Problem 1. Prove the Chinese Remainder Theorem: If \(d_1, \ldots, d_n \) are relatively prime natural numbers, and \(a_1, \ldots, a_n \) are such that for all \(i, a_i < d_i \), then there is some \(c \), such that for all \(i, c = a_i \mod d_i \).

Recall that in class we defined a formula \(\phi^*_\text{prime}(n,p) \) in a \(\Sigma_1 \) form, such that \(\mathfrak{A} \models \phi^*_\text{prime}[n,p] \) iff \(p \) is the \(n \)-th prime. Here \(\mathfrak{A} = (\mathbb{N}, 0, S, +, \cdot, <) \) is the standard model of PA.

Problem 2. Show that \(\phi^*_\text{prime}(n,p) \) is \(\Delta_1 \) by writing a \(\Pi_1 \) formula and showing that it is equivalent to \(\phi^*_\text{prime}(n,p) \).

Problem 3. Show that any model \(\mathfrak{B} \) of PA is an end-extension of the standard model \(\mathfrak{A} \). I.e. show that there is a one-to-one function \(h : \mathbb{N} \to |\mathfrak{B}| \), such that \(h \) is homomorphism (see the definition on page 94 in the book), and for every \(b <_\mathfrak{B} c \), if \(c \in \text{ran}(h) \), then \(b \in \text{ran}(h) \).

Problem 4. Suppose that \(\phi \) is a \(\Delta_0 \)-formula, such that \(\mathfrak{A} \models \phi \). Show that any model \(\mathfrak{B} \) of PA is satisfies \(\phi \). Conclude that if \(\phi \) is a \(\Delta_0 \)-formula, then \(\mathfrak{A} \models \phi \) iff \(\text{PA} \models \phi \).