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Abstract. It is known that if κ is inaccessible in V and W is an outer model of

V such that (κ+)V = (κ+)W and cfW (κ) = ω, then �κ,ω holds in W . (Many

strengthenings of this theorem have been investigated as well.) We show that
this theorem does not generalize to uncountable cofinalities: There is a model

V in which κ is inaccessible, such that there is a forcing extension W of V in

which (κ+)V = (κ+)W and ω < cfW (κ) < κ, while in W , �κ,τ fails for all
τ < κ. We make use of Magidor’s forcing for singularizing an inaccessible κ to

have uncountable cofinality. Along the way, we analyze stationary reflection

in this model, and we show that it is possible for �κ,cf(κ) to hold in a forcing
extension by Magidor’s poset if the ground model is prepared with a partial

square sequence.

1. Introduction

Singular cardinals are a topic of great interest in set theory, largely because they
are subject to both independence results and intricate ZFC constraints. Here we
focus on the subject of singularized cardinals: cardinals that are regular in some
inner model and singular in some outer model. Large cardinals are in fact necessary
to consider such situations, so in actuality we consider cardinals that are inaccessible
in some inner model and singular in some outer model.

Singularized cardinals were originally sought in order to prove the consistency
of the failure of the Singular Cardinals Hypothesis—the idea was to blow up the
powerset of a cardinal and then singularize it—and obtaining singularized cardinals
was a significant problem in its own right. Prikry resolved this problem using the
hypothesis of a measurable cardinal [13]. (It follows from the Dodd-Jensen Covering
Lemma that this hypothesis is necessary [4].) The result required a strikingly
different forcing notion—Prikry forcing—which uses a normal measure to guide a
countable sequence through the formerly measurable cardinal.

There are consequences when cardinals are singularized with regard to variations
of Jensen’s square principle. This principle, denoted �κ, expresses a non-compact
relationship between κ and its successor. More precisely, �κ asserts the existence
of a coherent sequence of clubs singularizing points α < κ+. A hierarchy of interme-
diate square principles �κ,λ for 1 ≤ λ ≤ κ was introduced by Schimmerling. The
principle �κ,λ weakens �κ by allowing λ-many guesses for the clubs of each α, so
a smaller λ indicates a stronger form of non-compactness between κ and κ+ [14].
In Gödel’s Constructible Universe L, �κ holds at every cardinal κ, so the square
hierarchy is a yardstick that allows us to compare given model to a canonical “L-
like” inner model. Failure of square principles at a singular cardinal κ has many
applications for obtaining lower bounds for consistency results and in infinitary
combinatorics in general.
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With a strong enough large cardinal hypothesis, one can obtain failure of �κ
after forcing with the Prikry poset. However, this is not the case for the weaker
square principles. Cummings and Schimmerling proved that Prikry forcing at κ
adds a �κ,ω-sequence [3]. This result is implicit in work of Džamonja and Shelah
[5], and independently by Gitik [6], who provide the basis of the following abstract
theorem: If κ is inaccessible in an inner model V , and there is an outer model
W ⊃ V such that (κ+)V = (κ+)W and (cf κ)W = ω, then �κ,ω holds in W .
Magidor and Sinapova generalized this further to the situation where all of the
cardinals in an interval [κ, ν], where ν is regular in V , are singularized to have
cofinality ω while (ν+)V = (κ+)W [12].

For these constructions, the substantial part is describing the �κ,ω-sequence
at points α ∈ lim(κ+) such that (cf α)V < κ, using so-called “pseudo Prikry se-

quences.” Points α such that cfV (α) = κ have cofinality ω in W , and so a single
cofinal sequence in α of order-type ω suffices because it is vacuously coherent: There
are no limit points, so there is nothing to check.

The question, then, is what happens when κ is singularized to have uncountable
cofinality. The initial conjecture was that the above theorems generalize to give
�κ,cf(κ) in the outer model. This was in part supported by results showing that
the above-mentioned pseudo Prikry sequences do indeed exist in the setting of
uncountable cofinality. However, it turns out a �κ,cf κ sequence does not necessarily
exist in the outer model. The main result of this paper is:

Theorem 1. Assuming large cardinals, there is a model V in which κ is regular,
which has an outer model W ⊃ V , such that:

• (κ+)V = (κ+)W ,
• ω < (cf κ)W < κ, and
• �κ,τ fails in W for all τ < κ.

The model V is one in which a Mahlo cardinal µ has been collapsed to be κ+.
Then W is an extension by Magidor’s forcing for singularizing a cardinal to have
uncountable cofinality while preserving cardinals [10]. Because κ is inaccessible in
V , there is a �∗κ-sequence in V , and so �∗κ because the successor of κ is preserved.
Hence, the conclusion in our theorem is close to being sharp. We also describe
a situation where, under the right preparation of the ground model, the Magidor
forcing adds a �κ,cf(κ)-sequence.

In addition to investigating square principles, we give a thorough analysis of
stationary reflection in the setting of uncountably singularized cardinals where car-
dinals are preserved in the outer model. Stationary reflection is another instance of
compactness—it follows from large cardinals and fails in L. We show both the ZFC
implications in the abstract setting, without assuming the specific of the Magidor
poset, and also the extent of reflection that can consistently hold after forcing with
Magidor’s poset.

The main result falls in the category of theorems exhibiting different behavior for
singular cardinals of countable versus uncountable cofinality. These differences are
not limited to square sequences. The most well-known example is Silver’s result that
GCH cannot fail for the first time at a singular cardinal of uncountable cofinality
[15]. In contrast, Magidor showed shortly therafter that it is indeed possible for
GCH to fail for the first time at ℵω [11]. Another example is in the computation
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of the powerset of a singular cardinal with respect its ordinal definable subsets; see
[2].

This paper is organized as follows. In Section 2 we give some background defini-
tions and describe the Magidor forcing. In Section 3 we analyze the implications on
stationary reflection, and also provide a model that is prepared so that the Magidor
poset does add �κ,cf(κ). In Section 4, we prove Theorem 1.

2. Preliminaries

In this section we introduce some necessary background. Let τ be a regular
cardinal. We will use cof(τ) to denote points of cofinality τ and cof(< τ) to denote
points of cofinality less than τ . We say that a forcing poset is τ -closed if decreasing
sequence of length less that τ have a lower bound.

2.1. Basic Notions of Compactness and Non-Compactness.

Definition 1. Given a cardinal τ , a stationary subset S ⊂ τ , and a point ρ ∈
τ ∩ cof(> ω) (i.e. a point ρ of uncountable cofinality), we say that S reflects at
ρ if S ∩ ρ is stationary as a subset of ρ. And S reflects if it reflects at some
ρ ∈ τ ∩ cof(> ω).

Note that the notion of stationarity in ordinals of countable cofinality does not
quite make sense, which is why we only speak of reflection at points of uncountable
cofinality. We can also talk about reflection in ordinals that are not cardinals.

Definition 2. We say that 〈Cα | α ∈ lim(κ+)〉 is a �κ,λ sequence if for all limit
α < κ+:

(1) each C ∈ Cα is a club subset of α with ot(C) ≤ κ;
(2) for every C ∈ Cα, if β ∈ lim(C), then C ∩ β ∈ Cβ ;
(3) 1 ≤ |Cα| ≤ λ.

A �κ,<λ-sequence has essentially the same definition, but where the third point
is replaced by 1 ≤ |Cα| < λ. Note that �κ,1 is just the original Jensen’s �κ, and
�κ,κ is the weak square �∗κ.

We will also consider the notion of partial square:

Definition 3. Let S ⊂ κ+ be a stationary set. A sequence 〈Cα | α ∈ S〉 is a
partial square sequence if each Cα is a club subset of α with ot(Cα) ≤ κ, and for
all α, β ∈ S, for all γ ∈ lim(Cα) ∩ lim(Cβ), we have that Cα ∩ γ = Cβ ∩ γ.

In general, square principles imply failure of stationary reflection:

Fact 2. If �κ holds, for every stationary S ⊂ κ+, there is a stationary T ⊂ S that
does not reflect.

On the other hand, stationary reflection follows from large cardinals. For ex-
ample, if κ is measurable then every stationary subset of κ reflect. For stronger
instances of reflection recall also the definition of a supercompact cardinal:

Definition 4. A cardinal κ is µ-supercompact if there is an elementary embedding
j : V →M ⊂ V such that,

(1) j has critical point κ;
(2) j(κ) > µ;
(3) Mµ ⊂M .
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And κ is supercompact if it is µ-supercompact for all µ ≥ κ.

Given a µ-supercompact cardinal κ and a corresponding embedding j : V →M ,
it can be shown that the point ρ := sup j[µ] is a reflection point of j(S) for any
stationary S ⊂ µ ∩ cof(< κ), and so we have the following:

Fact 3. If κ is supercompact and µ > κ is regular, then for every µ, τ < κ and
every sequence 〈Si : i < τ〉 of stationary subsets of µ ∩ cof(< κ), there is some
ρ < µ with µ ≤ cf(ρ) and cf(ρ) a successor cardinal, such that for all i < τ , Si ∩ ρ
is stationary.

Moreover, any such embedding can be lifted over a small enough forcing, hence:

Fact 4. If κ is supercompact in V and |P| < κ, then κ is supercompact in V P.

2.2. Magidor Forcing. Starting from a cardinal κ with Mitchell-order λ, the
Magidor forcing adds a normal sequence of ground model-inaccessible cardinals
〈κi | i < λ〉 cofinal in κ. The sequence is added with conditions that determine
only finitely many points at a time, so it is added in a non-monotonic way and is
guided by a sequence of measures rather than just one.

Fix some regular λ < κ for the following discussion. We write E to denote the

Mitchell order on normal measure. Let ~U = 〈Uξ : ξ < λ〉 be a sequence of normal
measures on κ that are increasing with respect to the Mitchell order. For η < ξ,
let rξη represent Uη in the ultrapower V κ/Uξ. Let,

Xξ = {δ < κ :∀η < ξ, ∀ζ < η, rξη(δ), rξζ(δ) are normal

measures on δ and rξζ(δ) E r
ξ
η(δ)} ∈ Uξ.

Let Y0 be the set of inaccessibles below κ and for 0 < ξ < λ let,

Yξ = {δ ∈ Xξ : ∀η < ξ∀ζ < η, [rηζ � δ]rξη(δ) = rξζ(δ)}.
It is a fact that Yξ ∈ Uξ for all ξ < λ, although this is a nontrivial lemma in

Magidor’s original study.

Definition 5. Conditions in the Magidor forcing M(~U) are pairs of functions (f,A)
such that

(1) dom f ∈ [λ]<ω and domA = λ \ dom f ;
(2) ∀ξ ∈ dom f , f(ξ) ∈ Yξ, f(ξ) > λ, and f is also strictly increasing;
(3) ∀ξ ∈ domA, if ξ < max dom f and η = min{(dom f) \ (ξ + 1)}, then

A(ξ) ∈ rηξ (f(η)),

(4) ∀ξ ∈ domA(ξ), if ξ > max dom f , then A(ξ) ∈ Uξ and A(ξ) ⊂ Yξ\(f(η)+1)
where is the maximum element of dom f below ξ.

If (f,A), (g,B) ∈M(~U), then (g,B) ≤ (f,A) if:

(1) f ⊂ g;
(2) ∀ξ ∈ dom g \ dom f , g(ξ) ∈ A(ξ);
(3) ∀ξ ∈ λ \ dom g, B(ξ) ⊂ A(ξ).

We can denote the poset by M if it is clear which sequence ~U is being used to
define it. If (f,A) ∈M, then stem(f,A) = f .

We denote (f � (ξ+1), A � (ξ+1)) by (f,A)ξ and (f\(f � (ξ+1)), A\(A � (ξ+1)))
by (f,A)ξ.
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Fact 5 (Prikry Lemma). Let (f,A) ∈ M, let ϕ(v) be a formula with one free
variable, let ξ ∈ dom f , and let δ be an ordinal such that η ∈ dom g \ (ξ + 1)
implies g(η) > δ. Then there is a condition (f,B) ≤ (f,A) such that (f,B)ξ =
(f,A)ξ and such that for all γ < δ, if (g, C) ≤ (f,A) and (g, C) decides ϕ(γ), then

(g, C)aξ (f,B)ξ decides ϕ(γ) the same way.

Let Mξ,β = {(f,A)ξ : (f,A) ∈M, ξ ∈ dom f∧f(ξ) = β} and let Mξ,β = {(f,A)ξ :
(f,A) ∈ M, ξ ∈ dom f ∧ f(ξ) = β}. Observe that for β suited to the definition of
M, we have {(f,A) ∈M : ξ ∈ dom f ∧ f(ξ) = β} ∼= Mξ,β ×Mξ,β .

By noting that f(ξ) = β means that β is inaccessible, and by counting the
cardinalities of the stems, we obtain the following:

Fact 6. M has the κ+-chain condition and Mξ,β has the β+-chain condition.

With a bit more work, we also have the following essential fact:

Fact 7. M preserves cardinals.

3. Stationary reflection and adding squares after singularizing to
uncountable cofinality

3.1. Stationary Reflection. In this subsection we give the ZFC constraints on
obtaining stationary reflection after singularizing to uncountable cofinality. Then,
using the Magidor model, we show how how much reflection is consistently possible.

The following proposition generalizes results on the Prikry model from Cum-
mings, Foreman, and Magidor [1], except now we also must consider points below
κ that may have been singularized.

Proposition 8. Suppose that V ⊂ W are models of set theory, κ is a cardinal
in both, such that (κ+)V = (κ+)W , κ is regular in V , and singular in W with

ω < λ = cfW (κ). Then:

(1) The set S0 := κ+ ∩ cofV (κ) cannot reflect to any point in W such that
(cf ρ)V < κ.

(2) There is a sequence of λ-many stationary subsets of κ+ ∩ cofV (< κ) in W
that do not reflect simultaneously to any point ρ /∈ S0.

(3) If W = V M, where M is the Magidor forcing singularizing κ to have cofi-
nality λ, then every stationary set S ⊂ κ+ from W has a stationary subset
T ⊂ S that does not reflect to any ρ such that (cf ρ)V = κ.

If W is an extension of V by the Magidor forcing, then S0 := κ+ ∩ cofV (κ) is
stationary in W by the chain condition.

Proof of (1). In this case we have (cf ρ)V > ω as well, and so there is C ∈ V that
is club in ρ and such that otC = (cf ρ)V . But then (cf β)V < κ for all β ∈ limC,
and so limC ∩ S0 = ∅. �

Proof of (2). Working in V , for each regular δ < κ, let Sδ := κ+∩cof(δ) . In W , let
s be cofinal sequence through κ consisting of W -regular cardinals, and consider 〈Sδ :
δ ∈ s〉. Note that for δ ∈ s, Sδ remains stationary in W because δ is regular in W ,
and so this is a sequence of λ-many stationary subsets of κ+. Consider a supposed
reflection point ρ < κ+. Since the W -cofinalities of the points go above λ, we have
cfW (ρ) > λ. So, cfV (ρ) < κ. Now consider A := {δ < κ : Sδ ∩ ρ is stationary},
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which is defined in V . Since the Sδ’s are disjoint, |A| ≤ (cf ρ)V < κ. But if 〈Sδ :
δ ∈ s〉 reflects simultaneously in ρ, then A is unbounded in κ, a contradiction. �

Proof of (3). Working in W , let 〈κξ : ξ < λ〉 converge to κ, let Tξ := {α ∈ S :
(cf α)W < κξ}, and let η < λ be such that T := Tη is stationary. Given any ρ < κ+

such that (cf ρ)V = κ, there is a club C = {δξ : ξ < λ} such that for each limit
ξ < λ, (cf δξ)

V = κξ. (Specifically, C is the image of the generic sequence under a
strictly increasing cofinal function f : κ→ ρ in V .) Then limC \ δη is disjoint from
T . �

Now we establish the positive reflection results. Along the way we will use the
facts mentioned in Section 2, fact 3 and fact 4.

Lemma 9. Suppose G is M-generic and there is some (f,A) ∈ G and ξ̄ ∈ dom f
such that f(ξ̄) = β. Let G0 be the projection of G onto Mξ̄,β. Suppose also that
V [G0] |= β < cf ρ < κ, cf ρ is not in the generic sequence added by G, and V [G0] |=
“S ⊂ ρ is stationary”. Then V [G] |= “S stationary in ρ”.

Proof. It is enough to show that if C ∈ V [G] is a club in ρ then there is a club
D ⊂ C such that D ∈ V [G0]. In fact, we will find such a club in V since Mξ̄,β has

the β+-chain condition and β < cf ρ, and so it follows that (cf ρ)V [G0] = (cf ρ)V .

Let (f,A) force that Ċ is a club in ρ. Strengthening if necessary, we can assume
that there is a ξ < λ such that ξ, ξ + 1 ∈ dom f and f(ξ) < cf ρ < f(ξ + 1).

Pick a club E = {ρi : i < cf ρ} ⊂ ρ from V . Apply the Prikry Lemma 5 with

respect to the formulas “ρi ∈ Ċ” for i < cf(ρ) to obtain (f,B) ≤ (f,A), such that:

• (f,B)ξ = (f,A)ξ,

• for every i < cf(ρ), if (h, J) ≤ (f,A) forces “ρi ∈ Ċ”, then so does

(h, J)ξ
a

(f,B)ξ.

Now for each i < cf ρ let αi ≥ i and (hi, J i) ≤ (f,A) be such that (hi, J i) 
“ραi ∈ Ċ”. Here we use that the two clubs are forced to intersect in a club. We
have hi(ξ) = f(ξ) for each i, so that set of possible (hi, J i)ξ’s has size less than
f(ξ). Since f(ξ) < cf ρ, there is a fixed (h, J)ξ and an unbounded X ⊂ cf ρ such
that (hi, J i)ξ = (h, J)ξ for all i ∈ X.

Then (h, J)ξ
a

(f,B)ξ  “ραi ∈ Ċ”, for all i ∈ X. Define,

D = {ρi : (h, J)ξ
a

(f,B)ξ  ρi ∈ Ċ}.
It follows that D is closed because Ċ is forced to be closed, and D is unbounded

because {ραi : i ∈ X} ⊂ D. �

Theorem 10. Suppose that κ is κ+-supercompact and M is the Magidor forcing to
change the cofinality of κ to λ. Then in V M, for every µ < κ and every τ < λ, every
sequence 〈Si : i < τ〉 of stationary subsets of κ+∩cofV (< κ) reflects simultaneously
to an ordinal of cofinality greater µ.

Proof. Let G be M-generic and let 〈Si : i < τ〉 ∈ V [G] be a sequence of stationary

subsets of κ+ ∩ cofV (< κ). Let Ṡi for i < τ be the respective M-name.

For ξ < λ, let Sξi = {α ∈ Si : ∃(f,A) ∈ G,dom f ⊂ ξ, (f,A)  α ∈ Ṡi}. Since

Si =
⋃
ξ<λ S

ξ
i , there is some ξi such that Sξii is stationary. Let η = supi<τ ξi < λ.

Let (f̄ , Ā) ∈ G be a condition such that η ∈ dom f̄ and let β := f̄(η). Let G0 be
the Mη,β-generic induced by G and the factorization Mη,β ×Mη,β .
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Now we work in V [G0]. For every i < τ , define

Ti := {α < κ+ : ∃(f,A) ∈M/G0,dom f ⊂ η, (f,A)  α ∈ Ṡi}.
In V [G], for each i, Sξii ⊂ Ti, so Ti is stationary. Since |Mη,β | < κ, κ is still

κ+-supercompact in V [G0] by Fact 4. By Fact 3 we can find an ordinal ρ < κ+ such
that Ti ∩ ρ is stationary for all i < τ , cf ρ is a successor cardinal, and β < cf ρ < κ.

We claim that each Si reflects at ρ in V [G]. Continue working in V [G0]. Let
C ⊂ ρ be a club in V such that otC = cf ρ; then T ′i := Ti ∩ C is still stationary in
ρ. For each i < τ and α ∈ T ′i , let (fi,α, Ai,α) ∈ M/G0 witness membership in Ti,
i.e.

• (fi,α, Ai,α) forces α ∈ Ṡi,
• dom fi,α ⊂ η.

Then each, (fi,α, Ai,α)η has no stem, so we can take a lower bound in Mη,β for
the sequence 〈(fi,α, Ai,α)η | i < τ, α ∈ T ′i 〉 by intersecting measure-one sets. Then

for all i < τ , (h,B) M/G0
 T ′i ⊂ Ṡi.

By density we can get such a condition (h,B) ∈ G. I.e. V [G] |= T ′i ⊂ Si.
Since cf ρ is a successor, it cannot be on the generic sequence added by G. So,

by lemma Lemma 9 we have that T ′i ⊂ ρ remains stationary in V [G]. Therefore
Si ∩ ρ is stationary in V [G]. �

Recall the following fact due to Cummings, Foreman, and Magidor [1]:

Fact 11. If κ<λ = κ and �κ,<λ holds, then every stationary subset of κ+ contains
a stationary subset that does not reflect at ordinals of cofinality greater or equal to
λ.

This together with Theorem 10 implies the following:

Corollary 12. If κ is κ+-supercompact and M is the Magidor poset for making κ
have cofinality λ, then �κ,<λ fails in V M.

3.2. Adding squares. In this subsection, we show that under some assumptions
of the inner model, singularizing to uncountable cofinality adds a �κ,cf(κ) sequence.

Theorem 13. Suppose κ+ ∩ cof(κ) carries a partial square and κ is inaccessible
in V . Then if V ⊂ W , (κ+)W = (κ+)V , and cf(κ)W = λ < κ, we have that �κ,λ
holds in W .

We will use a theorem of Lambie-Hanson (a thorough simplification of Corollary
4.2 in [7]):

Fact 14. Suppose that V is an inner model of W , κ is regular in V , and (cf κ)W =
λ < κ, while (κ+)V = (κ+)W . Suppose furthermore than in V there is a sequence
〈Dα : α < κ+〉 of clubs in κ. Then in W , there is a club 〈κi : i < λ〉 of uncountable
W -cofinality, such that for all α < κ+ and for all sufficiently large i < λ, κi ∈ Dα.

This fact presents the analog of the Magidor-generic sequence in a ZFC setting.
The sequence 〈κi : i < λ〉 may be referred to as a pseudo-Prikry sequence.

Proof of Theorem 13. Let 〈Dα | α ∈ κ+∩cof(κ)〉 ∈ V be a partial square sequence.
We start with a standard construction along the lines of [8]. In V we construct

continuous elementary models 〈Mα
δ | δ < κ〉, for every α ∈ κ+ ∩ cofV (< κ), such

that each Mα
δ has size less than κ, Mα

δ ∩ κ ∈ κ, and κ, α ∈Mα
0 .
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In W fix a Pseudo-Prikry sequence 〈κi | i < λ〉 through κ, such that each κi has
uncountable cofinality in W , and for all α < κ, for all large i < λ, κi ∈ {Mα

δ ∩ κ |
δ < κ}.

Then, for α ∈ κ+ ∩ cofV (< κ), define

Cα ={Mβ
δ ∩ α | β ≥ α, δ < κ,Mβ

δ unbounded in both α, β,

and for some i < λ,Mβ
δ ∩ κ = κi}.

As in [8], 〈Cα | α ∈ κ+ ∩ cofV (< κ)〉 is coherent, each Cα consists of clubs of
order type less than κ, and 1 ≤ |Cα| ≤ λ. The key points in proving the last facts
are:

• If Mβ
δ is cofinal in β and cf(δ) > ω, then Mβ

δ ∩ β is ω-closed.

• If Mβ
δ ∩ κ = Mγ

η ∩ κ, and Mβ
δ ,M

γ
η are both cofinal in α, then Mβ

δ ∩ α =
Mγ
η ∩ α.

For α ∈ κ+ ∩ cofV (κ), let Dα = {Dα}. And for β ∈ κ+ ∩ cofV (< κ), let

Dβ = Cβ ∪ {Dα ∩ β | ∃α ∈ κ+ ∩ cofV (κ), β ∈ lim(Dα)}. Then 〈Dα | α < κ+〉 is a
�κ,λ-sequence. �

It is consistent for κ to be supercompact while κ+ ∩ cof(κ) carries a partial
square. This because we have the following poset, due to Baumgartner:

Definition 6. Let S be the poset consisting of functions p such that:

(1) sup dom p < κ+;
(2) (sup dom p+ 1) ∩ (κ+ ∩ cof(κ)) ⊂ dom p;
(3) ∀α ∈ dom p, p(α) is a club in α;
(4) ∀α ∈ dom p, ∀β ∈ lim p(α), p(α) ∩ β = p(β).

Fact 15. S is κ-directed closed and adds a partial square sequence on κ+ ∩ cof(κ).

If κ is indestructibly supercompact, then in V S, κ remains supercompact and
there is a partial square sequence on κ+ ∩ cof(κ).

As a final remark here, note the following lemma from [9] about the state of pcf
regardless of the type of ground model.

Lemma 16. If V is an inner model of W , κ is regular in V , (cf κ)W = λ < κ,
and (κ+)V = (κ+)W , then in W there is a scale 〈fα : α < κ+〉 such that all points
α such that cf α > λ are very good.

4. A More Compact Magidor Model

In this section we prove Theorem 1. Specifically, we show that under appro-
priate preparation of the ground model, after singularizing a regular cardinal κ to
uncountable cofinality while preserving cardinals, we can still have failure of weaker
squares at κ. This is in contrast to the case of countable cofinality.

4.1. A few important notions. As above M is Magidor’s forcing for singularizing
κ to have cofinality λ. As usual, if p = (f,A), q = (g,B) ∈ M, then p ≤∗ q (that
is, p is a direct extension of q) if p ≤ q and f = g. Observe that the ordering ≤∗ is
at least λ+-closed, and κ-closed for conditions with empty stems. If ϕ is a formula
and p ∈M, there is a direct extension q ≤∗ p such that q‖ϕ.
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This section will require us to make ample use of the diagonalization properties
of M. For these purpose, we employ the following notation: if p = (f,A) ∈ M and
~ν is a function with domain λ<ω \ dom f such that ~ν(ξ) ∈ A(ξ), then p_~ν is the
weakest possible extension of p such that stem(p_~ν) = stem(p)_~ν. Let E(p) be
the set of possible such ~ν with regard to p. We have the following diagonal lemma:

Lemma 17. (Diagonal lemma) If p ∈ M, let 〈q~ν : ~ν ∈ E(p)〉 be such that q~ν ≤∗
p_~ν. Then there is a direct extension p′ ≤∗ p such that for all ~ν ∈ E(p′), p′

_
~ν ≤

q~ν .

We refer to p′ above as the diagonalization over 〈q~ν : ~ν ∈ E(p)〉.
We also generalize the notion of an n-step extension in the original Prikry forcing:

Suppose p = (f,A) ∈M and a ∈ λ<ω \ f . If q ≤ p and stem(q) = stem(p)_~ν where
dom(~ν) = a, then we say that q is an a-step extension of p. Also let Ea(p) be the
set of all possible such ~ν with domain a.

Using this definition, there is also a Prikry Density Lemma for M:

Fact 18. If p is a condition and D ⊂M is an open dense subset, there is a direct
extension q ≤∗ p and a ∈ λ<ω, such that every a-step extension of q is in D.

4.2. Setting up the construction. Let κ be indestructibly supercompact and let
µ > κ be Mahlo. We denote C = Col(κ,< µ). For γ < µ, let Cγ = Col(κ,< γ).
Note that if γ is inaccessible, then Cγ has the γ-chain condition. Given a C-generic
H, let Hγ be the induced generic on Cγ . Because κ remains supercompact in V C, it
is possible to define M, the Magidor forcing in V C to singularize κ to have cofinality
λ ∈ (ω, κ). We shall argue that �κ,τ fails for all τ < κ in V C∗M.

For ξ < λ, use the mixing principle to find C-names U̇ξ for normal measures on

κ and C-names ṙηξ for ξ < η < λ such that if ξ < η < λ, then C “U̇ξ E U̇η” and

C “ṙηξ represents U̇ξ in the ultrapower of V by U̇η”.

Proposition 19. There is a stationary set of inaccessible cardinals I ⊂ µ such
that for all δ ∈ I,

(1) for all ξ < λ, V [Hδ] |= “(U̇ξ)H ∩ V [Hδ] is a normal ultrafilter on κ” and,

(2) for all ξ < η < λ, ((U̇ξ)H ∩ V [Hδ]) E ((U̇η)H ∩ V [Hδ]).

Proof. We define a function F : µ → µ. For each nice Cα-name Ẋ for a subset
of κ, let ρ(Ẋ) be the supremum of β < µ such that there exists c ∈ Cβ such

that for all ξ < η < λ, (1) c‖Ẋ ∈ U̇ξ and such that (2) if c  Ẋ ∈ U̇ξ then

c  {α < κ : Ẋ ∩α ∈ ṙηξ (α)} ∈ U̇η. By the µ-chain condition of C and the fact that

|dom(c)| < κ for all c ∈ C, ρ(X) < µ. Let F (α) be the supremum of ρ(Ẋ) over all

nice Cα-names Ẋ for subsets of κ. Let I be the set of inaccessible closure points of
F , which is stationary because µ is Mahlo. If δ is inaccessible closure point of F
and X ∈ V Cδ is a subset of κ, then there is some γ < δ such that X ∈ V Cγ , and so
ρ(Ẋ) < δ, and hence all necessary information is decided in V Cδ . �

Let Uδξ be (U̇ξ)H ∩ V [Hδ] for δ ∈ I. For these δ, we can define Mδ, the Magidor

forcing defined in terms of U δξ , ξ < λ.

Proposition 20. There is a dense set D(Cδ ∗ Mδ) of conditions of the form

(c, (f̌ , Ȧ)) where c ∈ Cδ and c‖Ȧ(ξ) for all ξ < max(dom f). Similarly, there
is such a dense subset of C ∗M.
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This of course follows from the κ-closure of Cδ, and of C respectively. We will
abuse notation slightly and assume that all conditions from Cδ ∗Mδ or C ∗M are
found from these dense sets.

Lemma 21. For δ ∈ I, there is a complete embedding ιδ : Cδ ∗Mδ → C ∗M.

Proof. We define ιδ as inclusion in both coordinates—note that Ȧ, as a Cδ-name
for a subset of κ, can be included naturally in M. That ιδ is order-preserving is
straightforward, and it preserves incompatibility because incompatibility in both
Mδ and M is determined by the stems.

To show completeness, consider a condition of the form q = (c, (f̌ , Ȧ)) in C ∗M,

strengthening if necessary so that all information about (f̌ , Ȧ) up to max(dom f)

is decided by c. Then let p = (c � δ, (f̌ , Ḃ)) where Ḃ is chosen to be anything
producing a valid condition. Then for any r ≤ p, ιδ(r) is compatible with q. �

We will generally suppress the notation for ιδ when indicating quotients. If G is
M-generic, let Gδ be the induced generic on Mδ. The core of the technical difficulty
is represented by the following lemma:

Lemma 22. If δ is inaccessible and C is a �κ,τ -sequence in V Cδ∗Mδ , for τ < κ,
then the extension C ∗M/(Cδ ∗Mδ) does not thread C.

Once we have the lemma, we can prove the theorem:

Proof of the Theorem. Suppose for contradiction that for some τ < κ, there is a

�κ,τ -sequence C = 〈Cα : α < κ+〉 in V C∗M. Note that µ = (κ+)V
C∗M

. Note that
C ∗M itself has the µ-chain condition, and so there is a club of γ < µ such that for
all β < γ, Cβ ∈ V [Hγ ∗Gγ ]. Since µ is Mahlo, there is an inaccessible δ in this club.
Then 〈Cα : α < δ〉 is a �κ,τ -sequence in V Cδ∗Mδ which is threaded by any element
of Cδ. (It is important here that δ has uncountable cofinality in V C∗M.) However,
the existence of this thread contradicts Lemma 22. �

For the rest of the section, we work towards the proof of Lemma 22.

4.3. The main lemma. First we will prove the lemma for the case when τ is less
than the first point on the Magidor sequence. The advantage in that case is that
all of the normal measures are (2τ )+-complete.

Lemma 23. Suppose δ is inaccessible, Hδ ∗Gδ is Cδ ∗Mδ-generic and τ is below
the first point on the Magidor sequence added by Gδ. If C is a �κ,τ -sequence in
V [Hδ ∗Gδ], then the extension C ∗M/(Hδ ∗Gδ) does not thread C.

For such δ and work in V [Hδ]. In a slight abuse of notation, we let C denote

Col(κ,< µ)/Hδ. Let Q̇ denote the Mδ-name for the quotient (C ∗M)/Mδ. Note
that since C is κ-closed, there is a dense subset of conditions of the form (r, (c, ṗ)) ∈
Mδ ∗ Q̇, such that c decides the stem of ṗ, so we exclusively consider conditions of
this form.

Proposition 24. Suppose that r = (f,A) ∈Mδ, c ∈ C and ṗ = (g, Ḃ) is a C-name

for a condition in M. Then r  (c, ṗ) /∈ Q̇ iff at least one of the following hold:

(1) f, g are incompatible (i.e. not equal and neither one extends the other),

(2) f ⊃ g and c  ∃ξ ∈ dom(f) \ dom(g)(f(ξ) /∈ Ḃ(ξ)),
(3) g ⊃ f and for some ξ ∈ dom(g) \ dom(f), g(ξ) /∈ A(ξ).
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Proof. The proposition follows from the fact that r  (c, ṗ) /∈ Q̇ iff for any C-generic
H with c ∈ H, we have that r and ṗH are incompatible in M. �

Proposition 25. Suppose that r = (f,A) ∈Mδ, c ∈ C and ṗ = (g, Ḃ) is a C-name
for a condition in M and

• f = g, or
• f ⊃ g, and c 6 ∃ξ ∈ dom(f) \ dom(g)(f(ξ) /∈ Ḃ(ξ)).

Then there is an extension r′ ≤∗ r, and r′  (c, ṗ) ∈ Q̇.

Proof. By the Prikry Property, let r′ ≤∗ r decide “(c, ṗ) ∈ Q̇”. Since none of the
conditions of Proposition 24 hold, r′ cannot force that (c, ṗ) is not in the quotient.
So, r′ is as desired. �

Proof of Lemma 23. Suppose for contradiction that ḋ is a name for such a thread.
The key to the argument is the following Splitting Lemma:

Lemma 26. (Splitting lemma) There is r ∈ Mδ, c ∈ C, γ̄ < δ, a ∈ λ<ω, such that
for all r′ ≤∗ r, there is r” ≤∗ r′, such that each a-step extension of r” is in the set
Dγ̄,c := {q ∈Mδ | ∀c′ ≤ c∀γ′ > γ̄∃γ > γ′,∃c0, c1 ≤ c′,∃ṗ0, ṗ1 s.t. for i ∈ 2,

• q  (ci, ṗi) ∈ Q̇,

• (ci, ṗi)  ḋ ∩ (γ′, γ) 6= ∅, ḋ ∩ γ = ei, for some Mδ name ei,
• q  e0 6= e1,
• q, ṗ0, ṗ1 have the same stem.}

Proof. Suppose otherwise. Then we can find a ≤∗-decreasing sequence (according
to some enumeration) 〈ra | a ∈ λ<ω〉, of conditions in Mδ, ≤-decreasing conditions
〈ca | a ∈ λ<ω〉 in C, and points 〈γa | a ∈ λ<ω〉 in δ, such that for each a, for
all r” ≤∗ ra, there is an a-step extension of r” not in the set Dγ∗,c∗ , as witnessed
by ca, γa, where γ∗ ≥ γa′ and c∗ ≤ ca′ for each a′ coming before a in the fixed
enumeration.

More precisely, there is an a-step extension of r”, q, for which are no γ >
γa, c0, c1 ≤ ca, ṗ0, ṗ1 with the same stem as q, such that the q forces that (c0, ṗ0),

(c1, ṗ1) are in Q̇ and decide ḋ∩γ in contradictory ways while forcing ḋ∩(γa, γ) 6= ∅.
Now let r be a direct extension of each ra, c ≤ ca γ > γa for each a. Let

D := {q ∈ Mδ | (∃γ′ ≥ γ,∃c0, c1 ≤ c, ṗ0, ṗ1 with the same stem as q)q  “(ci, ṗi) ∈
Q̇, (ci, ṗi)  ḋ ∩ (γ, γ′) 6= ∅, ḋ ∩ γ′ = ei, for i = 0, 1, e0 6= e1”}.

Claim. D is dense.

Proof. Let q ∈ Mδ, and let Gδ be Mδ-generic containing q. In V [Hδ][Gδ], let

(c0, ṗ0), (c1, ṗ1) ∈ Q force contradictory information about ḋ ∩ γ′ and also that

ḋ ∩ (γ, γ′) 6= ∅, for some γ < γ′ < δ. For i = 0, 1, denote ṗi = (gi, Ḣi). Note that
g0 ∪ g1 is a finite segment of the Gδ- Magidor generic sequence.

Now let q′ ≤ q in Gδ force that (c0, ṗ0), (c1, ṗ1) are as above. By extending q′

we may assume that q′ = (g,H) where g ⊃ g0 ∪ g1.
Work again in V [Hδ]. For i = 0, 1, let φi be the sentence

∧
ξ∈dom(g)\dom(gi)

g(ξ) ∈
Ḣi(ξ). Since q′ forces that (ci, ṗi) is in Q̇, by Fact 24 it follows that ci 6 ¬φi. Let

c′i ≤ ci be such that c′i  φi. Let ṗ′i = (g, Ḣ ′i) be a name for a condition in M, such

that for each ξ /∈ dom(g), if c′i  Ḣ
′
i(ξ) = Ḣi(ξ)∩ g(ξ′), where ξ′ = min(dom(g) \ ξ)

if such exists and c′i  Ḣ
′
i(ξ) = Ḣi(ξ) otherwise. Then c′i  ṗ

′
i ≤ ṗi, for i = 0, 1.
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By Fact 25 there is a direct extension q” ≤∗ q′ forcing that for i = 0, 1. (c′i, ṗ
′
i) ∈

Q̇. Then q” ∈ D. �

Then by the Prikry lemma, there is r” ≤∗ r and a ∈ λ<ω, such that every a step
extension of r” is in D. Contradiction with the choice of ra, ca, γa and the fact that
r” ≤∗ ra, c ≤ ca, γ > γa. �

Remark 1. Instead of requiring the Prikry conditions have the same stem in the
definition of Dγ,c, we can just require that for each i = 0, 1, g := stem(q) extends
gi := stem(ṗi) and for all ξ ∈ dom(g) \ dom(gi), ci  g(ξ) ∈ H ṗi(ξ). That is a
weaker statement but will suffice in the arguments that follow.

Fix r̄, c̄, γ̄, a as in the conclusion of the Splitting lemma. Let E = Ea(r̄), i.e. all
possible ~ν corresponding to a-step extensions of r̄. For every ~ν ∈ E, recall that
r̄_~ν is the weakest possible a-step extension of r̄ with that stem.

Build 〈r|σ|, c~νσ, ṗ~νσ_i, γ~νσ | σ ∈ 2<τ , i ∈ 2, ~ν ∈ E〉 by induction on ot(σ), such that:

(1) each r|σ| ≤∗ r̄, c~νσ ≤ c̄, γ~νσ ≥ γ̄
(2) for every ~ν, and σ @ σ′, c~νσ′ ≤ c~νσ,
(3) ṗ~νσ_i has the same stem as r̄_~ν,

(4) r_|σ|~ν forces that for i = 0, 1, (c~νσ_i, ṗ
~ν
σ_i) are in Q̇, and decide contradictory

values for ḋ ∩ γ~νσ .

(5) for i = 0, 1, (c~νσ_i, ṗ
~ν
σ_i)  ḋ ∩ (γ∗, γ~νσ) 6= ∅, where γ∗ = supσ̄,ot(σ̄)<ot(σ) γ

~ν
σ̄ .

To construct such a sequence, suppose we have defined c~νσ for all ~ν. Let γ∗ =
sup~ν,σ̄,o.t.(σ̄)<o.t.(σ) γ

~ν
σ̄ . Let r|σ| ≤∗ r̄ be given by the Splitting lemma, i.e. every

a-step extension of r|σ| is in Dγ̄,c̄.

Then for every ~ν, r_|σ|~ν is in that set, and so there is γ~νσ > γ∗ and conditions

c~νσ_i ≤ c~νσ and ṗ~νσ_i for i = 0, 1, such that items (3), (4), and (5) above hold.
For the limit stages, we just have to worry about c~νσ. For a fixed ν, and σ ∈ 2η

for limit η, let c~νσ be a lower bound of each c~νσ�ξ for ξ < η. Here we use the closure
of C.

Let r ≤∗ rη, for all η < τ , and let β = supσ,~ν γ
~ν
σ . Note that by construction, for

any ~ν, β = supσ γ
~ν
σ .

For all ~ν, f ∈ 2τ , let c~νf ≤ c~νf�η for all η < τ . Also let ṗ~νf be a name for a condition

in M with stem the same as the stem of r̄_~ν, such that c~νf forces it to be a lower

bound of all ṗ~νf�η for all η < τ . To do that we just have to take canonical name for

the intersection of measure one sets. (Actually we can get 1C to force that it is a
lower bound).

Then by the last item of our construction, for each f , ~ν, (c~νf , ṗ
~ν
f )  β ∈ lim(ḋ).

We do not necessarily have that r_~ν forces that (c~νf , ṗ
~ν
f ) is in the quotient.

However, since the Prikry conditions have the same stem, for each ~ν, applying Fact
25 inductively 2τ -many times, there is a direct extension r~ν ≤∗ r_~ν, such that for
every f ∈ 2τ , r~ν  (c~νf , ṗ

~ν
f ) ∈ Q̇. Here we use that since 2τ is below the first Prikry

point, the direct extension order ≤∗Mδ is more than 2τ -closed.

Diagonalize 〈r~ν | ~ν ∈ E〉 to get r′ ≤∗ r, such that for all ~ν, r′
_
~ν ≤ r~ν .

Let Gδ be Mδ-generic with r′ ∈ Gδ. Let ~ν ∈ E be the unique, such that
r′
_
~ν ∈ Gδ. Work in V [Hδ][Gδ]. By choice of r′, r~ν ∈ Gδ. So for allf ∈ 2τ ,

(c~νf , ṗ
~ν
f ) ∈ Q.
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For all f , let (cf , ṗf ) ≤Q (c~νf , ṗ
~ν
f ), be such that that for some ef , (cf , ṗf ) Q

ḋ ∩ β = ef . Note that the Prikry conditions no longer have a fixed stem.

Claim. f 6= g implies ef 6= eg.

Proof. Let σ ∈ 2<τ be such that σ_0 ⊆ f, σ_1 ⊆ g. By construction, and since
r_|σ|~ν ∈ Gδ, we have that: for i = 0, 1, (c~νσ_i, ṗ

~ν
σ_i) are in Q and decide contradictory

values for ḋ ∩ γ~νσ . Let e0, e1 be these values.
Since, (cf , ṗf ) ≤ (c~νσ_0, ṗ

~ν
σ_0), we have e0 @ ef . Similarly, e1 @ eg. So ef 6=

eg. �

Contradiction, since each ef is in Cβ , |Cβ | ≤ τ , and the number of f ’s is 2τ . �

This concludes the proof that �κ,τ fails in V [H ∗ G] for any τ below the first
Magidor point. Since the latter is an inaccessible, in particular that means that:

Corollary 27. We can singularize a regular κ to uncountable cofinality λ in a
cardinal preserving way and have failure of �κ,λ in the outer model.

Next we show the failure of �κ,τ for all τ < κ. The main difficulty in this general
case is that not all of the measures used in the Magidor forcing have enough closure.
However we can split the generic Magidor sequence into an upper part where the
closure is more than τ , and a lower part, where the cardinality of possible conditions
is less than τ . Then the argument will be similar to the first version, but now when
building our splitting tree, we have to consider all lower parts as well as all a-step
extensions. For that we will need a stronger version of the Splitting Lemma, where
all the Magidor conditions witnessing the splitting have not only the same stem,
but the same lower part.

More precisely, working in V [Hδ][Gδ], let 〈κξ | ξ < λ〉 be the generic Magidor
sequence through κ. Let ξ < λ be such that κξ < τ < 2τ < κξ+1. (Without loss
of generality, τ will not be in the generic sequence.) Now fix a condition in Gδ,
deciding the values of κξ, κξ+1 (namely, ξ, ξ + 1 are in the domain of its stem) and
for the rest of the proof of the lemma work below it. In other words, any conditions
in M or Mδ below are assumed to be of the form (g,H), where ξ, ξ + 1 ∈ dom(g)
and κξ = g(ξ) < 2τ < g(ξ + 1).

We say a condition r in Mδ or M has lower part b to mean that r � ξ = b. (If
r ∈ M, that means that it is forced to have lower part b.) As before, by closure of

C, there is a dense subset of conditions of the form (r, (c, ṗ)) = ((f,A), (c, (ǧ, Ḃ))) ∈
Mδ ∗ Q̇, such that c decides the lower part of ṗ, so we only consider conditions of
this form.

Proposition 28. Suppose that r = (f,A) ∈Mδ, c ∈ C and ṗ = (g, Ḃ) is a C-name
for a condition in M, such that c  r � ξ = ṗ � ξ and

• f = g, or
• f ⊃ g, and c 6 ∃ξ ∈ dom(f) \ dom(g)(f(ξ) /∈ Ḃ(ξ)).

Then there is an extension r′ ≤∗ r with r′ � ξ = r � ξ, such that r′  (c, ṗ) ∈ Q̇.

Proof. By the Prikry Property, let r′ = (f,A′) ≤∗ (f,A) be such that (f,A′)ξ =

(f,A)ξ and if q ≤ r′ decides “(c, ṗ) ∈ Q̇”, then q � ξ_(f,A′)ξ decides it the same
way. We claim that r′ is as desired.

Otherwise, there is some q ≤ r′ such that q  (c, ṗ) /∈ Q̇. Then q′ := q � ξ_(f,A′)ξ 
(c, ṗ) /∈ Q̇. So c forces that the stem of q′ is incompatible with the measure one sets
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of ṗ as in Proposition 24. Then by item (1) and (2) of the assumption, c has to force
that stem(q � ξ) is incompatible with the measure one sets of ṗ � ξ. Contradiction
with the assumption that c forces that r � ξ = ṗ � ξ. �

Proof of Lemma 22.

Lemma 29. (Strong splitting lemma) There is r ∈Mδ, c ∈ C, γ̄ < δ, a ∈ λ<ω, and
a dense set of lower parts L 1, such that for all r′ ≤∗ r, with a lower part b ∈ L,
there is r” ≤∗ r′, with lower part b, such that each a-step extension of r” is in the
set D′γ̄,c :=.
{q ∈Mδ | ∀c′ ≤ c∀γ′ > γ̄∃γ > γ′,∃c0, c1 ≤ c′,∃ṗ0, ṗ1 s.t. for i ∈ 2,

• q  (ci, ṗi) ∈ Q̇,

• (ci, ṗi)  ḋ ∩ (γ′, γ) 6= ∅, ḋ ∩ γ = ei, for some Mδ name ei,
• q  e0 6= e1,
• q, ṗ0, ṗ1 have the same stem and the same lower part.}

Proof. Let r̄, c̄, γ̄, a be as in the conclusion of the splitting lemma but with the
added restriction that the Magidor conditions to have the same lower part. More
precisely, for every r′ ≤∗ r, there is r” ≤∗ r′, such that each a-step extension of r”
is in D′γ̄,c.

Now suppose the lower part of r̄ is b̄, and all b ≤ b̄ do not have the property
in the statement of the corollary. Then there is a sequence 〈rb | b ≤ b̄〉, such that
each rb ≤∗ r̄, rb � ξ = b, and for all r” ≤∗ rb with lower part b, there is an a-step
extension r”_~ν not in D′γ̄,c. Let r ≤∗ r̄ be such that for all b, b_r � [ξ, κ) ≤∗ rb.

But then by choice of r̄, there is r” ≤∗ r, such that each a-step extension of r”
is in D′γ̄,c. Let b = r” � ξ; contradiction with choice of rb. �

Fix r̄, c̄, γ̄, a and L as in the conclusion of the above corollary. Note that |L| < τ .
As before, let E = Ea(r̄).

For every b ∈ L, let r̄_b denote b_r̄ � [ξ, κ) and for ~ν ∈ E, b ∈ L, let r̄_b, ~ν
denote the weakest possible a-step extension of r̄_b with that stem, provided that
~ν is compatible with b.

Build 〈r|σ|, cb,~νσ , ṗb,~νσ_i, γ
b,~ν
σ | σ ∈ 2<τ , i ∈ 2, b ∈ L,~ν ∈ E〉 by induction on ot(σ),

such that:

(1) each rη ≤∗ r̄, rη � ξ = r̄ � ξ, cb,~νσ ≤ c̄, γb,~νσ ≥ γ̄
(2) for every b, ~ν, and σ @ σ′, cb,~νσ′ ≤ cb,~νσ ,

(3) ṗb,~νσ_i has the same stem and lower part as r̄_b, ~ν.

(4) r_|σ|b, ~ν forces that for i = 0, 1, (cb,~νσ_i, ṗ
b,~ν
σ_i) are in Q̇, and decide contradic-

tory values for ḋ ∩ γb,~νσ .

(5) for i = 0, 1, (cb,~νσ_i, ṗ
b,~ν
σ_i)  ḋ∩(γ∗, γb,~νσ ) 6= ∅, where γ∗ = supσ̄,ot(σ̄)<ot(σ) γ

b~ν
σ̄ .

We build as before, this time using Lemma 29 and the fact that the normal measures
in the upper parts are sufficiently closed, so that we can index over every element
in L.

Let r ≤∗ rη, for all η < τ , and let β = supσ,b,~ν γ
b,~ν
σ . For all b, ~ν, f ∈ 2τ , let

cb,~νf ≤ cb,~νf�η for all η < τ . Also let ṗb,~νf be a name for a condition in M with the

same stem and lower part as r̄_b, ~ν, such that it is forced to be a lower bound of

all ṗb,~νf�η for all η < τ . Then, (cb,~νf , ṗb,~νf )  β ∈ lim(ḋ).

1 I.e. a dense subset of {q � ξ | q ≤∗ r} ⊂ Mξ,gr(ξ)
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As before, we do not necessarily have that r_b, ~ν forces that (cb,~νf , ṗb,~νf ) is in the
quotient. However, applying Proposition 25 inductively 2τ -many times, there is a
direct extension rb,~ν ≤∗ r_b, ~ν, such that rb,~ν and r_b, ~ν have the same lower part

and for every f ∈ 2τ , rb,~ν  (cb,~νf , ṗb,~νf ) ∈ Q̇.

Diagonalize 〈rb,~ν | ~ν ∈ E〉 to get r′ ≤∗ r, such that for all b, ~ν, r′
_
b, ~ν ≤ rb,~ν .

Let Gδ be Mδ-generic with r′ ∈ Gδ. Let b ∈ L and ~ν ∈ E be such that
r′
_
b, ~ν ∈ Gδ. Work in V [Hδ][Gδ]. Then, by choice of r′, rb,~ν ∈ Gδ and so for

each f ∈ 2τ , (cb,~νf , ṗb,~νf ) ∈ Q.

For each f ∈ 2τ let (cf , ṗf ) ≤Q (cb,~νf , ṗb,~νf ), be such that for some ef , (cf , ṗf ) Q

ḋ ∩ β = ef . As before, by the splitting construction, f 6= g implies that ef 6= eg.
Contradiction with |Cβ | ≤ τ . �

Question 1. Does the Magidor forcing at κ add a �κ,<κ sequence. Alternatively,
is there a version of Theorem 1 in which �κ,<κ fails?
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