Problem 1.

(1) Suppose \(A \neq \emptyset \) and there is a one-to-one function \(f : A \rightarrow B \). Show that there is a surjective (i.e. onto) function \(g : B \rightarrow A \).

(2) Suppose \(B \) can be well-ordered and there is a surjective function \(g : B \rightarrow A \). Show that there is a one-to-one function \(f : A \rightarrow B \).

Problem 2. In ZF\(^-\) prove the Schröder-Bernstein theorem i.e. that if \(A \preceq B \) and \(B \preceq A \) implies that \(A \approx B \).

Hint: Suppose \(f : A \rightarrow B \) and \(g : B \rightarrow A \) are one-to-one. Set \(A_0 = A \), \(B_0 = B \), \(A_{n+1} = g^{-1}(A_n) \), \(B_{n+1} = f^{-1}(B_n) \), \(A_{\infty} = \bigcap_n A_n \), \(B_{\infty} = \bigcap_n B_n \). Let \(h(x) \) be \(f(x) \) if \(x \in A_\infty \cup \bigcup_n (A_{2n} \setminus A_{2n+1}) \). Otherwise let \(h(x) \) be \(g^{-1}(x) \). Show that \(h \) is well defined and \(h : A \rightarrow B \) is one-to-one and onto.

Problem 3. Show that for infinite cardinals \(\kappa \geq \lambda \),

\[
|\{X \subset \kappa : |X| = \lambda\}| = \kappa^\lambda.
\]

Problem 4. Let \(\lambda \) be an infinite cardinal and \(\kappa \) be any cardinal. Show that

\[
\kappa^{<\lambda} = \sup\{\kappa^\theta : \theta < \lambda, \theta \text{ is a cardinal}\}.
\]

Problem 5. Assume CH (but not GCH). Show that for every natural number \(n > 0 \), \(\omega_n^\omega = \omega_n \).