A DIMENSION-DEPENDENT MAXIMAL INEQUALITY

ROMAN SHVYDKOY

Abstract. In this short note we show that \(\sup \{ \| M_\nu \| : \nu \text{ is measure on } \mathbb{R}^n \} \), where \(\| M_\nu \| \) denotes the centered Hardy-Littlewood maximal operator, depends exponentially on \(n \).

1. Statement of the problem

Let \(\nu \) be a \(\sigma \)-finite measure on the Borel subsets of \(\mathbb{R}^n \). Define the Hardy-Littlewood centered maximal operator associated with \(\nu \) by

\[
M_\nu f(x) = \sup_{r>0} \frac{1}{\nu(B_r(x))} \int_{B_r(x)} |f|d\nu, \quad x \in \mathbb{R}^n.
\]

It was proved in [1, 2] that

\[
\| M_\nu f \|_{L^p(\mathbb{R}^n, \nu)} \leq C \| f \|_{L^p(\mathbb{R}^n, \nu)}, \quad 1 < p < \infty,
\]

where \(C \) does not depend on \(\nu \). We present a simple construction showing that \(C \) depends exponentially on \(n \). This answers the question posed in [2, 3].

2. Construction

Claim 2.1. There is an absolute constant \(\alpha > 1 \) such that one can find \([\alpha^n]\) points \(x_1, x_2, ..., x_{[\alpha^n]} \) on the euclidian sphere \(S^{n-1} \) such that

\[
\| x_i - x_j \| > 1, \quad i \neq j.
\]

The maximal value of \(\alpha \) is immaterial. A simple argument based on volume estimates yields \(\alpha \geq e^{(\pi/6)^{2/3}} \).

Let us fix \(x_1, x_2, ..., x_{[\alpha^n]} \) as in the claim and put

\[
\nu = \delta_{\{0\}} + \sum_i \delta_{\{x_i\}}.
\]

2000 Mathematics Subject Classification. 42B25.

Key words and phrases. Hardy-Littlewood maximal operator, maximal inequality.
Define $f = \delta_{\{0\}}$. Then $\|f\|_{L^p(\mathbb{R}^n, \nu)} = 1$. On the other hand,

$$(M_\nu f)(x_i) \geq \frac{1}{\nu(B_1(x_i))} \int_{B_1(x_i)} |f|d\nu = 1/2, \quad i = 1, \ldots, [\alpha^n].$$

Hence, $\|M_\nu f\|_{L^p(\mathbb{R}^n, \nu)} \geq \frac{1}{2}[\alpha^n]$.

This is the end of construction.

References

