
SINGULAR CARDINALS AND SQUARE PROPERTIES
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Abstract. We analyze the effect of singularizing cardinals on square
properties. By work of Džamonja-Shelah and of Gitik, if you singular-
ize an inaccessible cardinal to countable cofinality while preserving its
successor, then �κ,ω holds in the bigger model. We extend this to the
situation where every regular cardinal in an interval [κ, ν] is singularized,
for some regular cardinal ν. More precisely, we show that if V ⊂ W ,
κ < ν are cardinals, where ν is regular in V , κ is a singular cardinal in
W of countable cofinality, cfW (τ) = ω for all V -regular κ ≤ τ ≤ ν, and
(ν+)V = (κ+)W , then W |= �κ,ω.

1. Introduction

The square principle was isolated by Jensen in his fine structure analysis
of L. Square at κ, �κ, states that there exists a sequence 〈Cα | α < κ+〉
such that each Cα is a club subset of α, o.t.(Cα) ≤ κ, and if δ ∈ limCα,
then Cα ∩ δ = Cδ. There are various weakenings allowing multiple guesses
for the clubs at each point. More precisely, the principle �κ,λ states that
there is a sequence 〈Cα | α < κ+〉, such that:

(1) 1 ≤ |Cα| ≤ λ,
(2) every C ∈ Cα is a club in α, o.t.(C) ≤ κ,
(3) if C ∈ Cα and δ ∈ lim(C), then C ∩ δ ∈ Cδ.

Square principles hold in models that sufficiently resemble L. On the
other hand they are at odds with reflection properties and fail above large
cardinals. For example, there is tension between failure of SCH and failure of
the weaker square properties. One reason is that it is difficult to avoid weaker
square principles at singular cardinals. The standard way of singularizing
cardinals is by Prikry forcing, and Cummings and Schimmerling showed in
[2] that after Prikry forcing at κ, �κ,ω holds in the generic extension. More
generally, by arguments in Gitik [4] and independently in Džamonja-Shelah
[3], it was implicit that if V ⊂ W are transitive class models of ZFC such
that κ is an inaccessible cardinal in V , singular of countable cofinality in W ,
and (κ+)V = (κ+)W , then W |= �κ,ω. On the other hand in Gitik-Sharon
[5], a forcing was constructed where κ is singularized, (κ+ω+1)V becomes
the successor of κ, and weak square of κ fails in the generic extension.
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The natural question is what happens if κ is singularized and an interval
of cardinals above κ is collapsed. In this paper we show that if V ⊂ W
are such that κ is a cardinal in V and W , cfW (κ) = ω, ν > κ is a regular
cardinal, every V -regular cardinal τ , κ ≤ τ ≤ ν has cofinality ω in W , and
(ν+)V = (κ+)W , then �κ,ω holds in the outer model. Similarly to what was
done in [3] and [4], we show the existence of a “pseudo Prikry sequence”
witnessing that ν is singular in the bigger model. Moreover, for ν = κ+n for
some n, we generalize these arguments to obtain a pseudo Prikry sequence
in W through Pκ((κ+n)V ). We use the term “pseudo Prikry” because the
properties of these sequences will be the best approximation of the genericity
of a Prikry sequence, without referring to any measure.

We will use the following notation: cof(τ) and cof(< τ) denote points
of cofinality τ and less than τ , respectively. Similarly, we write cofW (τ) to
denote the points of cofinality τ in W . For a set C, lim(C) is the set of all
limit points of C and nacc(C) is the non-limit points of C.

2. Pseudo Prikry sequences

We start with a fact due to Shelah, whose proof can be found in [6],
Theorem 2.14.

Proposition 2.1. Suppose that ν > κ > ℵ1 are cardinals, where ν is regular.
Then there is a sequence 〈Sδ | δ < ν〉 of stationary subsets of ν+, such that⋃
δ<ν Sδ = ν+ ∩ cof(< κ) and each Sδ carries a partial square sequence

〈Cδα | α ∈ Sδ ∩ Lim〉. More precisely:

• each Cδα is a club subset of α with o.t.(Cδα) < κ, and
• if β ∈ lim(Cδα), then β ∈ Sδ and Cδα ∩ β = Cδβ.

Theorem 2.2. Suppose V ⊂ W are such that κ < ν are cardinals in V ,
ν is regular in V , (ω1)W < κ, cfW (κ) = ω, for all V -regular cardinals,
τ , κ ≤ τ ≤ ν, cfW τ = ω, and (ν+)V = (κ+)W . Suppose that 〈Dα | α <
(ν+)V 〉 ∈ V is a sequence of club subsets of ν. Then in W there is a sequence
〈δn | n < ω〉 cofinal in ν, such that for every α < (ν+)V , for all large n,
δn ∈ Dα. Furthermore, for any λ < κ, such that λ is regular in W , we may
assume that for all n, cfW (δn) ≥ λ.

Proof. Note that we are not assuming that κ remains a cardinal in W .
Denote µ := ν+, and let 〈Dα | α < µ〉 ∈ V be club subsets of ν. First we
will construct a sequence 〈δn | n < ω〉 meeting each of these sets on a final
segment. Then we will amend the argument to ensure that the cofinality is
as desired.

In V , let 〈Sδ | δ < ν〉 be as in Proposition 2.1. In particular, each Sδ
carries a partial square sequence of clubs of order type less than κ. Since⋃
δ<ν Sδ = µ ∩ cofV (< κ) ⊃ µ ∩ cofW (ω1), let δ < ν be such that in W ,

Sδ ∩ cofW (ω1) is stationary, and denote S := Sδ. Let 〈Cα | α ∈ S〉 be the
corresponding partial square sequence.
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Claim 2.3. In V there is a sequence 〈D∗α | α < µ〉 of club subsets of ν, such
that

(1) For each α < µ, D∗α ⊂ Dα,
(2) For every α < β < µ, |D∗β \D∗α| < ν

(3) For every α < β < µ, β ∈ S, if α ∈ Cβ, then D∗β ⊂ D∗α.

Proof. Work in V . Let D∗0 = D0. Suppose we have defined 〈D∗α | α < β〉,
β < µ. If β ∈ S, set

D∗β = Dβ ∩4α<βD
∗
α ∩

⋂
α∈Cβ

D∗α.

If β /∈ S, let D∗β = Dβ ∩4α<βD
∗
α.

�

In W , let 〈λn | n < ω〉 be an increasing cofinal sequence in ν. Let In be
the interval (λn, λn+1). For every α < µ, let dα = {n | D∗α ∩ In 6= ∅}, and
define a sequence 〈λαn | n ∈ dα〉, by setting

λαn = sup(D∗α ∩ In).

Note that for α < β, dβ \ dα is finite, and if β ∈ S, α ∈ Cβ, then dβ ⊂ dα.

Also, it follows that for all large n, if λβn is defined, then so is λαn and λβn ≤ λαn.
Denote Eα := 〈λαn | n ∈ dα〉. For α < β, we say that there is a major

change between α and β if Eα4Eβ is infinite. We claim that for α < β < γ,
if there is a major change between α and β, then there is a major change
between α and γ. For otherwise, if Eα4Eγ is finite, then for all large n,

λαn = λγn, when defined. So, for all large n, λγn ≤ λβn ≤ λαn = λγn, which
means that Eα4Eβ must have been finite as well.

Claim 2.4. There is some α, such that for every α < β < µ, there is no
major change between α and β.

Proof. Otherwise, for every α, let f(α) > α be such that there is a major
change between α and f(α). The set C := {α < µ | (∀β < α)(f(β) < α)}
is club, so pick α ∈ lim(C) ∩ S ∩ cofW (ω1). Let 〈αi | i < ω1〉 be a cofinal
sequence through lim(Cα) ∩ C. Then if i < j < ω1, D∗αj ⊂ D∗αi , and so

dαj ⊂ dαi . Then 〈dαi | i < ω1〉 must be eventually constant. So, let d be
such that for all large i, d = dαi .

Now for every n ∈ d, the sequence 〈λαin | i < ω1〉 is weakly decreasing,
so for some in < ω1 and λ̄n, we have that for all i ≥ in, λαin = λ̄n. Set
i = supn∈d in < ω1. Let E := {λ̄n | n ∈ d}. Then for all ξ ≥ i, Eαξ = E.

But for i < ξ < ξ′, since αξ′ ∈ C, we have that f(αξ) < αξ′ , so there is a
major change between αξ and αξ′ . But Eαξ = E = Eαξ′ . Contradiction

�

Now let α be as in the claim and set E := Eα. Then E is the desired
sequence, i.e. for all β < µ, on a final segment E is contained in D∗β.
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Next, we show how to get a sequence 〈δn | n < ω〉 as obtained above, but
with the additional requirement that for all n, cf(δn) ≥ λ (in W ). We follow
the argument in Džamonja-Shelah [3]. First note that for any club D ⊂ ν,
the set

{δ ∈ D | o.t.(D ∩ δ) is divisible by λ}

is club, such that if δ is a non-limit point in that set, then cfW (δ) ≥ λ.
Fix a sequence 〈aδ | δ < ν〉 ∈ V , such that each aδ is a club subset of

δ with order type cfV (δ). We define a sequence of clubs 〈D∗∗α | α < µ〉
by induction on α. Set D∗∗0 = {δ ∈ D0 | o.t.(D0 ∩ δ) is divisible by λ}.
Suppose we have already defined 〈D∗∗α | α < β〉. If β ∈ S, let D′β =

Dβ ∩4α<βD
∗∗
α ∩

⋂
α∈Cβ D

∗∗
α . If β /∈ S, let D′β = Dβ ∩4α<βD

∗∗
α . Then set

D∗∗β := {δ ∈ D′β | o.t.(D′β ∩ δ) is divisible by λ}.
Then 〈D∗∗α | α < µ〉 satisfy (1), (2), and (3) in Claim 2.3, with the new

key property that if δ ∈ nacc(D∗∗α ), then cfW (δ) ≥ λ.
Now, for α < µ, let Tα0 := Eα, where Eα is defined above, but with

respect to D∗∗α , and let

Tαn+1 := Tαn ∪ {sup(ρ ∩D∗∗α ) |

(∃δ ∈ Tαn ∩ cofW (< λ))ρ ∈ aδ, ρ > sup(D∗∗α ∩ ρ ∩ Tαn )}.

Set Tα =
⋃
n T

α
n . Note that Tα ⊂ D∗∗α .

Claim 2.5. If δ ∈ nacc(Tα), then cfW (δ) ≥ λ.

Proof. Otherwise, suppose δ ∈ nacc(Tα) and cfW (δ) < λ. Then, by defini-
tion of D∗∗α , δ /∈ nacc(D∗∗α ) i.e. δ ∈ lim(D∗∗α ). So δ = sup({sup(ρ ∩ D∗∗α ) |
ρ ∈ aδ}).

Since δ ∈ nacc(Tα), aδ∩Tα must be bounded in δ. Let δ̄ < δ be such that
Tα∩ (δ \ δ̄) = ∅. Then for all ρ ∈ aδ \ δ̄, ρ > sup(D∗∗α ∩ρ∩Tαn ). Now let n be
such that δ ∈ Tαn . Then since cfW (δ) < λ, {sup(ρ∩D∗∗α ) | ρ ∈ aδ\δ̄} ⊂ Tαn+1.

So sup(aδ ∩D∗∗α ) < δ. Then δ ∈ nacc(D∗∗α ), and so cfW (δ) ≥ λ. �

We say that there is a major change between α and β if Tα4T β is un-
bounded in ν. By running the same argument as above we get that there
is some α, such that for all α < β < µ, there is no major change between
α, β. The only difference here is that we take S, such that S ∩ cofW (λ) is
stationary. Then setting T := Tα, we have that for all β < µ, for some δ,
T \ δ ⊂ D∗∗β .

Then let 〈δn | n < ω〉 be cofinal in nacc(T ). This sequence is as desired.
�

Next we generalize to club subsets of Pκ(κ+m). In the arguments below,
for a set of ordinals y we define the characteristic function of y, χy to be a
function defined on the regular cardinals η ≤ sup(y) where χy(η) = sup(y ∩
η). We will need the following claim.
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Claim 2.6. Let κ be a regular cardinal, m a natural number. Then there is
a club D of Pκ(κ+m) such that for all x, y ∈ D if for all i ≤ m, χx(κ+i) =
χy(κ

+i) and cf(χx(κ+i)) is uncountable, then x = y.

Proof. Let χ be some big enough cardinal, and <χ be a well-ordering of
Hχ. Let D′ = {M ∩ κ+m | M ≺ 〈Hχ,∈, <χ ...〉, |M | < κ, (∀i < m)κ+i ∈
M,M ∩κ ∈ κ}. Then D′∩{x | (∀i ≤ m)(cf(χx(κ+i)) > ω)→ x is ω-closed}
contains a club, so let D be a club contained in it.

Suppose x, y ∈ D are such that for all i ≤ m, χx(κ+i) = χy(κ
+i) and

cf(χx(κ+i)) is uncountable. Since x, y are both ω-club in α := sup(x), x∩ y
is also ω-club in α. Now let M,N witness that x, y ∈ D. By induction on i,
we show that x ∩ κ+i ⊆ y ∩ κ+i. For i = 0, this is is given. Fix i > 0. For
every ρ ∈ x∩y∩κ+i, with |ρ| = κ+i−1, by elementarity the <χ-least bijection
from κ+i−1 to ρ is in M ∩N . Since by induction M ∩ κ+i−1 = N ∩ κ+i−1,
we get that M ∩ ρ ⊆ N ∩ ρ. By doing this for all ρ ∈ x ∩ y ∩ κ+i, we get
x ∩ κ+i ⊆ y ∩ κ+i. Taking i = m, we get x ⊆ y.

By an identical argument y ⊆ x, and so they are equal. �

Below V ⊆W are two transitive models of set theory. When we use some
set theoretic terminology or notation like “a regular cardinal”, δ+ etc. we
shall mean it in the sense of V , unless otherwise stated.

Theorem 2.7. Suppose that κ is a regular cardinal in V , and m < ω
is such that in W κ, κ+, . . . κ+m all have cofinality ω, (ω1)W < κ, and
(κ+)W = κ+m+1. In V let 〈Dα | α < κ+m+1〉 be a sequence of clubs of
Pκ(κ+m) . Then in W there is a sequence 〈xn | n < ω〉 of elements of
Pκ(κ+m), such that for every α < κ+m+1 for large enough n < ω, xn ∈ Dα.

Moreover, if λ < κ is an uncountable regular cardinal in W , we can
assume that for n < ω and k ≤ m, cfW (χxn(κ+k)) ≥ λ.

Proof. We shall prove the theorem by induction on m. The case m = 0
follows from Theorem 2.2. Suppose the theorem is true for m. In order to
prove the theorem for m + 1 we shall use the theorem for m and η := κ+

in place of κ. Set δ = κ+m+1 = η+m and µ = δ+. Using Claim 2.1, fix a
stationary set S ⊆ µ∩cofW (≤ λ) such that there is a partial square sequence
on S, 〈Cα | α ∈ S〉, and such that S ∩ cofW (λ) is stationary. As usual we
can assume that the order type of Cα for α ∈ S is ≤ λ.

Let 〈Dα | α < µ〉 be a sequence of clubs in Pκ(δ). We can assume without
loss of generality that for all α < µ, Dα ⊆ D, where D is the club defined
in Claim 2.6.

Claim 2.8. In V there is a sequence 〈D′α | α < µ〉 of club subsets of Pκ(δ),
such that:

(1) For each α < µ, D′α ⊂ Dα,
(2) For all α < β < µ, there is γ < δ, such that D′β \D′α ⊂ {x | γ /∈ x}
(3) For all α < β < µ, with β ∈ S, if α ∈ Cβ, then D′β ⊂ D′α.
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Proof. Work in V . For every β < µ, fix a one-to-one function fβ : β → δ.
Let D′0 = D0. Suppose we have defined 〈D′α | α < β〉. If β ∈ S, set

D′β = Dβ ∩ {x | x ∈
⋂
γ∈x

D′
f−1
β (γ)

} ∩
⋂
α∈Cβ

D′α.

Otherwise, let D′β = Dβ ∩ {x | x ∈
⋂
γ∈xD

′
f−1
β (γ)

}.
〈D′α | α < µ〉 is as desired. The γ in item (2) is γ = fβ(α). �

By applying the above claim and shrinking the Dα’s if necessary, we may
assume they satisfy the conclusion of the claim. For α < µ, fix an algebra
with λ many operations on δ, Aα, such that every x ∈ Pκ(δ) which is a
subalgebra of Aα is in Dα. By our assumptions about Dα, we can arrange
that for α < β there is ρ < δ such that a subalgebra of Aβ containing ρ is
also closed under the operations of Aα. Also we can arrange that if α is a
limit point of Cβ, then a subalgebra of Aβ is closed under the operations of
Aα. (The last clause is the one that requires the algebras to have λ many
operations.)

For α < µ, let D∗α be the club in Pη(δ) defined by being a subalgebra of
Aα. By the induction assumption for m, η and λ ≥ (ω1)W and the sequence
of clubs 〈D∗α | α < µ〉, we get a sequence 〈zk | k < ω〉, such that for every
α < µ for large enough k, zk ∈ D∗α. Without loss of generality, we can
assume that 〈zk | k < ω〉 is ⊆ increasing and κ ⊆ z0. Also we choose the
zk’s, so that the characteristic function χzk(κ+i) has W -cofinality at least
λ.

Since for i ≤ m+ 1, cfW (κ+i) = ω, we fix in W a ⊆-increasing sequence
〈tn | n < ω〉 of elements of Pκ(δ) such that ∪n<ωtn = δ and for all n < ω
tn ⊆ zn.

Below, we will construct the desired sequence 〈xn | n < ω〉 to be such
that tn ⊆ xn ⊆ zn and for 0 < i ≤ m + 1 χxn(κ+i) = χzn(κ+i). Note that
since cfW (χzn(κ+i)) ≥ λ, we have that the cofinality of this ordinal in V is
uncountable and below κ.

For α < µ, n < ω, in V , define Enα to be the set of ξ < κ, such that there
exists y ∈ Pκ(δ), such that:

• y is closed under the operations of Aα,
• y ∩ κ = ξ,
• for 0 < i ≤ m+ 1, χy(κ

+i) = χzn(κ+i), and
• tn ⊆ y.

Note that because of Claim 2.6 above the y in the definition of Enα is uniquely
determined by y ∩ κ, and that y ⊆ zn. It is easily seen that Enα is a club in
κ.

Claim 2.9. (1) Let α < β < µ then for large enough n < ω, Enβ ⊆ Enα.

(2) If α < β are both in S such that α is a limit point of Cβ then for
every n, Enβ ⊆ Enα.
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Proof. Pick ρ < δ such that any subalgebra of Aβ containing ρ is closed
under the operations of Aα. Let n be large enough such that ρ ∈ tn. Then
for ξ ∈ Enβ let y be the (unique) witness for this. Then since tn ⊆ y, ρ ∈ y,
and then y also witnesses ξ ∈ Enα.

The argument for the second clause in the claim is completely analogous.
�

In order to deal with the requirement that the cofinality in W of the values
of the characteristic function of the required xn will be at least λ, for every
ξ < κ with cfW (ξ) < λ, we fix (in W ) a club eξ in ξ of order type less than
λ. Let C be a club in κ, and for γ < σ < κ define the operation T (C, γ, σ)
by induction as follows: If C ∩ [γ, σ] = ∅, let T (C, γ, σ) = ∅. Otherwise,
let ξ = sup(C ∩ [γ, σ]). If cf(ξ)W ≥ λ, then T (C, γ, σ) = {ξ}. If the two
previous cases fail let

T (C, γ, σ) :=

{ξ} ∪
⋃
{T (C, γ̄, σ̄) | γ̄, σ̄ are two consecutive memebrs of (eξ \ γ) ∪ {γ}}.

It is easily seen by induction that T (C, γ, σ) is a subset of C ∩ [γ, σ] of
cardinality less than λ.

Claim 2.10. Let C be a club in κ and γ < σ < κ. Assume that C ∩ [γ, σ]∩
cofW (≥ λ) 6= ∅ then T (C, γ, σ) ∩ cofW (≥ λ) 6= ∅.
Proof. By induction on σ. Denote T = T (C, γ, σ). By assumption we can
pick ζ ∈ C ∩ [γ, σ] ∩ cofW (≥ λ). Since ξ := sup(C ∩ [γ, σ]) ∈ T , there is
ρ ∈ T , such that ρ ≥ ζ. Let ρ be the least such. If cfW (ρ) ≥ λ we are
done. Otherwise γ ≤ ζ < ρ. Then there are two consecutive members of
(eξ \γ)∪{γ}, γ̄ < σ̄, such that ζ ∈ [γ̄, σ̄]. Since σ̄ < ρ ≤ σ, by the induction

assumption, we get ζ̄ ∈ T (C, γ̄, σ̄) with cfW (ζ̄) ≥ λ. But T (C, γ̄, σ̄) ⊆ T , so
ζ̄ ∈ T . �

Claim 2.11. Let 〈Gρ | ρ < λ〉 be a ⊆-decreasing sequence of clubs of κ, each
of them in V . (The sequence does not have to be in V ). Let γ < σ < κ.
Then the sequence 〈T (Gρ, γ, σ) | ρ < λ〉 is eventually constant.

Proof. We prove the claim by induction on σ. If for some ρ̄ < λ, Gρ̄∩[γ, σ] =
∅, then for ρ ≥ ρ̄, T (Gρ, γ, σ) = ∅, and we are done.

So assume otherwise and let ξρ = sup(Gρ ∩ [γ, σ]) = sup(T (Gρ, γ, σ)).
This is a non increasing sequence of ordinals, so without loss of generality
we can assume that it is a constant ξ for all ρ. If cfW (ξ) ≥ λ, then for
every ρ T (Gρ, γ, σ) = {ξ}, and so it is constant. If cfW (ξ) < λ then for each
two successive points in eξ ,γ̄, σ̄, by the induction assumption T (Gρ, γ̄, σ̄) is
eventually constant. Since |eξ| < λ, we can find ρ̄ < λ and T ∗(γ̄, σ̄) such
that for ρ ≥ ρ̄ , T (Gρ, γ̄, σ̄) = T ∗(γ̄, σ̄). Then for all ρ ≥ ρ̄, by definition,
T (Gρ, γ, σ) is

{ξ} ∪
⋃
{T ∗(γ̄, σ̄) | γ̄, σ̄are two consecutive memebrs of (eξ \ γ) ∪ {γ}}

and so we are done. �
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Claim 2.12. Let E ⊆ G ⊆ H be three clubs in κ and γ < σ < κ. Assume
that T (H, γ, σ) 6= T (G, γ, σ) then T (E, γ, σ) 6= T (H, γ, σ).

.

Proof. By induction on σ. The only nontrivial case is when T (E, γ, σ) 6= ∅.
Then clearly T (G, γ, σ) 6= ∅ and T (H, γ, σ) 6= ∅. So ξE = sup(E ∩ [γ, σ]) =
sup(T (E, γ, σ)) ,ξG = sup(E ∩ [γ, σ]) = sup(T (G, γ, σ)), ξH = sup(H ∩
[γ, σ]) = sup(T (H, γ, σ)) are all defined and ξE ≤ ξG ≤ ξH . If ξG < ξH then
ξE < ξH and the claim is proved. So assume ξG = ξH . If ξE < ξG then
again the claim is verified.

So assume ξ = ξE = ξG = ξH . If cfW (ξ) ≥ λ then T (H, γ, σ) =
T (G, γ, σ) = {ξ}, contradiction with the assumption of the claim. Then
cfW (ξ) < λ, and so there must be two successive points in eξ γ̄, σ̄ such
that T (G, γ̄, σ̄) 6= T (H, γ̄, σ̄). By the inductive hypothesis T (E, γ̄, σ̄) 6=
T (H, γ̄, σ̄), and so T (E, γ, σ) 6= T (H, γ, σ). �

Fix a sequence of order type ω, cofinal in κ , 〈κn | n < ω〉. For α < µ and
n < ω, define

dnα =
⋃
k<ω

T (Enα, κk, κk+1).

For α < β < µ we say that there is a major change between α and β, if
there are infinitely many n’s such that dnα 6= dnβ.

Claim 2.13. Let α < β < γ < µ and suppose that there is a major change
between α and β. Then there is a major change between α and γ.

Proof. By claim 2.9 there is n̄ < ω, such that for every n ≥ n̄, we have that
Enγ ⊆ Enβ ⊆ Enα. By assumptions the set R = {n | dnα 6= dnβ} is infinite . By
claim 2.12 for n ∈ R,n ≥ n̄, dnα 6= dnγ .

�

Lemma 2.14. There is α < µ, such that for α ≤ β < γ, there is no major
change between β and γ.

Proof. By claim 2.13 it is enough to see that there is α < µ such for all
α < β there is no major change between α and β. If this fails, then for
every α < µ, let f(α) > α be such that, there is a major change between α
and f(α). Let G be the club of the ordinals in µ which are closed under the
function f .

Since S∩cofW (λ) is stationary in µ, pick ζ ∈ S∩G such that cfW (ζ) = λ.
Let H = G∩ lim(Cζ). Since λ is uncountable, H is a club in ζ of order type
λ, and H ⊂ S.

If α < β are both in H, then α is a limit point of Cβ, and so by claim 2.9,
for all n < ω, Enβ ⊆ Enα. Then for all n < ω, the sequence 〈Enα | α ∈ H〉 is
a decreasing sequence of λ-many clubs in κ. Hence by applying claim 2.11
ω-many times, for each n, we get that there is α ∈ H, such that for all n and
all β ∈ H,α < β, dnα = dnβ. By definition of G, α < f(α) < β. Then there is
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major change between α and f(α), but there is no change at all between α
and β, which contradicts claim 2.13. �

Fix α < µ, such that there is no major change after α and define dn =
dnα. For every n < ω, as a club in κ, Enα contains unboundedly many
ordinals of cofinality ≥ λ. Then, by claim 2.10, for every n < ω, dn also
contains unboundedly many ordinals of cofinality ≥ λ. Hence we can define
an increasing sequence of ordinals cofinal in κ, 〈ρn | n < ω〉, such that for
all n, ρn ∈ dn and cfW (ρn) ≥ λ.

Claim 2.15. For every β < µ, for large enough n, ρn ∈ Enβ .

Proof. If β < α, then for large enough n Enα ⊆ Enβ , so for large enough
n, dn ⊆ Enα ⊆ Enβ . If α ≤ β, then by definition of α, for large enough n,
dnβ = dnα = dn, and so again dn ⊆ Enβ . This implies that for for every β < µ,
for large enough n, ρn ∈ Enβ . �

We can now finish the proof of the theorem. For n < ω, let xn be
the unique member of Pκ(δ) such that xn ∈ D, for all 0 < i ≤ m + 1
sup(xn ∩ κ+i) = sup(zn ∩ κ+i) and xn ∩ κ = ρn. Such xn exists since
ρn ∈ Enα. Also note that automatically we get tn ⊆ xn.

We claim that the sequence 〈xn|n < ω〉 is as desired. Let β < µ, and let
n be large enough, so that ρn ∈ Enβ . Then by definition of Enβ , xn ∈ Dβ.

�

3. Consequences on square properties

Theorem 3.1. Suppose V ⊂ W and κ < ν are such that, ν is a regular
cardinal in V , κ is a singular cardinal in W of countable cofinality, for all V -
regular cardinals τ , with κ ≤ τ ≤ ν, W |= cf(τ) = ω, and (ν+)V = (κ+)W .
Then in W , �κ,ω holds.

Proof. Work in V . Denote µ := ν+. Let χ be some big enough cardinal, and
<χ be a well-ordering of Hχ. For α < µ with cf(α) < κ, let 〈Mα

δ | δ < ν〉 be a
continuous⊂-increasing sequence of elementary submodels of 〈Hχ,∈, <χ ...〉,
such that:

(1) α, κ ∈Mα
0 ,

(2) for each δ < ν, |Mα
δ | < ν,

(3) for each δ < ν, Mα
δ ∩ ν ∈ ν.

Claim 3.2. For all α < µ, δ < ν with cf(δ) > ω, if Mα
δ ∩ α is cofinal in α,

then Mα
δ ∩ α is ω-closed.

Proof. Suppose for contradiction that 〈βi | i < ω〉 is an increasing sequence
of points in Mα

δ ∩ α, such that β := supi βi /∈ Mα
δ ∩ α. Let β∗ be the least

ordinal in Mα
δ ∩ α above β. If cf(β∗) = λ < ν, then λ ∈Mα

δ ∩ ν ∈ ν. Then
λ+ 1 ⊂Mα

δ , and so Mα
δ is cofinal in β∗, which is a contradiction.

It follows that the cofinality of β∗ must be ν. Say Mα
δ |= h : ν → β∗ is

cofinal. For every i, let β∗i ∈ ran(h)\βi. The order type of ran(h) is ν∩Mα
δ .
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And cf(ν ∩Mα
δ ) = cf(δ) > ω. So there is something in the range of h above

β. Contradiction with the choice of β∗.
�

Claim 3.3. Let α < µ. Dα := {sup(Mα
δ ∩ ν) | δ < ν} is club in ν.

Proof. Dα is closed by construction since the sequence is continuous. To see
that it is unbounded, note that ν ⊂

⋃
δM

α
δ . Note that this also implies that

α ⊂
⋃
δM

α
δ , since the <χ-least function in Hχ from ν onto α is in each Mα

δ .
�

By Theorem 2.2 there is a sequence 〈λi | i < ω〉 ∈ W , such that for all
large i, λi ∈ Dα and for all i, cfW (λi) > ω. For α < µ with cfV (α) < κ, de-

fine Cα := {Mβ
δ ∩ α | α ≤ β < µ, δ < ν,Mβ

δ is cofinal in β and α, (∃i)Mβ
δ ∩

(ν)V = λi}. Here Mβ
δ ∩ α denotes the closure of Mβ

δ ∩ α. Otherwise,

cfW (α) = ω and we let Cα be a singleton of some ω-sequence cofinal in
α.

Claim 3.4. 1 ≤ |Cα| ≤ ω.

Proof. Each Cα is nonempty because for all large i, λi ∈ Dα. Now suppose
β, β′, δ, δ′ are such that:

• Mβ
δ ∩ ν = Mβ′

δ′ ∩ ν = λi,

• Mβ
δ ,M

β′

δ′ are both cofinal in α.

We want to show that Mβ
δ ∩α = Mβ′

δ′ ∩α. If cf(α) = ω, then α ∈Mβ
δ ,M

β′

δ′ .

By elementarity, the ≺χ-least function from ν onto α is in Mβ
δ ∩ν = Mβ′

δ′ ∩ν,
and the result follows. Now suppose that cf(α) > ω. We have cf(δ) =

cf(δ′) = cf(λi) > ω. Then Mβ
δ ∩ α,M

β′

δ′ ∩ α are both ω-clubs in α, and so

Mβ
δ ∩M

β′

δ′ ∩ α is an ω-club in α. By the above for any η ∈ Mβ
δ ∩M

β′

δ′ ∩ α,

Mβ
δ ∩ η = Mβ′

δ′ ∩ η, and so Mβ
δ ∩ α = Mβ′

δ′ ∩ α.
�

Next we use 〈Cα | α < µ〉 to obtain a �κ,ω sequence. Since ν has cardinal-
ity κ in W , there is a sequence 〈Fβ | β < ν〉, such that each Fβ is a club in
β of order type at most κ, and for δ ∈ lim(Fβ), Fβ ∩ δ = Fδ. This is similar
to arguments in Section 6.1 of [1].

Now enumerate Cα := {Cαn | n < ω} and let each Cαn = {γα,nξ | ξ < ναn},
where ναn = o.t.(Cαn ) < ν. Define Eαn := {γα,nξ | ξ ∈ Fγαn } and let Eα = {Eαn |
n < ω}. It is routine to verify that 〈Eα | α < µ〉 is a �κ,ω sequence.

�

We conclude with some open question.

Question 1. Can we replace κ+m in Theorem 2.7 with any (possibly singu-
lar) V -cardinal ν?

We remark that by [5], we cannot take ν to be singular in Theorem 3.1.
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Question 2. Can we get a similar result as in Theorem 3.1 for uncountable
cofinality?

The main obstacle here would be to deal with the points whose V -
cofinality is κ when trying to build a square sequence.
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