Lemma 1. (Silver) Let \(\tau < \kappa \) be regular cardinals, such that \(2^\tau \geq \kappa \). Suppose that \(T \) is a \(\kappa \) tree and \(\mathbb{P} \) is \(\tau^+ \)-closed for some \(\tau < \kappa \). Then forcing with \(\mathbb{P} \) does not add new branches to \(T \).

Proof. Suppose otherwise. Let \(\dot{b} \) be a name for a branch, forced to be such by the empty condition. Working in \(V \), construct \(\langle s_\sigma, p_\sigma \mid \sigma \in 2^{<\tau} \rangle \) by induction on the length of \(\sigma \), such that:

1. Every \(s_\sigma \in T, p_\sigma \in \mathbb{P} \) and \(p_\sigma \Vdash s_\sigma \in \dot{b} \)
2. If \(\sigma_1 \supseteq \sigma_2 \), then \(s_{\sigma_2} \leq_T s_{\sigma_1} \) and \(p_{\sigma_2} \leq p_{\sigma_1} \)
3. For all \(\alpha < \tau \), there is some \(\beta_\alpha < \kappa \), such that for every \(\sigma \in 2^\alpha \)
 \(s_\sigma \in T_{\beta_\alpha} \)
4. For every \(\sigma, s_{\sigma-0} \) and \(s_{\sigma-1} \) are incomparable nodes.

At limit stages we use the closure of \(\mathbb{P} \). More precisely, if \(\alpha \) is limit, \(\sigma \in 2^\alpha \), let \(p_\sigma^* \) be stronger than all \(p_{\sigma\downharpoonright i} \) for \(i < \alpha \). Also let \(\beta_\alpha = \sup_{i<\alpha} \beta_i \). Then let \(p_\sigma \leq p_\alpha^* \) and \(s_\sigma \in T_{\beta_\alpha} \) be such that \(p_\sigma \Vdash s_\sigma \in \dot{b} \). We can find these since \(\dot{b} \) is forced to meet every level.

For the successor stage, suppose that we have constructed \(p_\sigma, s_\sigma \) and \(\beta_\alpha \), where \(\sigma \in 2^\alpha \). Using the splitting lemma, since \(\dot{b} \) is a new branch, we have that there are conditions \(q_{\sigma-0}, q_{\sigma-1} \) stronger than \(p_\sigma \) and nodes \(s_{\sigma-0}, s_{\sigma-1} \), in \(T_{\beta_\alpha+1} \) such that \(q_{\sigma-0} \Vdash s_{\sigma-0} \in \dot{b} \) and \(q_{\sigma-1} \Vdash s_{\sigma-1} \in \dot{b} \).

Now for every \(f \in 2^\tau \), let \(p_f \) be stronger than all \(p_{f\downharpoonright \alpha} \), for \(\alpha < \tau \). Here we use that \(\mathbb{P} \) is \(\tau^+ \)-closed, i.e. sequences of length \(\tau \) have a lower bound. Let \(\beta = \sup_{\alpha<\tau} \beta_\alpha < \kappa \). For every \(f \in 2^\tau \), let \(q_f \leq p_f \) and \(s_f \in T_\beta \) be such that \(q_f \Vdash s_f \in \dot{b} \). Again here we use that \(\dot{b} \) is forced to meet every level (since it is forced to be a branch).

But then by the splitting, we have that whenever \(f \neq g \), \(s_f \neq s_g \). But \(|T_\beta| < \kappa \) and \(2^\tau \geq \kappa \). Contradiction.

\[\square \]

Corollary 2. Suppose that \(T \) is an \(\omega_2 \)-tree, \(\mathbb{Q} \) is \(\omega_1 \)-closed, and \(2^\omega = \omega_2 \). Then \(\mathbb{Q} \) does not add new branches through \(T \).

Let \(G \) be \(\mathbb{M} \)-generic over \(V \). We have to show the tree property in \(V[G] \).
Suppose that \(T \) is a \(\kappa_2 \)-tree in \(V[G] \). Note that since \(\kappa = \kappa_2^{V[G]} \), this means that \(T \) is a \(\kappa \)-tree. We have to show that there is an unbounded branch through \(T \).

Let \(j : V \rightarrow N \) be an elementary embedding with critical point \(\kappa \). Recall that we showed that \(j(\mathbb{M}) \) projects to \(\mathbb{M} \), and so we can lift the embedding to \(j : V[G] \rightarrow N[G^*] \).
Lemma 3. There is a branch b through T in $N[G^*]$ (and so in $V[G^*]$).

Proof. Note that in $N[G^*]$, $j(T)$ is a $j(\kappa)$-tree. Since the sizes of the levels of T are below the critical point, we can also assume that for every level $\alpha < \kappa$, $j(T_\alpha) = T_\alpha = j(T)_\alpha$.

Let $u \in j(T)_\kappa$, i.e. a node on the κ-th level of $j(T)$. Let $b = \{v \in j(T) \mid v <_{j(T)} u\}$. Since $j(T)$ is a tree, b is a well ordered set. Also, for every $v \in b$, there is some $\alpha < \kappa$, such that $v \in j(T)_\alpha = T_\alpha$. I.e. $b \subset T$. And since the order type of b is κ, it follows that b is an unbounded branch through T.

We want to show that T has a branch in $V[G]$. So far, we have that T has a branch in the bigger model $V[G^*]$. Next we want to use branch preservation lemmas to show that forcing to get from $V[G]$ to $V[G^*]$ could not have added a new branch, i.e. that b must already exists in $V[G]$. The problem is that the forcing to get from G to G^* does not have the nice properties, like closure or Knaster-ness, that are used in the branch preservation lemmas.

To deal with that problem, recall that M is the projection of $\mathbb{P} \times \mathbb{Q}$, where \mathbb{Q} is ω_1-closed in V and $\mathbb{P} = \text{Add}(\omega, \kappa)$. We will show that something similar is true about $j(M)$.

INTERLUDE ON PROJECTIONS:

Suppose that \mathbb{R} and \mathbb{R}^* are any two posets, such that \mathbb{R}^* projects to \mathbb{R}. Let $\pi : \mathbb{R}^* \to \mathbb{R}$ be a projection, and suppose that H is \mathbb{R}-generic.

Definition 4. In $V[H]$, we set $\mathbb{R}^*/H := \{p \in \mathbb{R}^* \mid \pi(p) \in H\}$.

Lemma 5. If G is \mathbb{R}^*/H generic over $V[H]$, then G is \mathbb{R}^*-generic over V, and so $V \subset V[H] \subset V[H][G] = V[G]$.

Proof. G is a filter by assumption, so it is enough to show genericity. Suppose that $D \in V$ is a dense subset of \mathbb{R}^*. Let $D^* = D \cap \mathbb{R}^*/H$. We claim that D^* is a dense subset of \mathbb{R}^*/H. Fix $p \in \mathbb{R}^*/H$. In V, let $D_p = \{\pi(q) \mid q \in D, q \leq p\}$.

Claim 6. D_p is dense below $\pi(p)$.

Proof. For any $r \in \mathbb{R}, r \leq \pi(p)$, using that π is a projection, let $p' \in \mathbb{R}^*$ be such that $\pi(p') \leq r$. Then let $q \leq p'$ be in D. Then $\pi(q) \in D_p$ and $\pi(q) \leq r$.

So, let $r \in D_p \cap H$. Say $r = \pi(q)$ for some $q \in D$, with $q \leq p$. Then $q \in D^*$.

Since G is \mathbb{R}^*/H-generic, we have that $D^* \cap G \neq \emptyset$, and so $D \cap G \neq \emptyset$.

Next we give an alternative definition for projections:
Definition 7. \(\mathbb{R}^* \) projects to \(\mathbb{R} \) iff whenever \(G \) is \(\mathbb{R}^* \)-generic, then in \(V[G] \), we can define a \(\mathbb{R} \)-generic filter.

Definition 8. We say that \(\mathbb{R}^* \) is isomorphic to \(\mathbb{R} \) if \(\mathbb{R}^* \) projects to \(\mathbb{R} \) and \(\mathbb{R} \) projects to \(\mathbb{R}^* \).

BACK TO THE MITCHELL THEOREM:

Recall that \(\mathbb{P} \) is \(\text{Add}(\omega, \kappa) \) and \(j : V \to N \) is an elementary embedding with critical point \(\kappa \), and so \(j(\mathbb{P}) = \text{Add}(\omega, j(\kappa)) \). Let \(H \) be \(\mathbb{P} \) generic over \(V \). Define \(\mathbb{P}^* \) to be the set of all conditions \(p \) in \(j(\mathbb{P}) \) such that \(\text{dom}(p) \cap \kappa \times \omega \) is empty. I.e. \(\mathbb{P}^* = \text{Add}(\omega, j(\kappa) \setminus \kappa) \).

Lemma 9. In \(V[H] \), \(\mathbb{P}^* \) is isomorphic to \(j(\mathbb{P})/H = \{ p \in j(\mathbb{P}) \mid p \upharpoonright \kappa \times \omega \in H \} \).

Proof. For the first direction, suppose that \(H^* \) is \(\mathbb{P}^* \)-generic over \(V[H] \). In \(V[H][H^*] \), define \(K := \{ p \in j(\mathbb{P})/H \mid p \upharpoonright j(\kappa) \setminus \kappa \times \omega \in H^* \} \). We want to show that \(K \) is \(j(\mathbb{P})/H \) generic over \(V[H] \). It is a filter because both \(H \) and \(H^* \) are. For genericity, suppose that \(D \in V[H] \) is a dense subset of \(j(\mathbb{P})/H \). Let \(D^* = \{ p \mid j(\kappa) \setminus \kappa \times \omega \mid p \in D \} \). Then \(D \) is a dense subset of \(\mathbb{P}^* \), so there is some \(q \in D \cap H^* \). Let \(p \) witness that \(q \) is in \(D^* \). Then \(p \in D \cap K \).

For the other direction, suppose that \(K \) is \(j(\mathbb{P})/H \) generic over \(V[H] \). In \(V[H][K] \), define \(H^* := K \cap \mathbb{P}^* \). \(H^* \) is a filter because \(K \) is a filter and for any two \(p, q \in \mathbb{P}^* \), \(p \cup q \) is also in \(\mathbb{P}^* \). For genericity, suppose that \(D \in V[H] \) is a dense subset of \(\mathbb{P}^* \). Then the set \(E = \{ p \in j(\mathbb{P})/H \mid p \upharpoonright j(\kappa) \setminus \kappa \times \omega \in D \} \) is a dense subset of \(j(\mathbb{P})/H \). Let \(p \in E \cap K \) and \(q = p \upharpoonright j(\kappa) \setminus \kappa \times \omega \). Then \(q \in D \cap H^* \).

\(\square \)