MATH 512 HOMEWORK 2

Due Wednesday, March 6

Problem 1. Suppose that κ is measurable and U is a normal measure on κ. Show that $\{\alpha < \kappa \mid \alpha \text{ is an inaccessible cardinal}\} \in U$. Also show that if $\{\tau < \kappa \mid 2^\tau \leq \tau^+\} \in U$, then $2^\kappa \leq \kappa^+$.

Recall that κ has the tree property if every tree with height κ and levels of size less than κ has an unbounded branch.

Problem 2. Show that if κ is measurable, then it has the tree property. In particular, measurable cardinals are weakly compact.

Hint: given $j : V \rightarrow M$ and a tree T with height κ and levels of size less than κ, look at a node on the κ-th level of $j(T)$.

Problem 3. Suppose that κ is measurable and U_1, U_2 are two normal measures on κ such that $U_1 \in \mathrm{Ult}(V, U_2)$. I.e. $U_1 < U_2$ in the Mitchell order. Show that $\{\tau < \kappa \mid \tau \text{ is a measurable cardinal}\}$ is stationary.

Recall that κ is strongly compact if for every S, every κ-complete filter on S can be extended to a κ-complete ultrafilter.

Problem 4. Show that if κ is strongly compact, then it is measurable.

Recall that an algebra $B \subset \mathcal{P}(\kappa)$ is κ-complete if whenever \(\langle A_\alpha \mid \alpha < \tau \rangle \) are sets in B for some $\tau < \kappa$, then so is $\bigcap_{\alpha < \tau} A_\alpha$.

Problem 5. Show that the following are equivalent for a cardinal κ:

1. κ is inaccessible and has the tree property;
2. κ is inaccessible and for every κ-complete algebra $B \subset \mathcal{P}(\kappa)$ of size κ, every κ-complete filter on B can be extended to a κ-complete ultrafilter.

Each of the above gives a characterization for weak compactness.

Remark 1. A third characterization of weak compactness is the following: κ is inaccessible and $\mathcal{L}_{\kappa, \omega}$ satisfies the Weak Compactness Theorem.

Here the language $\mathcal{L}_{\kappa, \omega}$ contains κ variables, the usual logical connectives and quantifiers, and infinitary connectives $\bigvee_{\alpha < \tau} \phi_\alpha, \bigwedge_{\alpha < \tau} \phi_\alpha$ for any $\tau < \kappa$ (infinite disjunction and conjunction of size less than κ). $\mathcal{L}_{\kappa, \omega}$ satisfies the weak Compactness Theorem if for every set of sentences $\Sigma \subset \mathcal{L}_{\kappa, \omega}$ with $|\Sigma| \leq \kappa$, if every $S \subset \Sigma$ with $|S| < \kappa$ has a model, then Σ has a model.