Practice problems for the 430 final

Problem 1. Recall that the soundness theorem says that if $\Gamma \vdash \phi$, then $\Gamma \models \phi$. Prove the soundness theorem, by assuming without proof that every logical axiom is valid (i.e. holds in every model).

Problem 2. Suppose that Σ is a set of sentences that has arbitrarily large finite models. Show that Σ has an infinite model.

Problem 3. Let $L = \{<\}$ be a first order language where $<$ is a binary relation symbol.

1. Show that the theory of infinite linear orders is axiomatizable.
2. Show that the theory of infinite linear orders is not finitely axiomatizable.

For the following problem you can make use of the formula $\phi_{\text{code}}(x)$ and that $\mathfrak{A} \models \phi_{\text{code}}[a]$ iff a codes a sequence. You can also use “$\text{lh}(a)$” to refer to the length of the sequence coded by a.

Problem 4. Write down a Σ_1 formula $\phi_{\text{exp}}(e,n,k)$, such that $\mathfrak{A} \models \phi_{\text{exp}}[e,n,k]$ iff $e^n = k$. Then write down a Π_1 formula $\phi'_{\text{exp}}(e,n,k)$ equivalent to $\phi_{\text{exp}}(e,n,k)$.

For the problems below, recall that any model of PA is an end extension of \mathfrak{A}, and as a corollary we get that if ϕ is Σ_1 and true in \mathfrak{A}, then ϕ is true in any model of PA, and so $PA \vdash \phi$. Recall also that we defined a Σ_1 formula $\phi_{\text{prov}-\theta}(a,b)$ such that, $\mathfrak{A} \models \phi_{\text{prov}-\theta}[a,b]$ iff $T_\theta \vdash \phi_a(b)$. Then setting e to be the Gödel number of $\neg \phi_{\text{prov}-\theta}(v,v)$, we defined

$$\sigma := \neg \phi_{\text{prov}-\theta}(e,e)$$

i.e. σ is exactly $\phi_e(e)$. Note that since $\phi_{\text{prov}-\theta}$ is Σ_1 and σ is defined by taking its negation, we have that σ is Π_1.

Problem 5.

1. Show that $\mathfrak{A} \models \sigma$ iff $T_\theta \nvdash \sigma$.
2. Prove that $T_\theta \nvdash \sigma$ (and so $\mathfrak{A} \nmodels \sigma$). (Here you will use that σ is Σ_1.)
3. Prove that σ is not Σ_1 (and so not Δ_1).

Problem 6. Show that there is no formula $\phi_{\text{true}}(x,y)$ such that

$$\mathfrak{A} \models \phi_{\text{true}}[a,b] \text{ iff } \mathfrak{A} \models \phi_a[b].$$

*Hint: suppose for contradiction that such a formula exists. Define a sentence σ' is a similar fashion as σ from above. I.e. informally, σ' will be the sentence “I am not true”.

Also make sure you know:

- The statements of Soundness, Compactness, Completeness theorems.
- How to show Compactness assuming Completeness; how to prove Soundness.
- The statements and proofs of the First and Second Incompleteness theorems.
• The definition of Δ_0, Σ_1, Π_1, Δ_1 formulas.
• How to show that there exists a countable nonstandard model of PA, i.e. a model \mathcal{B} which is not isomorphic to \mathcal{A}. Here the proof uses Compactness, to construct a model with an “infinite” element, i.e. an element $b \in \mathcal{B}$ such that for all $n \in \mathbb{N}$, $S_B^n(0_\mathcal{B}) <_\mathcal{B} b$.
• How to prove that every model of PA is an end extension of \mathcal{A}.
• As a corollary to the above: that if ϕ is Σ_1 and $\mathcal{A} \models \phi$, then any model of PA $\mathcal{B} \models \phi$. Note that this fact is a key ingredient when showing the First Incompleteness theorem.