of Ω.

Any Γ-plating (I,G, C) of a Γ-space Ω has the neighborhood (I,G,U)
given by U = (Ω)i∈I . This neighborhood is never locally finite unless I
is finite.

6.3. Proposition. Let Γ be a group, let M̃ be a uniform PL Γ-manifold
of some dimension n > 0, and let (I,G, C) be a Γ-plating of M̃ , where
C = (Ci)i∈I . Let (I,G, C+) be any neighborhood of (I,G, C). Then
there is a closed, locally finite neighborhood (I,G, C ′) of (I,G, C), where
C′ = (C ′i)i∈I , such that
(i) (I,G, C+) is a neighborhood of (I,G, C ′);
(ii) C ′i is a PL n-manifold for every i ∈ I;

(iii) there is a Γ-invariant triangulation of M̃ in which all the Ci are
subcomplexes;

and
(iv) if i1, . . . , ir are indices in I such that Ci1 ∩ · · · ∩ Cir = ∅, then

C ′i1 ∩ · · · ∩ C ′ir = ∅.
Furthermore, if (I,G, C) is uniform (or doubly uniform), we can take
(I,G, C′) to be uniform (or, respectively, doubly uniform).

6.3.1. Remark. It follows from condition (iv) that if (I,G, C) has order
m < ∞ then (I,G, C′) also has order m. This will be important when
we apply Proposition 6.3 and its corollaries 6.4 and 6.5.

6.3.2. The next four lemmas will be used in the proof of Proposition 6.3.
In these lemmas, Γ will denote a group, M̃ will denote a PL Γ-manifold
of some dimension n > 0, and T will denote a Γ-invariant triangulation
of M̃ which defines its given PL structure. For each integer d ≥ 0 we
shall denote by T (d) the d-th barycentric subdivision of T . For each
closed set C ⊂ M̃ and each d ≥ 0 we shall let Nd(C) denote the union of
all closed simplices in T (d) that meet Ci, and we shall let N∗

d (C) denote

the union of all closed simplices of T (d+2) that meet Nd(C). Then N∗
d (C)

is a regular neighborhood of Nd(C); in particular, it is a PL n-manifold
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and a neighborhood of C. It is clear that N ∗
d+1(C) ⊂ Nd(C) for every

d ≥ 0, and that
⋂

d≥0Nd(C) = C. Hence
⋂

d≥0N
∗
d (C) = C. It is also

clear that Nd(γ · C) = γ · Nd(C) and N∗
d (γ · C) = γ · N ∗

d (C) for every

γ ∈ Γ and every d ≥ 0. In particular, if the closed set C ⊂ M̃ is invariant
under a subgroup G of Γ then Nd(C) and N∗

d (C) are G-invariant.

6.3.3. Lemma. If C is a closed subset of M̃ invariant under a a sub-
group G of Γ, and if C is a uniform Γ-space, then Nd(C) and N∗

d (C) are
uniform for every d ≥ 0.

Proof: Let R ⊂ C be a compact set such that G · R = C. Then
Nd(R) and N∗

d (R) are compact, and we have G · Nd(R) = Nd(C) and
G ·N∗

d (R) = N∗
d (C).

6.3.4. Lemma. Suppose that (Ci)i∈I is a locally finite indexed family

of closed subsets of M̃ . Then (N0(Ci))i∈I is also a locally finite family.

Proof: It is enough to show that for every open simplex σ of T there
are only finitely many indices i ∈ I such that Ci ∩ σ 6= ∅. But if
Ci ∩ σ 6= ∅ then Ci meets some closed simplex having σ as a face; that
is, Ci ∩K 6= ∅, where K is the closure of the star of σ in T . Since K is
compact, the assertion follows.

6.3.5. Lemma. Let (I,G, C) be a Γ-plating of M̃ , and let t ≥ 0 be an
integer. Then there is an integer d ≥ 0 such that for any set Φ ⊂ I we
have

⋂

i∈ΦNd(Ci) ⊂ Nt(
⋂

i∈ΦCi).

Proof: Suppose that t is an integer for which there exists no d with the
stated property. Then for every d ≥ 0 we can find a set Φd ⊂ I and a
point Pd ∈

⋂

i∈Φd
Nd(Ci) which does not lie in Nt(

⋂

i∈Φd
Ci). Now since

M̃ is Γ-uniform, there is a compact set R ⊂ M̃ such that Γ · R = M̃ .
For each d ≥ 0 there is an element γd of Γ such that γd · Pd ∈ R. We
have

γd · Pd ∈
⋂

i∈Φd

γd ·Nd(Ci) =
⋂

i∈Φd

Nd(Cγd·i) =
⋂

i∈γ−1

d
·Φd

Nd(Ci).

Similarly

γd · Pd /∈ Nt(
⋂

i∈γ−1

d
·Φd

Ci).

Thus after replacing the Pd by the γd · Pd and the Φd by the γ−1d (Φd)
we may assume that all the Pd lie in R.

In particular, R meets Nd(Ci) ⊂ N0(Ci) for every i ∈ Φd. Since
the family (N0(Ci))i∈I is locally finite by Lemma 6.3.4, it follows that
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⋃

d≥0 Φd is a finite subset of I. Hence the sequence Φ0,Φ1, . . . contains
only finitely many distinct sets; in particular there is a sequence d1 <
d2 < . . . such that all the Φdi are equal to the same set Φ. The sequence
(Pdk)k≥0 lies in the compact set R. Hence after replacing the sequence
(dk)k≥0 by a subsequence we may assume that (Pdk)k≥0 converges to

some point P ∈ M̃ .
We have Pdk ∈ Ndk(Ci) for every i ∈ Φ and every k ≥ 1. Since dk

tends to infinity with k it follows that P ∈ Ci for every i ∈ Φ, i.e. P ∈
⋂

i∈ΦCi. But we have Pdk /∈ Nt(
⋂

i∈ΦCi). This is a contradiction.

6.3.6. Lemma. Let (I,G, C) be a Γ-plating of M̃ , where C = (Ci)i∈I .
Let (I,G, C+) be a neighborhood of (I,G, C), and write C+ = (C+i )i∈I .
Then there is an integer d ≥ 0 such that Nd(Ci) ⊂ intC+ for every
i ∈ I.

Proof: We proceed in the same spirit as in the proof of Lemma 6.3.5.
Assume that there is no integer d with the stated property. Then for
every d ≥ 0 there exist an index id ∈ I and a point Pd which lies in
Nd(Cid) but not in C+id . Let R be a compact subset of M̃ such that

Γ · R = M̃ , and choose γd ∈ Γ such that γd · Pd ∈ R. Then γd · Pd

lies in Nd(Cγd·id) but not in C+γd·id . Thus after replacing the Pd by
γd · Pd and the id by γd · id we may assume that all the Pi lie in R.
Now for each d we have Pd ∈ Nd(Cid) ⊂ N0(Cid), and by Lemma 6.3.4
the family (N0(Ci))i∈I is locally finite. Since R is compact it follows
that the sequence (id)d≥0 contains only finitely many distinct terms.
Hence there is a sequence d1 < d2 < . . . such that all the idk are equal
to a single index s. After replacing (dk)k≥0 by a subsequence we may
assume that (Pdk) converges to a point P . Since Pdk ∈ Ndk(Cs) and dk
tends to infinity with k, we have P ∈ Cs. Since the Pdk lie outside the
neighborhood C+s of Cs, we have a contradiction.

6.3.7. Proof of Proposition 6.3: We fix a Γ-invariant triangulation
T of M̃ and use the notation of 6.3.2. For each integer d ≥ 0 we have a
family Cd = (N∗

d (Ci))i∈I of closed subsets of M̃ . For every i and every
d the set N∗

d (Ci) is a neighborhood of Ci. By the remarks in 6.3.2 we
have γ ·N∗

d (Ci) = N∗
d (γ · Ci) = N∗

d (Cγ·i) for all i, d and γ. Thus Cd is
a neighborhood of C for every d.

We obviously have N∗
d (Ci) ⊂ N0(N0(Ci)) for every i. By two succes-

sive applications of Lemma 6.3.4 the family (N0(N0(Ci)))i∈I is locally
finite. Hence Cd is locally finite for every d. Furthermore, it is clear that
for every d conditions (ii) and (iii) hold for C ′ = Cd. We shall show that
for sufficiently large d the other conclusions of the proposition hold as
well.
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Lemma 6.3.6 shows that if d is sufficiently large then for every index
i ∈ I we have Nd(Ci) ⊂ intC+i . Since N∗

d+2(Ci) ⊂ Nd(Ci) for all d and
i, it follows that if d is sufficiently large then for every index i ∈ I we
have N∗

d (Ci) ⊂ intC+i . This shows that (i) holds for large d.
Lemma 6.3.5 implies that if d is sufficiently large, then for any indices

i1, . . . , ir in I we have Nd(Ci1) ∩ · · · ∩ Nd(Cir ) ⊂ N1(Ci1 ∩ · · · ∩ Cir ).
In particular if Ci1 ∩ · · · ∩ Cir = ∅ then Nd(Ci1) ∩ · · · ∩ Nd(Cir ) = ∅.
Again using that N∗

d+2(Ci) ⊂ Nd(Ci) for all d and i, we conclude that
conclusion (iv) holds for large d,

Now suppose that (I,G, C) is uniform. Then for each i ∈ I the Gi-
space Ci is uniform. By Lemma 6.3.3, N∗

d (Ci) is uniform for every d.
This shows that Cd is uniform for every d.

Finally, suppose that (I,G, C) is doubly uniform. By Lemma 6.3.5,
if d is sufficiently large then for all indices i, i′ ∈ I we have Nd(Ci) ∩
Nd(Ci′) ⊂ N0(Ci ∩ Ci′). Since N∗

d+2(Ci) ⊂ Nd(Ci) for all d and i,
it follows that if d is sufficiently large then for all i, i′ ∈ I we have
N∗

d (Ci) ∩N∗
d (Ci′) ⊂ N0(Ci ∩ Ci′). Since (I,G, C) is doubly uniform the

Gi ∩Gi′ -space Ci ∩Ci′ is uniform. Hence by Proposition 6.3.3, the Gi ∩
Gi′ -space N0(Ci ∩ Ci′) is uniform; by 1.4, its closed invariant subspace
N∗

d (Ci)∩N∗
d (Ci′) is also uniform. This proves that Cd is doubly uniform

for large d.

6.4. We can apply Proposition 6.3 to any Γ-plating (I,G, C) of M̃ by
taking (I,G, C+) to be the neighborhood (I,G,U) of (I,G, C), where

U = (M̃)i∈I (cf. 6.2). We record the special case in which (I,G, C) is
uniform, which will be needed in Section 9.

Corollary. Let Γ be a group, let M̃ be a PL Γ-manifold of some
dimension n > 0, and let (I,G, C) be a uniform Γ-plating of M̃ , where
C = (Ci)i∈I . Then there is a closed, locally finite neighborhood (I,G, C ′)
of (I,G, C), where C′ = (C ′i)i∈I , such that
(i) C ′i is a PL n-manifold for every i ∈ I;

(ii) there is a Γ-invariant triangulation of M̃ in which all the Ci are
subcomplexes;

(iii) if i1, . . . , ir are indices in I such that Ci1 ∩ · · · ∩ Cir = ∅, then
C ′i1 ∩ · · · ∩ C ′ir = ∅;

and
(iv) (I,G, C′) is uniform.

6.5. Another special case of Proposition 6.3 is the case in which Γ is
the trivial group.

Corollary. Let M be a compact PL n-manifold, and let C = (Ci)i∈I
be a finite plating of M . Let C+ be a neighborhood of C. Then there is
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a closed neighborhood C ′ = (Ci)i∈I of C such that
(i) C+ is a neighborhood of C′;
(ii) C ′i is a PL n-manifold for every i ∈ I;
and
(iii) if i1, . . . , ir are indices in I such that Ci1 ∩ · · · ∩ Cir = ∅, then

C ′i1 ∩ · · · ∩ C ′ir = ∅.

Section 7. Precise platings, LERF groups and 2-manifolds

7.1. Precise Γ-platings. Let (I,G, C) be a Γ-plating of a Γ-space Ω,
where G = (Gi)i∈I and C = (Ci)i∈I . We will say that (I,G, C) is precise
if for every i ∈ I and every γ ∈ Γ − Gi the set Cγ·i = γ · Ci is disjoint
from Ci.

7.1.1. Observe that if (I,G, C) is precise then for every i ∈ I and every
component K of Ci, the stabilizer of K in Γ is a subgroup of Gi.

7.2. Proposition. Let Γ be a group and let M̃ be a free, uniform PL
Γ-manifold of dimension n. Set M = M̃/Γ, and let p : M̃ →M denote

the quotient map. Suppose that M̃ has a precise, uniform Γ-plating
(I,G, C) where C is a family of PL subsets and G = (Gi)i∈I . Then
M has a finite plating (B1, . . . , Br), having the same order as (I,G, C),
such that for each j ∈ {1, . . . , r} the set Bj is a compact, connected PL
subset of M and each component of p−1(Bj) is a component of Ci for
some i ∈ I.

Proof: Let m denote the order of (I,G, C). First note that it suffices to
construct a finite plating (Aj)j∈J of M , with order m, such that for each
j ∈ J the set Aj is a compact (but possibly disconnected) PL subset
of M , and each component of p−1(Aj) is a component of Ci for some
i ∈ I. Indeed, if (Aj)j∈J is such a plating, the connected components
of the Aj form a plating with the required properties.

Since M̃ is a uniform Γ-space, it follows from Proposition 5.4 that
I contains only finitely many Γ-orbits. Let J ⊂ I be a complete set
of orbit representatives, in the sense that each Γ-orbit in I contains a
unique element of J . Set Aj = p(Cj) for each j ∈ J . We have

p−1(Aj) =
⋃

x∈Γ

(x · Cj) =
⋃

i∈Γ·j

Ci.

Since the plating C is by definition a locally finite family, p−1(Aj) is

the union of a locally finite family of closed PL subsets of M̃ , and is
therefore itself a closed PL subset of M̃ . Hence Aj is a closed PL subset
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of M . Note also that since I =
⋃

j∈J Γ · j, we have
⋃

j∈J

p−1(Aj) =
⋃

i∈I

Ci = M̃,

and hence
⋃

j∈J Aj = M . Thus (Aj)j∈J is a plating of M .

Since (I,G, C) is precise we have Ci∩Ci′ = ∅ for any two indices i 6= i′

in the orbit Γ · j. Thus p−1(Aj) is the union of a disjoint locally finite
family of sets Ci, where i ranges over Γ · j. Hence every component of
p−1(Aj) is a component of some Ci.

Now let τ be any point of M . Then there is a point τ̃ ∈ M̃ such that
p(τ̃) = τ . For any j ∈ J such that τ ∈ Aj , we have τ̃ ∈ p−1(Aj), and
hence τ̃ ∈ Ci for some i ∈ Γ · j. But since C has order m, there are at
most m+1 indices i ∈ I such that τ̃ ∈ Ci. Since the indices in J are in
distinct orbits, it follows that there are at most m+1 indices j ∈ J such
that τ ∈ Aj . This shows that (Aj)j∈J has order at most m. (Notice
that this step does not depend on the assumption that C is precise.)

It remains to show that the order of (Aj)j∈J is at least m. Since C has

order m, there is a point τ̃ ∈ M̃ which lies in Ci for m+1 distinct values
of i, say for i = i0, . . . , im. For any two distinct integers s, t ∈ {0, . . . ,m}
we have is 6= it and Cis ∩ Cit 6= ∅. Since (I,G, C) is precise it follows
that i0, . . . , im lie in distinct Γ-orbits. Hence we may write it = γt · jt
for t = 0, · · · ,m, where j0, · · · jm are distinct elements of J . We have
p(τ̃) ∈

⋂m
t=0 Cjt ; this shows that (Aj)j∈J has order at least m, and

completes the proof of the proposition.

7.3. LERF groups. Recall that a group Γ is said to be locally extended
residually finite if every finitely generated subgroup of Γ is an intersec-
tion of subgroups of finite index. According to [12], the fundamental
group of any connected 2-manifold is locally extended residually finite.

Proposition. Let Γ be a locally extended residually finite group, and
let M̃ be a free PL Γ-manifold. Suppose that (I,G, C) is a uniform Γ-

plating of M̃ , where G = (Gi)i∈I . Suppose that Gi is finitely generated
for every i ∈ I. Then there is a subgroup Γ0 of finite index in Γ such
that the triple (I,G0, C), where G0 = (Gi ∩ Γ0)i∈I , is a precise, uniform

Γ0-plating of M̃ .

Remark. The hypothesis that the Gi are finitely generated is easily
seen to hold automatically if each set in the family C has a finite number
of connected components. In general, however, this may not be the case,
and so the hypothesis of finite generation is needed.

Proof of Proposition 7.3: Let us write C = (Ci)i∈I . By 6.4, there
is a closed, locally finite neighborhood (I,G, C ′) of (I,G, C), where C′ =
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(C ′i)i∈I , such that (I,G, C′) is a uniform plating of M̃ and all the C ′i
are subcomplexes in a fixed Γ-invariant triangulation of M̃ . If Γ0 is
a finite-index subgroup of Γ, and if the Γ0-plating (I,G0, C′), where
G0 = (Gi ∩ Γ0)i∈I , is precise and uniform, then it follows immediately
that (I,G0, C) is precise and uniform. Hence we may assume without
loss of generality that the Ci are all subcomplexes in a fixed triangulation
T of M̃ .

By Proposition 5.4, the Γ-set I contains only finitely many Γ-orbits.
Thus we may write I = Γ·S, for some finite subset S of I. Since (I,G, C)
is uniform, Cs is a uniform Gs-space for every s ∈ S. For each s ∈ S we
choose a finite subcomplex Rs of Cs (in the triangulation T ) such that
Gs · Rs = Cs. For each s ∈ S we define Φs to be the set of all elements
y ∈ Γ−Gs such that y ·Rs ∩Rs 6= ∅. For any y ∈ Φs there is a vertex v
of Rs such that y · v is also a vertex of Rs. Since Rs has finitely many
vertices and Γ acts freely on M̃ it follows that Φs is a finite subset of Γ
for every s ∈ S.

For each s ∈ S and each y ∈ Φs we have y ∈ Γ − Gs, where Gs is
a finitely generated subgroup of the locally extended residually finite
group Γ. Hence there is a subgroup Θs,y of finite index in Γ such that
Gs ≤ Θs,y but y /∈ Θs,y. For each s ∈ S we set Θs =

⋂

y∈Φs
Θs,y. Note

that Θs has finite index in Γ, that Gs ≤ Θs and that Θs ∩ Φs = ∅.

Now set Γ0 =
⋂

s∈S Θs. Then Γ0 has finite index in Γ.

We set G0 = (Gi ∩ Γ0)i∈I . It is clear that (I,G
0, C) is a Γ0-plating of

M̃ . Since Gi ∩ Γ0 has finite index in Gi for every i ∈ I, it follows from
1.4 that (I,G0, C) is uniform. We must show that (I,G0, C) is precise.
Thus for every i ∈ I and every x ∈ Γ0 such that Ci meets Cx·i = x ·Ci,
we must show that x ∈ Gi.

We first consider the case where i = s ∈ S. Assume that Cs ∩x ·Cs 6=
∅, and let v be a vertex of Cs such that x · v ∈ Cs. We may write
v = g1 · w1 and x · v = g2 · w2, where w1, w2 ∈ Rs and g1, g2 ∈ Gs.
Then g−12 xg1 · w1 = w2, and so Rs ∩ g−12 xg1 · Rs 6= ∅. Hence by the
definition of Φs we have either g−12 xg1 ∈ Gs or g−12 xg1 ∈ Φs. But
we have g1, g2 ∈ Gs ≤ Θs and x ∈ Γ0 ≤ Θs. Hence g−12 xg1 ∈ Θs.
Since Θs ∩ Φs = ∅ we cannot have g−12 xg1 ∈ Φs. Hence we must have

g−12 xg1 ∈ Gs. Since g1, g2 ∈ Gs, it follows that x ∈ Gs, as required.

Now consider an arbitrary index i ∈ I. Suppose that for a given
x ∈ Γ0 we have Ci ∩ Cx·i 6= ∅. We may write i = γ · s for some s ∈ S
and some γ ∈ Γ. Then we have Cs ∩ Cγ−1xγ·s = γ−1(Ci ∩ Cx·i) 6= ∅,
and hence γ−1xγ ∈ Gs, by the case of the assertion already proved.
Now by condition (ii) in the definition of a Γ-plating (5.2) it follows that
x ∈ Gi.
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7.4. The following elementary lemma about 2-manifolds will be com-
bined with Propositions 7.2 and 7.3 to prove Proposition 7.4.2 below,
which will find a crucial application in Section 8.

7.4.1. Lemma. Let f : F → S be a map between closed, connected ori-
entable, PL 2-manifolds. Let Ξ ⊂ S be a compact, possibly disconnected
PL 2-manifold; assume that no component of ∂Ξ is a homotopically triv-
ial curve in S. Let B = (Bj)j∈J be a finite plating of F by PL sets,
having order ≤ 1. Assume that for each j ∈ J the map f |Bj is homo-
topic in S to a map whose image is contained in Ξ. Then either f has
degree 0, or every component of S − int Ξ is an annulus.

Proof: Let Nj be a regular neighborhood of Bj in F for each j ∈ J .
Then (Nj)j∈J is a neighborhood of B. By Corollary 6.5 and Remark
6.3.1, there is a closed neighborhood B′ = (B′j)j∈J of B such that (i)
B′j ⊂ Nj for every j ∈ J , (ii) B′j is a PL 2-manifold for every j ∈ J and

(iii) B′ has order ≤ 1. Since Nj is a regular neighborhood of Bj , the
map f |B′j is homotopic to a map with image contained in Ξ for every

j ∈ J . Thus the hypotheses all continue to hold if B is replaced by B′,
and we may therefore assume without loss of generality that each Bj is
a PL 2-manifold and that F =

⋃

j∈J intBj .

Since the plating B = (Bj)j∈J of F by PL 2-manifolds has order at
most 1 and F =

⋃

j∈J intBj , the closed PL 1-manifolds ∂Bj are pairwise

disjoint. Hence L =
⋃

∂Bj is a closed PL 1-manifold. Thus if A is a
regular neighborhood of L in F , the components of A are annuli. Set
R = F − intA. Then each component of R is contained in some Bj .
Hence after modifying f within its homotopy class we may assume that
f(R) ⊂ int Ξ.

Suppose that there is a component Q of S − Ξ which is not an annu-
lus. After modifying f by a small homotopy we may assume that it is
transverse to ∂Q. Set P = f−1(Q) ⊂ intA, let P1, . . . , Pk denote the
components of P , and set fi = f |Pi : Pi → Q. The fi are boundary-
preserving maps. If we assign to each Pi the orientation induced from F

and to Q the orientation induced from S, we have deg f =
∑k

i=1 deg fi.
Now each Pi is contained in an annulus component Ai of A. If we choose
consistent base points in Pi ⊂ Ai and Q ⊂ S, we have a commutative
diagram of groups and outer homomorphisms

π1(Pi)
(fi)#
−−−−→ π1(Q)





y





y

π1(Ai) −−−−−→
(f |Ai)#

π1(S)
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in which the vertical arrows represent outer homomorphisms induced by
inclusion. The outer homomorphism π1(Q) → π1(S) is injective since
no component of ∂Q ⊂ ∂Ξ is homotopically trivial in S. Since π1(Ai)
is cyclic it follows that the outer group Z = (fi)#(π1(Pi)) ≤ π1(Q) is
cyclic. Since Q is not an annulus, Z has infinite index in π1(Q). Hence fi
lifts to an infinite-sheeted covering space Q̃ of Q. We have H2(Q̃, ∂Q̃) =
0, and thus deg fi = 0. Summing over i we get deg f = 0.

7.4.2. Proposition. Let Γ be a group, let F̃ and S̃ be free, uniform,
Γ-orientable, connected 2-dimensional PL Γ-manifolds without bound-
ary, and let f̃ : F̃ → S̃ be a Γ-equivariant continuous map. Set S = S̃/Γ

and F = F̃ /Γ. Assume that genusS > 0. Suppose that S̃ is simply con-
nected, and let νS : π1(S) → Γ denote the natural outer isomorphism.

Suppose that the map f : F → S induced by f̃ has non-zero degree. Let
Ξ ⊂ S be a compact PL 2-manifold. Suppose that no component of ∂Ξ
is homotopically trivial in S. Suppose that there is a uniform Γ-plating
(I,G, C) of F̃ , where G = (Gi)i∈I , such that
(i) C has order at most 1,
(ii) Gi is finitely generated for every i ∈ I, and
(iii) for each i ∈ I the outer subgroup ν−1S (Gi) of π1(S) is contained in

the outer subgroup im(π1(Ξi) → π1(S)) for some component Ξi of
Ξ.

Then every component of S − int Ξ is an annulus.

Proof: We have Γ ∼= π1(S). Hence by [12], Γ is locally extended
residually finite. By 7.3, there is a subgroup Γ0 of finite index in Γ such
that the triple (I,G0, C), where G

0 = (Gi ∩ Γ0)i∈I , is a precise, uniform

Γ-plating of F̃ .
Set F0 = F̃ /Γ0. Then F0 is a finite-sheeted regular covering space of

F . In particular F0 is compact and the covering projection r : F0 → F
has non-zero degree. Hence f0 = f ◦ r also has non-zero degree.

Let νF : π1(F ) → Γ and νF0 : π1(F0) → Γ0 denote the natural outer
homomorphisms. Letting ι : Γ0 → Γ denote the inclusion, we then have
a diagram of groups and outer homomorphisms

which we may think of as a triangle subdivided into left-hand, right-
hand and bottom subtriangles. This is a commutative diagram of outer
homomorphisms. Indeed, the full triangle is commutative by virtue of
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the Γ-equivariance of f̃ ; the left-hand triangle is commutative by ele-
mentary covering space theory, and the bottom triangle is commutative
by the definition of f0. It follows that the right-hand triangle of outer
homomorphisms also commutes.

Let p0 : F̃ → F0 denote the covering projection. By Proposition 7.2,
the closed 2-manifold F0 has a finite plating (B1, . . . , Br) of order 1,
where for each j ∈ {1, . . . , r} the set Bj is a compact, connected, PL

subset of F0, and each component of p−10 (Bj) is a component of Ci for
some i ∈ I. For each j let Θj denote the outer subgroup im(π1(Bj) →
π1(F )), a subgroup of π1(F0). For each j the outer subgroup νF0(Θj)

of Γ0 is realized by the stabilizer of a component Rj of p−10 (Bj). Since
Rj is a component of Ci for some i, the observation 7.1.1, applied to the
precise Γ0-plating (I,G0, C), gives that νF0(Θj) is contained in the outer
subgroup Gi of Γ0 for some i ∈ I. In particular the outer subgroup
ινF0(Θj) of Γ is contained in the outer subgroup Gi of Γ for some i.

By the commutativity of the right-hand subtriangle in the diagram
above, we have (f0)](Θj) = νS

−1ινF0(Θj). Thus the outer subgroup

(f0)](Θj) of π1(S) is contained in the outer subgroup ν−1S (Gi) for some
i. By condition (ii) in the hypothesis of the proposition it follows that
the outer subgroup (f0)](Θj) of π1(S) is contained in the outer subgroup
im(π1(Ξj) → π1(S)) for some component Ξj of Ξ. Now S is aspherical
since genusS > 0, and π1(Ξi) → π1(S) is injective since no component
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of ∂Ξ is homotopically trivial. We can therefore conclude that for each
j the map f0|Bj is homotopic in S to a map whose image is contained in
Ξ. Since f0 has non-zero degree, it now follows from Lemma 7.4.1 that
every component of S − Ξ is an annulus.

Section 8. Fibroids and platings, I.

8.1. If Γ is a group and T is a Γ-tree, the action of Γ on T induces an
action on the set E(T ) of edges of T . We shall regard E(T ) as a Γ-set
by equipping it with this action.

8.2. This section is devoted to the proof of the following topological
result, which gives a sufficient condition for an incompressible surface to
be a fibroid.

Proposition. Let M be a simple, closed, orientable 3-manifold con-
taining an incompressible bi-collared surface c. Let Γ ∼= π1(M) denote

the group of deck transformations of the universal covering space M̃ of
M , and let T denote the Γ-tree T (c). Suppose that there is a doubly

uniform Γ-plating (E(T ),G,W) of the Γ-space M̃ , where G = (Γe)e∈E(T )
and W = (We)e∈E(T ), which satisfies the following conditions.
(i) The order of W is at most 2.

(ii) There is a Γ-equivariant map f : M̃ → T such that for every e ∈
E(T ) we have f(We) ⊂ ē.

Then the core of c is a fibroid.

8.3. Throughout the section, M will denote a manifold, and c a bi-
collared surface, satisfying the hypotheses of Proposition 8.2. We shall
fix a PL structure on M in which c is a PL bi-collared surface. We
shall denote the core of c by S. As in the statement of the proposition,
M̃ will denote the universal covering space of M and Γ its group of
deck transformations, and T will denote the Γ-tree T(c). We shall set

q = qc : M̃ → T . We shall write p : M̃ →M for the covering projection.
The bi-collared surface in M̃ lying over c (3.1) will be denoted by c̃.
We shall write E = E(T ), and we shall fix a doubly uniform Γ-plating
W = (We)e∈E which is indexed by the Γ-set E and satisfies conditions
(i) and (ii) of proposition 8.2.

8.4. Lemma. We have f(M̃) = T .

Proof: Since f is equivariant, f(M̃) is a Γ-invariant subtree of T . But
T is a minimal Γ-tree by 3.3.

8.5. Lemma. For any e ∈ E we have f−1(e) ⊂We ⊂ f−1(ē).

Proof: By the hypothesis of Proposition 8.2 we have f(We) ⊂ ē and
hence We ⊂ f−1(ē). Now let P be any point of f−1(e). Since W is a
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plating we have P ∈We′ for some e′ ∈ E . It follows that f(P ) ∈ ē′ and
hence that e′ = e. This proves that f−1(e) ⊂ We.

8.6. For any subcomplex Λ of T we shall denote by nbhd1 Λ the union
of Λ with all (open) edges of the first barycentric subdivision of T that
share a vertex with Λ.

Lemma. There is a locally finite closed neighborhood (E ,G,W ′) of (E ,G,W),
where W ′ = (W ′

e)e∈E , having the following properties:
(i) f(W ′

e) ⊂ nbhd1 ē for every e ∈ E ;
(ii) (E ,G,W ′) is doubly uniform;
(iii) W ′

e is a PL 3-manifold for every e ∈ E ;
and
(iv) W ′ has order at most 2.

Proof: For every e ∈ E(T ), the set nbhd1(ē) is a neighborhood of e in
T , and for any γ ∈ Γ we have γ · nbhd1 ē = nbhd1(γ · ē). This natu-
rality property, and the properties of the map f given in hypothesis (ii) of
Proposition 8.2, imply that (E ,G, (f−1(nbhd1 ē))e∈E)
is a neighborhood of (E ,G,W ′). We can now apply Proposition 6.3, with
(E ,G, (f−1(nbhd1 ē))e∈E) playing the rôle of (I,G, C+). The resulting lo-
cally finite closed neighborhood (E ,G,W ′) of (E ,G,W) has the property
(i) stated in the conclusion of the proposition because it has (E ,G, (f−1(nbhd1 ē))e∈E)
as a neighborhood. Property (iv) follows from Remark 6.3.1, and the
others are immediate from Proposition 6.3.

For the rest of the section we fix a neighborhood (E ,G,W ′) of (E ,G,W)
having the properties stated in the above lemma.

8.7. If s is any edge of T , we shall denote by p/Γs : M̃/Γs → M the
covering map induced by p. We shall let c̃/Γs denote the bi-collared

surface in M̃/Γs lying over c. According to Proposition 3.4, the compo-

nent M̃s/Γs of |c̃/Γs| is a deformation retract of M̃/Γs, and p/Γs maps

M̃s/Γs homeomorphically onto |c|. In particular, M̃/Γs is homotopy
equivalent to S.

If v is any vertex of T incident to s, it follows that ∂sM̃v/Γs is a

deformation retract of M̃/Γs, and that p/Γs maps ∂sM̃v/Γs homeomor-
phically onto ∂sMv. We shall let rs,v denote a deformation retraction

(chosen arbitrarily) of M̃/Γs to ∂sM̃v/Γs.

8.8. Lemma. Let s be any edge of T , and let v be any vertex of T
incident to s. Then there is a component F̃ of the boundary of W ′

s/Γs

such that
(i) F̃ is invariant under Γs;

(ii) F̃ is a uniform, Γs-orientable PL Γs-manifold;
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(iii) the map rs,v|(F̃ /Γs) : F̃ /Γs → ∂sMv/Γs has degree one;
and
(iv) for every edge e of T not incident to v, we have F̃ ∩W ′

e = ∅.

Proof: Since W ′ is doubly uniform according to Lemma 8.6, it is
uniform by Proposition 5.7.1. Thus W ′

s is a uniform Γs-space, i.e.

W ′
s ⊂ M̃/Γs is compact. Hence the PL 2-manifold ∂(W ′

s/Γs) is closed.

Note also that since M̃/Γs is orientable, ∂(W ′
s/Γs) is orientable.

The map f induces a map fs : M̃/Γs → T/Γs. We have a commutative
diagram

M̃
f

−−−−→ T




y





y

M̃/Γs
fs

−−−−→ T/Γs

in which the vertical arrows represent quotient maps. Since Γs fixes s,
there is an edge s0 of the graph T/Γs whose preimage in T is precisely
s. One vertex of s0 is the image of v in T/Γs, which we shall denote by
v0; let us denote the other vertex of s0 by w0. By Lemma 8.5, we have
f−1(s) ⊂ Ws ⊂ W ′

s. From the above commutative diagram it follows
that f−1s (s0) ⊂W ′

s/Γs.
By Proposition 3.5, T/Γs is a tree without end points. In particular,

(T/Γs) − s0 has two connected components, each of which is a tree
with infinitely many vertices. Let Λv and Λw denote the components of
(T/Γs)− s0 containing v0 and w0 respectively. Since f−1s (s0) ⊂W ′

s/Γs,

each component of M̃/Γs −W ′
s/Γs is mapped by fs into either Λv or

Λw.
By Lemma 8.4, f maps M̃ onto T . Hence fs maps M̃/Γs onto T/Γs.

Since each of the trees Λv and Λw has infinitely many vertices, f−1(Λv)

and f−1(Λw) are non-compact. But since W ′
s/Γs is compact and M̃/Γs

is connected, M̃/Γs − intW ′
s/Γs has only finitely many components.

Since f−1(Λv) is non-compact, f must map some non-compact compo-

nent N of M̃/Γs − intW ′
s/Γs into Λv.

We claim that there is a component F of ∂N which does not bound
a compact 3-manifold in M̃/Γs. Assume to the contrary that every
component C of ∂N bounds a compact 3-manifold JC . No JC can
contain N since N is non-compact. Since M̃e is connected it follows that
M̃e = N ∪

⋃

C JC , where C ranges over the components of ∂N . This

means that M̃ − intN is compact, which is impossible since f−1(Λw) is
non-compact. This proves the claim.

Since ∂sMv/Γs is a deformation retract of M̃/Γs via r = rs,v, we may

apply Proposition 3.4.1 to conclude that π1(F )→ π1(M̃/Γs) is surjective
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and that r|F : F → ∂sMv/Γs has degree 1. Since π1(F ) → π1(M̃/Γs)

is surjective, the preimage F̃ of F in M̃ is connected and is therefore
a component of ∂W ′

s. We have F = F̃ /Γs. Since W ′
s is a uniform Γs-

space, its Γs-invariant closed subset F̃ is also a uniform Γs-space by 1.4.
Furthermore, since M̃ is Γ-orientable, W ′

s is Γs-orientable, and hence its

Γs-invariant boundary component F̃s is Γs-orientable as well. It remains
to check conclusion (iv) of the lemma.

By Lemma 8.6, we have f(W ′
e) ⊂ nbhd1 ē for every edge e of T .

By our choice of the surface F ⊂ ∂W ′
s we have fs(F ) ⊂ Λv; hence

f(F̃ ) ⊂ Λ̃v, where Λ̃v is the component of T − s containing v. It follows

that f(F̃ ) ⊂ Λ̃v ∩ nbhd1 s̄ ⊂ nbhd1{v}. Hence if e is any edge of T not

incident to v, we have f(F̃ ∩W ′
e) ⊂ nbhd1{v} ∩ nbhd1 ē = ∅, and hence

F̃ ∩W ′
e = ∅.

8.9. Proof of Proposition 8.2: We are required to prove that the
core of c is a fibroid. According to the definitions, this is equivalent to
showing that every component of Split(c) is a book of I-bundles.

Consider an arbitrary component of Split(c), which we may write in
the form Mv for some vertex v of T = T (c). Since M is simple and
c is incompressible, it follows from the definitions that Mv is simple.
Let (Σ,Φ) denote the characteristic pair of (Mv, ∂Mv). According to
Proposition 4.3, we need only show that every component of ∂Mv−int Φ
is an annulus.

Consider an arbitrary component of ∂Mv, which we may write in the
form ∂sMv for some edge s incident to v. Set Ξ0 = ∂sMv ∩ Φ. We are
required to show that every component of ∂sMv − int Ξ0 is an annulus.
For technical reasons that will become apparent we consider a PL 2-
manifold Ξ ⊂ ∂Mv constructed as follows. If Ξ0 6= ∅ we set Ξ = Ξ0. If
Ξ = ∅ we take Ξ to be an arbitrarily chosen homotopically non-trivial
annulus in ∂sMv; such an annulus exists because the incompressibility of
c guarantees that ∂sMv is not a 2-sphere. Note that since M is simple,
∂sMv cannot be a torus. Hence if we can show that every component
of ∂sMv − int Ξ is an annulus, it will follow that Ξ = Ξ0 and hence
that every component of ∂sMv − int Ξ0 is an annulus, as required. The
rest of the argument will be devoted to proving that every component
of ∂sMv − int Ξ is an annulus.

Let us choose a component F̃s,v of the boundary of W ′
s which satisfies

conditions (i)–(iv) of Lemma 8.8. Set r = rs,v, and let r̃ : M̃ → F̃

be a retraction covering r. We have a Γs-equivariant map f̃ = r̃|F̃ :

F̃ → ∂sM̃v. We shall show that ∂sM̃v, F̃ , f̃ and Ξ ⊂ ∂sMv satisfy the
hypotheses of Proposition 7.4.2, with the group Γs playing the rôle of
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Γ. It will then follow from Proposition 7.4.2 that every component of
∂sMv − int Ξ is an annulus, as required.

By Lemma 8.8, F̃ is a uniform, Γs-orientable Γs-manifold. Since
∂sMv is a closed, orientable 2-manifold, the PL Γ-manifold ∂sM̃v is also
uniform and Γs-orientable. Furthermore, since ∂sMv is incompressible,
∂sM̃v is simply connected and ∂sMv is not a 2-sphere. We have observed
that f̃ : F̃ → ∂sM̃v is Γs-equivariant. The induced map f : F → ∂sMv

is the map rs,v|(F̃ /Γs), which by Lemma 8.8 has degree 1.

It remains to construct a uniform Γ-plating of F̃ satisying conditions
(i)—(iii) of Proposition 7.4.2.

Set Qs = ∂W ′
s. According to Proposition 5.7, the Γ-plating (E ,G,W ′)

of M̃ induces a boundary plating of Qs. This boundary plating is a Γs-
plating and will be denoted (Es,Gs, (W ′)s). Here Es is the set of all edges
e 6= s of T such that W ′

e ∩Qs 6= ∅; and we have Gs = (Γe ∩ Γs)e∈Es and
(W ′)s = (W ′

e ∩Qs)e∈Es . Since (E ,G,W) has order at most 2 by Lemma
8.6, it follows from Proposition 5.7 that (Es,Gs, (W ′)s) has order at most
1. Moreover, since (E ,G,W) is doubly uniform by Lemma 8.6, it follows
from Proposition 5.7.1 that the plating (Es,Gs, (W ′)s) is uniform.

It now follows from 5.6 that the Γs-space F̃ inherits a Γs-plating
(EF̃ ,GF̃ ,W ′

F̃
) from the Γs-plating (E

s,Gs, (W ′)s) of Qs. Here EF̃ consists

of all edges e 6= s of T such that W ′
e ∩ F 6= ∅; and we have GF̃ =

(Γe ∩ Γs)e∈EF̃ and (W ′)F̃ = (W ′
e ∩ F )e∈EF̃ . Since (Es,Gs, (W ′)s) is

uniform and has order at most 1, (EF̃ ,GF̃ ,W ′
F̃
) has the same properties.

That (EF̃ ,GF̃ ,W ′
F̃
) has order at most 1 is condition (i) of Proposition

7.4.2. We shall complete the proof by showing that (EF̃ ,GF̃ ,W ′
F̃
) satisfies

conditions (ii) and (iii) of Proposition 7.4.2.

Consider any element e of the index set EF̃ . The group in the family
GF̃ indexed by e is Γs ∩ Γe.

The definition of EF̃ implies that e is an edge distinct from s. Fur-
thermore, we have W ′

e ∩F 6= ∅; this implies that e is incident to v, since

by condition (iv) of Lemma 8.8 we have F̃ ∩W ′
s = ∅ for every edge e of

T not incident to v. It now follows from Proposition 4.2 that Γs ∩ Γe is
finitely generated. This is condition (ii) of 7.4.2.

Finally we must verify condition (iii), that there is a component Ξe of
Ξ such that the outer subgroup ν−1s,v(Γs∩Γe) of π1(∂sMv) is contained in
the outer subgroup im(π1(Ξe)→ π1(∂sMv)). If Γs ∩Γe 6= {1}, it follows
from Proposition 4.2 that the outer subgroup ν−1s,v(Γs ∩Γe) of π1(∂sMv)
is contained in the outer subgroup im(π1(Φe) → π1(∂sMv)) for some
component Φe ⊂ ∂sMv of Φv. In this case it follows from the definitions
of Ξ and Ξ0 that Φe is a component of Ξ0 and hence of Ξ. If Γs∩Γe = {1},
then since Ξ 6= ∅, it is trivially true that the (trivial) outer subgroup
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ν−1s,v (Γs∩Γe) is contained in the outer subgroup im(π1(Ξe)→ π1(∂sMv))
for some component Ξe of Ξ. Thus condition (iii) of 7.4.2 is verified in
all cases. This completes the proof of Proposition 8.2.

Section 9. Fibroids and platings, II.

9.1. This section is devoted to the proof of the following result, which
like Proposition 8.2 is purely topological and gives a sufficient condition
for an incompressible surface to be a fibroid.

Theorem. Let M be a simple, closed, orientable 3-manifold containing
a connected incompressible bi-collared surface c. Let Γ ∼= π1(M) denote

the group of deck transformations of the universal covering space M̃
of M , and set T = T (c). Suppose that there is a uniform Γ-plating

(I,X ,Z) of the Γ-space M̃ , where Z = (Zi)i∈I and X = (Xi)i∈I ,
satisfying the following conditions.
(i) For each i ∈ I the group Xi is a T -hyperbolic cyclic subgroup of Γ.
(ii) For any i, i′ ∈ I such that Zi ∩ Zi′ 6= ∅, we have E(AT (Xi)) ∩

E(AT (Xi′)) 6= ∅.
Then the core of c is a fibroid.

9.2. Throughout the section, M will denote a manifold, and c a bi-
collared surface, satisfying the hypotheses of Theorem 9.1. We shall fix
a PL structure on M in which c is a PL bi-collared surface. As in the
statement of the theorem we shall denote the universal covering space
of M by M̃ and its group of deck transformations by Γ, and we shall set
T = T (c). We shall fix a uniform Γ-plating Z = (Zi)i∈I of M̃ satisfying
conditions (i) and (ii) of the theorem.

9.3. Corollary 6.4 gives a closed, locally finite neighborhood (I,X ,Z ′)
of (I,X ,Z) which is itself a uniform plating of M̃ . Furthermore, if we
write Z ′ = (Z ′i)i∈I , then the Z ′i are all subcomplexes of some Γ-invariant

triangulation of M̃ ; and for any two indices i, j ∈ I such that Zi∩Zj = ∅
we have Z ′i ∩ Z ′j = ∅. It follows from this last property of Z ′ that the
hypotheses of Theorem 9.1 continue to hold if (I,X ,Z) is replaced by
(I,X ,Z ′). But since (I,X ,Z ′) is a neighborhood of (I,X ,Z) we have

M̃ =
⋃

i∈I intZ
′
i. This means that in proving Theorem 9.1 we may

assume, without loss of generality, that M̃ =
⋃

i∈I intZi, and that there

is a Γ-invariant triangulation of M̃ in which the Zi are all subcomplexes.
We shall make these assumptions for the remainder of this section.

The proof of Theorem 9.1 proceeds by constructing from the Γ-plating
(I,X ,Z) a new Γ-plating (E(T ),G,W) of M̃ , indexed by the Γ-set E(T )
(8.1), and satisfying the hypotheses of Proposition 8.2. The construction
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of the map f appearing in the hypothesis of Proposition 8.2 will precede
the construction of the Γ-plating (E(T ),G,W).

9.4. Lemma. There exists a continuous, Γ-equivariant map f : M̃ → T
such that for every i ∈ I we have f(Zi) ⊂ AT (Xi).

Proof: For each P ∈ M̃ let us denote by IP ⊂ I the set of all in-
dices i such that P ∈ Zi. Since the plating Z is by definition locally
finite, IP is a finite subset of I for each P ∈ M̃ . By condition (ii) in
the hypothesis of Theorem 9.1, for any two indices i, i′ ∈ I we have
E(AT (Xi)) ∩ E(AT (Xi′)) 6= ∅, and in particular AT (Xi) ∩ AT (Xi′) 6= ∅.
Hence by Corollary 2.3.1, the set ΨP =

⋂

i∈IP
AT (Xi) is a segment in

T , and is in particular non-empty. Since Zγ·i = γ ·Zi for all i ∈ I, γ ∈ Γ,

we have Iγ·P = γ · IP and hence Ψγ·P = γ ·ΨP for all P ∈ M̃, γ ∈ Γ.

Let us equip M̃ with the Γ-invariant triangulation given by 9.3, in
which the Zi are all subcomplexes. Let M̃ (d) denote the d-skeleton of
M̃ for d = 0, . . . , 3.

We claim that there is a Γ-equivariant map f 0 : M̃ (0) → T such
that f0(P ) ∈ ΨP for every P ∈ M̃ (0). To prove this we use a set
S0 ⊂M (0) which is a complete set of orbit representatives for the action
of Γ on M̃ (0), in the sense that M (0) =

∐

P∈S0 Γ · P . For each P ∈ S0

we choose a vertex vP in the segment ΨP . Since Γ acts freely on M̃ ,
and in particular on T 0, we may define f0 unambiguously by setting
f0(γ · P0) = γ · vP0 for all γ ∈ Γ, P ∈ S0. The Γ-equivariance of f0 is

clear. Furthermore, for any P ∈ M̃ (0), writing P = γ · P0 with P0 ∈ S0,
we have f0(P ) = γ · vP0 ∈ γ ·ΨP0 = Ψγ·P0 = ΨP . This proves the claim.

For any finite set Φ of vertices of T let us denote by hull(Φ) the union
of all segments in T having their endpoints in Φ. If Φ is non-empty
then hull(Φ) is a connected subcomplex of T and hence a subtree. If the
non-empty finite set Φ is contained in a line L ⊂ T , then hull(Φ) is a
segment in L.

By induction on d ∈ {0, . . . , 3}, we shall show that f 0 can be extended

to a map fd : M̃ (d) → T such that for every closed simplex τ of M̃
we have f(τ) ⊂ hull(f0(τ ∩ M̃ (0))). For d = 0 the assertion is trivial.
Suppose that fd has been constructed for a given d ∈ {0, 1, 2}. Let Sd+1

be a complete set of orbit representatives for the action of Γ on the set of
all closed (d+1)-simplices of M̃ . For each τ ∈ Sd+1, and each proper face

τ ′ of τ , we have fd(τ ′) ⊂ hull(f0(τ ′∩M̃ (0))) ⊂ hull(f0(τ ∩M̃ (0))). Thus
fd maps ∂τ into the tree hull(f 0(τ ∩ T 0)). Since a tree is contractible,

fd|∂τ can be extended to a continuous map fτ : τ → hull(f0(τ ∩M̃ (0))).
Now Γ acts freely on the set of (d + 1)-simplices of T , so any (d + 1)-
simplex τ can be written in a unique way as γ · τ0 with γ ∈ Γ and
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τ0 ∈ Sd+1. We define a continuous map fτ : τ → T by setting f(γ ·P ) =
γ · f(P ) for every P ∈ τ . The Γ-equivariance of f d implies that fτ |∂τ =

fd|∂τ . Hence we may extend f d to a continuous map fd+1 : M̃ (d+1) → T
by setting fd+1|τ = fτ for every closed (d+1)-simplex τ . It is now clear

that f is Γ-equivariant and that f(τ) ⊂ hull(f 0(τ ∩ M̃ (0))) for every

closed simplex τ of M̃ (d+1). This completes the induction.
Set f = f3. We shall complete the proof of the lemma by showing

that f(Zi) ⊂ AT (Xi) for every i ∈ I. Since Zi is a subcomplex of

M̃ we need only show that if τ ⊂ Zi is a closed simplex then f(τ) ⊂
AT (Xi). For any vertex P of τ we have P ∈ Zi and hence i ∈ IP .
Therefore f0(P ) ∈ ΨP ⊂ AT (Xi). Thus f0(τ ∩ T 0) ⊂ AT (Xi). It
follows that hull(f0(τ ∩ T 0)) is a segment in the line AT (Xi). Hence

f(τ) ⊂ hull(f0(τ ∩ M̃ (0))) ⊂ AT (Xi).

9.5. In this subsection we construct a closed set We ⊂ M̃ for each
e ∈ E(T ). Most of the section will be devoted to proving that the sets
We constitute a plating, and that they define a Γ-plating satisfying the
hypotheses of Proposition 8.2.

For each edge e of T , we define a set Ue ⊂ M̃ as follows. A point
P ∈ M̃ lies in Ue if and only if for every i ∈ I such that P ∈ intZi, we
have e ∈ E(AT (Xi)). Thus Ue is the complement of a union of sets of
the form intZi, where i ranges over a certain subset of I. Since the sets
intZi are open, it follows that Ue is closed.

For each triod Y in T we define a set VY ⊂ M̃ as follows. A point
P ∈ M̃ belongs to VY if and only if for each length-2 segment σ ⊂ Y
there is an index i ∈ I such that σ ⊂ AT (Xi) and P ∈ Zi. It is clear
from this definition that VY is a union of sets of the form Zi ∩ Zj ∩ Zk,
where (i, j, k) ranges over some subset of I × I × I. But the plating Z
is by definition a locally finite family of closed sets. It follows that VY

is a locally finite union of closed sets, and hence a closed subset of M̃ .
Now for each edge e of T , we set

We = (Ue ∩ f−1(ē)) ∪
⋃

Y∈Ye

VY ,

where Ye denotes the set of all triods containing e. Since the Ue and the
VY are closed, and since f is continuous, it is clear that We is closed in
M̃ .

9.6. Lemma. For every edge e of T we have f(We) ⊂ ē.

Proof: By definition We is the union of Ue ∩ f−1(ē) with the sets
VY , where Y ranges over all triods having e as an edge. We therefore
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need only prove that if e is an edge of a triod Y then f(We) ⊂ ē.
Actually we will prove slightly more, namely that f(We) = {v} where
v is the center of the triod Y . Let σ, σ′, σ′′ be the length-2 segments
contained in Y . Let P be any point of VY . By the definition of VY

there are indices i, i′, i′′ ∈ I such that P ∈ Zi ∩ Zi′ ∩ Zi′′ and such that
σ ⊂ AT (Xi), σ

′ ⊂ AT (Xi′) and σ′′ ⊂ AT (Xi′′). By Lemma 9.4 we have
f(P ) ∈ f(Zi) ∩ f(Zi′) ∩ f(Zi′′) ⊂ AT (Xi) ∩ AT (Xi′) ∩ AT (Xi′′). But
Proposition 2.4, applied to the set L = {AT (Xi), AT (Xi′), AT (Xi′′)},
shows that AT (Xi) ∩ AT (Xi′) ∩ AT (Xi′′) = {v}. Hence f(P ) = v as
required.

9.7. Lemma. We have M̃ =
⋃

e∈E(T )We.

Proof: Given any point P ∈ M̃ , we must show that P ∈ We for some
edge e of T . We let IP denote the set of all indices i ∈ I such that
P ∈ Zi. We have IP 6= ∅ since M̃ =

⋃

i∈I intZi by 9.3. But the plating
Z is by definition a locally finite family; hence IP is finite. Now let
L denote the set of all lines of the form AT (Xi) for i ∈ IP . Then L
is a finite, non-empty collection of lines in T . Since P ∈ Zi for every
i ∈ IP , hypothesis (ii) of the theorem implies that E(L) ∩ E(L′) 6= ∅
for all L,L′ ∈ L. By Corollary 2.3.1,

⋂

L is a segment in T , possibly
degenerate.

Consider first the case where
⋂

L is non-degenerate. Note that for
every i ∈ IP we have P ∈ Zi and hence f(P ) ∈ f(Zi) ⊂ AT (Xi), in
view of the defining property of f . By the definition of L this means
that P ∈

⋂

L. As
⋂

L is a non-degenerate segment, we have f(P ) ∈ ē
for some edge e ∈ E(

⋂

L). But to say that e ∈ E(
⋂

L) means that
e ∈ E(AT (Xi)) for every i ∈ IP ; by the definition of Ue this says that
P ∈ Ue. Hence in this case we have P ∈ Ue ∩ f−1(ē) ⊂We.

Now consider the case where the segment
⋂

L is degenerate. In this
case, according to Proposition 2.4, there is a triod Y ⊂ T such that every
length-2 segment contained in Y is contained in a line in L. This means
that for every length-2 segment σ in Y there is an index i such that
P ∈ intZi and σ ⊂ AT (Xi). Since P ∈ intZi implies that in particular
P ∈ Zi, it follows from the definition of VY that in this case P ∈ VY ,
and so P ∈We for any edge e of Y .

9.8. Lemma. Every point P ∈ M̃ has a neighborhoodN in M̃ such that
there are at most two edges e ∈ E(T ) for which N ∩ Ue ∩ f−1(ē) 6= ∅.

Proof: By 9.3 there is an index i ∈ I such that P ∈ intZi. Let v be
a vertex of T such that f(P ) ∈ Star(v), where Star(v) denotes the open
star of v in T . Then N = intZi∩f−1(Star(v)) is a neighborhood of P in

M̃ . Let e be an edge such that N ∩Ue ∩ f−1(ē) 6= ∅. Then in particular
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we have intZi ∩ Ue 6= ∅, and it follows from the definition of Ue that
e ∈ E(AT (Xi)). But we also have f−1(Star(v)) ∩ f−1(ē) 6= ∅ and hence
(Star(v))∩ ē 6= ∅; thus the edge e must be incident to the vertex v. But
there can be at most two closed edges that lie in the line AT (Xi) and
are incident to the vertex v.

9.9. Lemma. For any P ∈ M̃ there is at most one triod Y ⊂ T such
that P ∈ VY . Furthermore, if P ∈ VY for a given triod Y and P ∈
Ue ∩ f−1(ē) for a given edge e, then e ∈ E(Y ).

Proof: As in the proof of Lemma 9.7, we let IP denote the set of all
indices i ∈ I such that P ∈ Zi, and we let L denote the set of all lines
of the form AT (Xi) for i ∈ IP . As we observed in the proof of Lemma
9.7, we have E(L)∩ E(L′) 6= ∅ for all L,L′ ∈ L. If Y is a triod such that
P ∈ VY then every length-2 segment in Y is contained in a line in L.
It follows from Proposition 2.4 that there is at most one triod with this
property. This proves the first assertion.

Now suppose that P ∈ VY for a triod Y and that P ∈ Ue ∩ f−1(ē)
for an edge e. Let v denote the center of the triod Y . It follows from
Proposition 2.4 that

⋂

L = {v}. By the defining property of the map f
we have

f(P ) ∈
⋂

i∈IP

f(Zi) ⊂
⋂

i∈IP

AT (Xi) =
⋂

L = {v},

i.e. f(P ) = v. Hence the edge e is incident to v.
By 9.3 there is an index k ∈ I such that P ∈ intZk. Since P ∈ Ue

it follows that e ∈ E(AT (Xk)). On the other hand, since P ∈ intZk we
have in particular P ∈ Zk and hence k ∈ IP . Hence the line AT (Xk)
belongs to L. By Proposition 2.4, AT (Xk) meets the triod Y in a length-
2 segment. Since e is an edge of AT (Xk) and is incident to v, it follows
that e is an edge of Y .

9.10. Lemma. The indexed family (VY )Y of subsets of M̃ , where Y
ranges over all triods in T , is locally finite.

Proof: Since the plating (Zi)i∈I is by definition a locally finite family,
the family
(Zi ∩ Zj ∩ Zk)(i,j,k)∈I is also locally finite. Each set VY , where Y is
a triod in T , is by definition a union of sets of the form Zi ∩Zj ∩Zk for
(i, j, k) ∈ I. Furthermore, for Y 6= Y ′ we have VY ∩ VY ′ = ∅ by Lemma

9.9. Hence if P is a point of M̃ and N is a neighborhood of P that meets
Zi ∩ Zj ∩ Zk for at most n <∞ triples (i, j, k), then N meets VY for at
most n triods Y .
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9.11. Lemma. The family W = (We)e∈E(T ) is a plating of M̃ .

Proof: We observed in 9.5 that each We is closed. By Lemma 9.7 we
have M̃ =

⋃

e∈E(T )We. It remains to verify that W is a locally finite

family. Let P be any point of M̃ . By Lemma 9.8, P has a neighborhood
N in M̃ such that there are at most two edges e ∈ E(T ) for which
N ∩ Ue ∩ f−1(ē) 6= ∅. By Lemma 9.10 there is a neighborhood N ′ of P
such that N ∩N ′ 6= ∅ for only a finite number k of triods Y . Since each
triod contains only three edges of T , it follows from the definition of the
We that the neighborhood N ∩ N ′ of P meets We for at most 3k + 2
edges e ∈ E(T ). This proves local finiteness. (A slightly more careful
application of the lemmas above would give a bound of 3 in place of
3k + 2: compare Lemma 9.12 below.)

9.12. Lemma. The plating W = (We)e∈E(T ) has order at most 2.

Proof: Let P be any point of M̃ . If there is no triod Y ⊂ T such that
P ∈ VY , it follows from Lemma 9.8 that there are at most two edges
e ∈ E(T ) such that P ∈ We. On the other hand, if Y ⊂ T is a triod
such that P ∈ VY , then it follows from Lemma 9.9 that the only edges
of T for which P can lie in We are the three edges of Y . Thus in either
case there are at most three edges e for which P ∈We.

9.13. Now let us set G = (Γe)e∈E(T ) for every e ∈ E(T ).

Lemma. The triple (E(T ),G,W) is a Γ-plating of the Γ-space M̃ .

Proof: According to Lemma 9.11, W is a plating of M̃ . Thus we need
only establish conditions (i)–(iii) of Definition 5.2. Conditions (i) and
(ii) are obvious since we have defined G = (Γe)e∈E(T ). Condition (iii)
aserts that γ ·We = Wγ·e for every e ∈ E(T ) and every γ ∈ Γ. To prove
this, we first show that γ ·Ue = Uγ·e. From the definition of Ue we have

M̃ − γ · Ue = γ ·
⋃

i∈I
e/∈AT (Xi)

Zi =
⋃

i∈I
e/∈AT (Xi)

Zγ·i =
⋃

i∈I
e/∈AT (Xγ−1·i

)

Zi .

But for all i and γ we have AT (Xγ−1·i) = AT (γ
−1Xiγ) = γ−1 ·AT (Xi).

Hence

M̃ − γ · Ue =
⋃

i∈I
e/∈γ−1·AT (Xi)

Zi =
⋃

i∈I
γ·e/∈AT (Xi)

Zi = M̃ − Uγ·e,

so that γ ·Ue = Uγ·e. A similar naturality argument shows that γ ·VY =
Vγ·Y for every triod Y ⊂ T and every γ ∈ Γ. The Γ-equivariance of f
implies that γ · f−1(e) = f−1(γ · e) for all e and γ. Using the definition
of the We one immediately concludes that γ ·We = Wγ·e.
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9.14. The next three lemmas will allow us to prove that the Γ-plating
(E(T ),G,W) is doubly uniform.

9.14.1. Lemma. Let σ be any segment in M̃ , and let P be a point
in

⋂

e∈E(σ)We. Then there is an index i ∈ I such that P ∈ Zi and

σ ⊂ AT (Xi).

Proof: If e is any edge of σ, we have P ∈ We; thus according to the
definition of We, either P ∈ Ue ∩ f−1(e), or P ∈ VY for some triod Y
containing e. We first consider the case in which P ∈ Ue ∩ f−1(e) for
every e ∈ E(σ), so that in particular P ∈ Ue∩f−1(e) for every e ∈ E(σ).
In this case, using 9.3, we choose an index i such that P ∈ intZi. By the
definition of the Ue we have e ∈ E(AT (Xi)) for every edge e of σ; this
means that σ ⊂ AT (Xi), and the proof is complete in this case. Now
consider the case in which there is an edge s of σ such that P /∈ Us,
and therefore P ∈ VY for some triod Y containing s. Let e be any edge
of σ. If P ∈ Ue ∩ f−1(e), then it follows from the second assertion of
Lemma 9.9 that e is an edge of Y . On the other hand, if P ∈ VY ′ for
some triod Y ′ containing e, then the first assertion of Lemma 9.9 implies
that Y ′ = Y , so that again e is an edge of Y . Thus every edge of σ is
an edge of Y . This means that σ ⊂ Y , and hence that σ ⊂ σ′ for some
length-2 segment σ′ ⊂ Y . Since P ∈ VY , the definition of VY says that
for some index i we have AT (Xi) ⊃ σ′ ⊃ σ and P ∈ Zi. Thus the proof
is complete in this case as well.

9.14.2. For any segment σ ⊂ T we let Iσ denote the set of all indices
i ∈ I such that σ ⊂ AT (Xi). It is clear that Iσ is invariant under Γσ.

Lemma. For any segment σ ⊂ T , the Γσ-set Iσ contains only finitely
many Γσ-orbits.

Proof: By Proposition 5.4, there are only finitely many Γ-orbits in I.
Hence there is a finite set S ⊂ Iσ such that Iσ ⊂ Γ ·S. Now let n denote
the length of σ, and for any s ∈ S let Σs denote the set of all segments
of length n in AT (Xs). Then Σs is an Xs-set, and since the cyclic group
Xs is T -hyperbolic, Σs is a finite union of Xs-orbits.

For each s ∈ S set Σ′s = Σs ∩ Γ · {σ}. Since Σs contains only finitely
many Xs-orbits, there is a finite set Qs ⊂ Σ′s such that Σ′s ⊂ Xs · Qs.
Now we have Qs ⊂ Σ′s ⊂ Γ ·σ. Hence for each s ∈ S and each ρ ∈ Qs, we
may choose an element γρ ∈ Γ such that γρ ·ρ = σ. We have ρ ∈ Σ′s ⊂ Σs

and hence ρ ⊂ AT (Xs). Thus σ = γρ·ρ ⊂ γρ·AT (Xs) = AT (γρXsγ
−1
ρ ) =

AT (Xγρ·s). This shows that γρ · s ∈ Iσ. Thus the finite set

J =
⋃

s∈S

{γρ · s : ρ ∈ Qs}

44



is a subset of Iσ. We shall complete the proof by showing that Γσ · J =
Iσ.

Let i ∈ Iσ be given. We may write i = γ · s for some s ∈ S and
some γ ∈ Γ. We have σ ⊂ AT (Xi) and hence γ−1 · σ ⊂ AT (Xs). Thus
γ−1 · σ ∈ Σ′s. Thus we may write γ−1 · σ = x · ρ for some x ∈ Xs and
some ρ ∈ Qs. By definition we have γρ · ρ = σ. Hence γxγ−1ρ ∈ Γσ. But

since x ∈ Xs we have x · s = s. Therefore i = γ · s = (γxγ−1ρ )(γρ · s).
This shows that i is in the Γσ-orbit of γρ · s, which by definition is an
element of J . This completes the proof.

9.14.3. Lemma. For every non-degenerate segment σ ⊂ T , the Γσ-set
Wσ =

⋂

e∈E(σ)We is uniform.

Proof: By Lemma 9.14.1, we have Wσ ⊂
⋃

i∈Iσ
Zi. By Lemma 9.14.2,

there is a finite set S ⊂ Iσ such that Γσ ·S = Iσ. Thus Wσ ⊂ Γσ ·
⋃

i∈S Zi.
As

⋂

e∈E(σ)We is Γσ-invariant, it follows that Wσ ⊂ Γσ ·
⋃

i∈S(Zi ∩

Wσ). Hence it suffices to show that Zi ∩Wσ is compact for every non-
degenerate segment σ ⊂ T and every i ∈ I.

By the hypothesis of Theorem 9.1, Z is uniform. Thus there is a
compact set Ri ⊂ Zi such that Xi · Ri = Zi. Let e0 be any edge of
σ. By Lemma 9.6 we have Wσ ⊂ We0 ⊂ f−1(e0). Now let xi be a
generator of Xi. Since xi is T - hyperbolic and f(R) ⊂ T is compact,
there is an integer N > 0 such that for every integer n with |n| > N we
have xn

i ·R ∩ e0 = ∅. It follows that

Zi ∩Wσ ⊂ Zi ∩ f−1(e0) ⊂
N
⋃

n=−N

xni ·R.

Thus Zi ∩Wσ is indeed compact.

9.14.4. Lemma. The Γ-plating (E(T ),G,W) is doubly uniform.

Proof: We must show that if e and e′ are edges of T then the (Γe∩Γe′)-
set We ∩We′ is uniform. If e and e′ have no common vertex, then by
Lemma 9.6 we have f(We∩W ′

e) ⊂ ē∩ ē′ = ∅; thus in this case, We ∩W ′
e

is empty and the assertion follows trivially. If e and e′ have a common
vertex, then σ = ē∪ē′ is a segment of length 1 or 2. According to Lemma
9.14.3 the Γσ-set We∩W ′

e is uniform. But Γe∩Γe′ is the subgroup of Γσ

consisting of elements that preserve the orientation of σ. Hence Γe ∩Γe′

has index at most 2 in Γσ. It follows by 1.4 that the (Γe ∩ Γe′)-set
We ∩W ′

e is uniform.
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9.15. Proof of Theorem 9.1: By Lemmas 9.13 and 9.14.4, (E(T ),G,W)
is a doubly uniform Γ-plating. By Lemma 9.12, W has order at most 2.
By Lemma 9.4, f : M̃ → T is Γ-equivariant. By Lemma 9.6, we have
f(We) ⊂ ē for every edge e of T . By Proposition 8.2 it follows that the
core of c is a fibroid.

Section 10. Proof of Theorem A

10.1. Hyperbolic space. The proof of Theorem A will use some
elementary properties of hyperbolic space Hn.

Recall that an isometry x of Hn is loxodromic if x leaves some line
A ⊂ Hn invariant and x|A is a translation through some strictly positive
distance l. The line A and the number l, which are uniquely determined
by x, are called the axis and translation length of x; we shall write
A=AHn(x) and l = lHn(x).

As in [2] and [3], we shall use the following notation. If x is an isometry
of Hn and λ is a positive number, we shall denote by Zλ(x) the open
subset of Hn consisting of all points P such that dist(P, xm ·P ) < λ for
some m ≥ 1. The set Zλ(x) is empty if λ ≤ lHn(x). If λ > lHn(x) then
Zλ(x) is a neighborhood of AHn(x).

We denote the closure of Zλ(x) by Z̄λ(x). It is clear that for 0 < λ < λ′

we have Z̄λ(x) < Z̄ ′λ(x).

10.2. Hyperbolic manifolds. If M is a closed, hyperbolic 3-manifold,
we shall identify the universal covering space of M with H3. The group
Γ ∼= π1(M) of deck transformations of the universal covering space is
a discrete, torsion-free subgroup of the group PSL2(C) of orientation-
preserving isometries of H3. Recall that since M is closed, each non-
trivial element x of Γ is loxodromic. We may identify M with H3/Γ.

Recall that for each non-trivial element x ∈ Γ, the centralizer of x
is the unique maximal cyclic subgroup X of Γ containing x, and that
X −{1} consists of all non-trivial elements of Γ having the same axis in
H3 as x.

Note that since every element of Γ has a cyclic centralizer, π1(M) ∼= Γ
has no free abelian subgroup of rank 2. Furthermore, the universal cover
H3 of M is homeomorphic to R3 and hence M is irreducible. Thus M is
a simple 3-manifold. If X is any maximal cyclic subgroup of Γ and λ is
any positive number, then as in [2] we shall write Zλ(X) = Zλ(x), where
x is any generator of X; this is unambiguous because Zλ(x

−1) = Zλ(x).
The discreteness of Γ implies that for any P ∈ H3 and any λ > 0 there

are only finitely many elements x ∈ Γ such that dist(P, x ·P ) < λ. Since
each non-trivial element of Γ lies in a unique maximal cyclic subgroup, it
follows that for any P ∈ H3 there are only finitely many maximal cyclic
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subgroups X of Γ such that P ∈ Zλ(X). Thus for any λ the sets Zλ(X),
where X ranges over the maximal cyclic subgroups of Γ, form a locally
finite family. Since for any λ and any X we have Z̄λ(X) ⊂ Zλ+1(X), it
follows that for any λ the sets Z̄λ(X), where X ranges over the maximal
cyclic subgroups of Γ, again form a locally finite family.

10.3. Now suppose that we are given an incompressible surface S ⊂M .
Let c be a bi-collared surface with core S (3.1).

The following result, the proof of which will be based on the main
theorem of [1], allows one to compare the action of Γ on the tree T (c)
with its action on H3.

Proposition. Let M = H3/Γ be a closed, orientable hyperbolic 3-
manifold, and let x and y be elements of Γ such that Zlog 3(x)∩Zlog 3(y) 6=
∅. Suppose that M contains an incompressible bi-collared surface c; set
T = T (c), and suppose that x and y are T -hyperbolic. Then E(AT (x))∩
E(AT (y)) 6= ∅.

Proof: Let us fix a point P ∈ Zlog 3(x) ∩ Zlog 3(y). By the definition
of Zlog 3(x) and Zlog 3(y), there are positive integers r and s such that
dist(P, xr · P ) < log 3 and dist(P, ys · P ) < log 3.

We set ξ = xr, η = ys, A = AT (x) = AT (ξ) and B = AT (y) = AT (η).
We are required to show that E(A) ∩ E(B) 6= ∅. If ξ and η commute,
their axes A and B coincide. Thus we may assume that ξ and η do not
commute.

Suppose that E(A) ∩ E(B) = ∅. Then by Proposition 2.6, the group
Θ = 〈ξ, η〉 is free on ξ and η, and the action of Θ on T is free. Hence by
Proposition 3.6, the hyperbolic 3-manifold H3/Θ is homeomorphic to
the interior of a handlebody. In particular this means that the discrete
group Θ ≤ PSL2(C) is non-co-compact, and it is topologically tame in
the sense that H3/Θ is homeomorphic to the interior of a compact 3-
manifold. Note also that since M is closed and Θ ≤ Γ, every non-trivial
element of Θ is loxodromic.

Now we recall the main theorem of [1]. Suppose that ξ and η are
non-commuting elements of PSL2(C), and that the group generated by
ξ and η is discrete, torsion-free, non-co-compact and topologically tame,
and contains no parabolic elements. Then for any point P ∈ H3 we have

max(dist(P, ξ · P ), dist(P, η · P )) ≥ log 3.

Applied to the elements η and ξ that we have defined, this gives a con-
tradiction.
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10.4. Proof of Theorem A: We write M = H3/Γ, where Γ ≤
PSL2(C) is discrete and torsion-free. Since M is closed, all the non-
trivial elements of Γ are loxodromic. Let us say that an element x ∈
Γ − {1} is short if its translation length is less than λ. We choose a
bi-collared surface c with core S, and we set T = T (c).

Consider the case in which some short element x ∈ Γ has a fixed point
in T . Since x is short, its conjugacy class in Γ corresponds to a conjugacy
class π1(M) which is represented by a closed geodesic of length < λ. On
the other hand, since x has a fixed point in T it follows from 3.1 that
the conjugacy class in π1(M) defined by x is also represented by a closed
curve in M − |c|. Thus conclusion (i) of Theorem A holds in this case.

Now suppose that no short element of Γ has a fixed point in T . By
2.5 this means that every short element is T -hyperbolic. In this case we
shall show that conclusion (ii) of Theorem A holds.

Let us say that a maximal cyclic subgroup X of Γ is short if it has
a short generator, and let us denote by X the set of all short maximal
cyclic subgroups of Γ. We set Z = (Z̄λ(X))X∈X .

Assume that conclusion (ii) of Theorem A does not hold, i.e. that M
contains no hyperbolic ball of radius λ/2. Then by [2, Proposition 3.2]
we have

H3 =
⋃

X

Zλ(X),

where X ranges over all maximal cyclic subgroups of Γ. Since Zλ(X) = ∅
when X is not short, this means that

H3 =
⋃

X∈X

Zλ(X).

In particular we have H3 =
⋃

X∈X Z̄λ(X). As we observed in 10.1, the
family Z is a locally finite family, and by definition it consists of closed
sets. Thus Z is a plating of H3.

Now as Γ acts on X by conjugation, we may regard X as a Γ-set.
If we set G = (X)X∈X , it is clear from Definition 5.2 that (X ,G,Z)
is a Γ-plating of H3. Since M is compact, it contains only finitely
many conjugacy classes of short elements. Hence X is finite modulo Γ.
Furthermore, each set Z̄λ(X) is compact modulo X; this follows from
[2, Proposition 1.6], which asserts that all the points of Zλ(X) lie within
a bounded radius of the axis of X in H3. This shows that the Γ-plating
(X ,G,Z) is uniform.

We now apply Theorem 9.1 to the uniform Γ-plating (X ,G,Z). Hy-
pothesis (i) of 9.1 is immediate from the construction since we are in
the case where every short element of Γ is T - hyperbolic. To see that
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hypothesis (ii) holds, note that by the hypothesis of Theorem A we have
λ < log 3, and hence Zλ(X) ⊂ Zlog 3(X) for every X ∈ X . Thus if
X,X ′ ∈ X satisfy Zλ(X) ∩ ZX′ 6= ∅, then Zlog 3(X) ∩ Zlog 3(X

′) 6= ∅,
so that E(AT (X)) ∩ E(AT (X

′)) 6= ∅ by Proposition 10.3. It therefore
follows from Theorem 9.1 that S is a fibroid. But this contradicts the
hypothesis of Theorem A.

Section 11. Proof of the main theorem

11.1. The Main Theorem of the introduction will be proved by com-
bining Theorem A with the results of [3]. We begin with the following
result, which is of independent interest and from which the Main Theo-
rem will be deduced by specializing to a suitable value of λ.

Proposition. Let M be a closed, orientable hyperbolic 3-manifold.
Let us write M = H3/Γ, where Γ is a discrete, torsion-free group of
isometries of H3. Suppose that M contains a non-separating incom-
pressible surface Σ which is not a fibroid. Let λ be a number such that
0 < λ < log 3. Then either
(i) there is an element x ∈ Γ of length < λ such that M contains

an open set isometric to Zlog 3(x)/〈x〉 where x is some loxodromic
isometry of H3, or

(ii) M contains a hyperbolic ball of radius λ/2.

Proof: It is enough to show that conclusion (i) of Theorem A implies
conclusion (i) of the present proposition. Suppose that some closed curve
α : S1 → M − Σ is homotopic in M to a non-trivial closed geodesic of
length < λ. Let a be an element of the conjugacy class in Γ correspond-
ing to the free homotopy class of α in M . Since α is homotopic to a
closed geodesic of length < λ we have length a < λ. On the other hand,
since α is carried by the complement of the non-separating surface Σ,
the element a lies in the kernel of some homomorphism of Γ onto Z. The
centralizer X of a in Γ is infinite cyclic. Let x be a generator of X. Since
a is a power of x, the translation length of x is less than λ, and x lies
in the kernel of a homomorphism of Γ onto Z. By [3, Proposition 2.2],
any two conjugates of x generate a group which is topologically tame
and has infinite index in Γ. By [3, Proposition 2.1], it follows that M
contains an open set isometric to Zlog 3(x)/〈x〉.

11.2. Proof of the Main Theorem: We apply Proposition 11.1,
taking λ = 0.8. If conclusion (i) holds then it follows from [3, Proposition
4.1] that volM > 0.34. If conclusion (ii) holds, i.e. if M contains a
hyperbolic ball of radius 0.4, then using density estimates for sphere-
packings as in [10], one computes that the volume of M is at least
0.35.
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