
DYNAMICS AND LITTLEWOOD’S CONJECTURE
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Abstract. We consider the action of the group, A, of positive diagonal matri-

ces on the space X = SL(3,R)/SL(3,Z). Manfred Einsiedler, Anatole Katok,

and Elon Lindenstrauss showed that if µ is an A-invariant and ergodic prob-
ability measure on X and there exists a one-parameter subgroup of A acting

on X with positive entropy, then µ must be an algebraic measure. This result

is used to conclude that the set of counterexamples to Littlewood’s conjucture
has Hausdorff dimension zero if the set is nonempty. We will discuss some

parts of their work.
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1. Littlewood’s conjecture

For any real number x, we let ‖x‖ = min{x − p : p ∈ Z} be the distance
between x and the integer closest to x. The following statement about simultaneous
approximation by rationals is known as Littlewood’s conjecture.

Conjecture 1.1. For any real numbers α and β,

lim inf
q→∞

q‖qα‖‖qβ‖ = 0.

To provide some context for this conjecture, we review some basic results in
Diophantine approximation. Let α be any real number. We denote the greatest
integer less than or equal to α as bαc. The fractional part of α is defined by
{α} = α− bαc. The theorem below is known as Dirichlet’s theorem.

Theorem 1.2. Let Q be any integer greater than 1. Then there exist integers p
and q such that 1 ≤ q < Q and | αq − p |≤ 1

Q .
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Proof. The theorem holds whenever α is an integer or whenever α is a rational
number whose denominator is less than Q when α is expressed in the lowest terms.
So, we assume that α is either an irrational number, or a rational number whose
lowest possible denominator is greater than or equal to Q. Then, the Q+1 numbers

0, 1, {α}, {2α}, . . . , {(Q− 1)α}

are distinct numbers in the interval [0, 1]. We divide the interval [0, 1] into Q
intervals given by

Ii =

{
[ i−1
Q , iQ ) if i < Q

[Q−1
Q , 1] if i = Q.

By the pigeonhole principle, one of the Q subintervals contains at least two of
the Q + 1 numbers. It follows that, there exist integers r1, r2, s1 ands2 such that
0 ≤ r1, r2 < Q, r1 > r2, and

| (r1α− s1)− (r2α− s2) |≤ 1

Q
.

Setting q = r1 − r2 and p = s1 − s2, we see that 1 ≤ q < Q and | qα− p |≤ 1
Q . �

Corollary 1.3. Suppose that α is irrational. Then, there exist infinitely many
pairs p and q of relatively prime integers with | α− p

q |<
1
q2

In particular, Corollary 1.3 implies that

lim inf
q→∞

q‖qα‖ ≤ 1

for any irrational number α. However, it is not true that there are infinitely many
distinct rationals p

q such that | α− p
q |<

c
q2 for an arbitrary fixed constant c > 0.

Lemma 1.4. Let α be a real quadratic irrational that is a root of a non-zero poly-
nomial, P (T ) = aT 2 + bT + c, with integer coefficients. Let D be the discriminant.

Then, for any A >
√
D, the inequality∣∣∣α− p

q

∣∣∣ < 1

Aq2

has only finitely many solutions.

Proof. Suppose that p
q is a rational number such that | α− p

q |<
1
Aq2 . Then,

∣∣∣P(p
q

)∣∣∣ =
∣∣∣a(p

q

)2

+ b
(p
q

)
+ c
∣∣∣

=
|ap2 + bpq + cq2|

q2

≥ 1

q2
,
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because P (pq ) 6= 0 and ap2 +bpq+cq2 is an integer. Write P (T ) = a(T −α)(T −α′).
Then the discrfiminant of P (T ) is D = a2(α− α′)2. We observe that∣∣∣P(p

q

)∣∣∣ =
∣∣∣a(p

q
− α

)(p
q
− α′

)∣∣∣
≤ 1

Aq2

∣∣∣a(p
q
− α′

)∣∣∣
=

1

Aq2

∣∣∣a(α′ − α+ α− p

q

)∣∣∣
≤ 1

Aq2
|a(α′ − α)|+ 1

Aq2

∣∣∣a(α− p

q

)∣∣∣
≤
√
D

Aq2
+
|a|
A2q4

Note that (
√
D

Aq2 + |a|
A2q4 )/( 1

q2 ) =
√
D
A + |a|

A2q2 converges to
√
D
A < 1 as q approaches

∞. Thus, there exists an integer N , which depends only on D, A, and a, so that q
has to be less than N . �

Let x = 1
2 (
√

5− 1). Then, x is a root of the polynomial Q(T ) = T 2 +T − 1, and

the disciriminant of Q(T ) is 5. So, the lemma above implies that if A >
√

5, the
set

{p
q
∈ Q :

∣∣∣x− p

q

∣∣∣ < 1

Aq2
}

is finite. This proves the following theorem, due to Hurwitz.

Theorem 1.5. If c < 1√
5

, then there exists an irrational number α such that there

are at most finitely many distinct rationals p
q that satisfy∣∣∣α− p

q

∣∣∣ < c

q2
.

Since x = 1
2 (
√

5− 1) is an irrational number, our observation above implies that
there exists some constant r > 0, which depends on x, such that∣∣∣x− p

q

∣∣∣ > r

q2
,

for all p
q ∈ Q. Equivalently,

‖qx‖ > r

q
,

for all q ≥ 1. We say that a number such as x is badly approximable by rationals
and we define

Bad = {x ∈ R : there exists r = r(x) > 0 with ‖qx‖ > r

q
for all q ≥ 1}

to be the set of all badly approximable numbers.
If x ∈ Bad, then lim infq→∞ q‖qx‖ > 0. On the other hand, if x is an irrational

number and x /∈ Bad, then we can find a sequence of distinct naturals (qn) such
that qn‖qnx‖ converges to 0. Thus, the set of counterexamples to the one dimen-
sional analogue of Littlewood’s conjecture is precisely Bad. Then, we can interpret
Littlewood’s conjecture as saying that any two real numbers can be simultaneously
approximated “well” by two rational numbers with the same denominator.
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In this paper, we will discuss how results from dynamics imply that the set
of counterexamples to Littlewood’s conjecture is “small”. To begin, we introduce
some notions from dynamics that we will use.

2. Measure theoretic entropy and topological entropy

Let (Y, µ) be a probability space, and let T : Y → Y be a measurable map. We
say that µ is T -invariant if µ(T−1(E)) = µ(E) for any measurable set E ⊆ Y . A
T -invariant measure µ is ergodic if any measurable function f : Y → R such that
f(T (y)) = f(y) for µ-a.e. y ∈ Y is constant almost everywhere.

Let µ be a T -invariant probability measure. A finite partition of Y is a finite
collection,

P = {C1, . . . , Cn},
of essentially disjoint measurable sets such that

⋃n
i=1 Ci is a set of full measure

in Y . Similarly, a countable partition of Y is a countable collection of essentially
disjoint measurable sets whose union is a set of full measure in Y . For a partition
P of Y , we define the entropy of P by

Hµ(P) = −
∑
C∈P

µ(C) log(µ(C)).

If P and Q are partitions of Y , then the common refinement of P and Q is defined
by

P ∨Q = {C ∩D : C ∈ P and D ∈ Q}.
Let P be a parition of Y with finite entropy. For each n ∈ N,

T−nP = {T−n(C) : C ∈ P}
is a partition of Y . The measure theoretic entropy of T relative to P is the limit

hµ(T,P) = lim
N→∞

1

N
Hµ

(
N−1∨
n=0

T−nP

)
.

The two lemmas below show that this limit exists.

Lemma 2.1. Hµ(P ∨Q) ≤ Hµ(P) +Hµ(Q).

Proof. See Theorem 4.3 of [14]. �

Lemma 2.2. Let (an) be a sequence of non-negative real numbers such that

0 ≤ an+m ≤ an + am

for all n,m ≥ 0. Then,

lim
n→∞

an
n

= inf
n≥0

an
n
.

Proof. See Theorem 4.9 of [14]. �

The measure theoretic entropy is defined by

hµ(T ) = sup{hµ(T,P) : P is a partition with Hµ(P) <∞}.
Now, suppose that (Y, µ) is also a compact metric space with a metric d and that

T : Y → Y is a continuous map. For each n ∈ N, we define dn : Y ×Y → [0,∞) by

dn(x, y) = max
0≤k<n

d(T k(x), T k(y)).



DYNAMICS AND LITTLEWOOD’S CONJECTURE 5

Then, dn is a metric on Y and dn+1 ≥ dn for each n ∈ N. Furthermore, dn
generates the same topology as d. To see this, let B be a basis element for the
topology generated by dn. Then, B = {x ∈ Y : dn(x, y) < r} for some y ∈ Y and
r > 0. Let x′ ∈ B. Because T k is continuous at x′ for each 1 ≤ k ≤ n, we can
choose r′ > 0 so that if d(x, x′) < r′ then dn(x, x′) < r − dn(x′, y). This implies
that the open ball centered at x′ with d-radius equal to r′ is contained in B.

Fix ε > 0. A subset A ⊆ Y is (n, ε)-separated if dn(x, y) ≥ ε whenever x and
y are any two distinct points in A. Any (n, ε)-separated set is finite because it is
a discrete set in (Y, dn) and (Y, dn) is compact by our observation above. Define
sep(n, ε, T ) to be the maximum cardinality of an (n, ε)-separated set.

Define cov(n, ε, T ) to be the minimum cardinality of a covering of Y by sets of
dn-diameter less than ε. Since we can cover Y by finitely many open balls with
dn-radius less than ε

2 , cov(n, ε, T ) is a finite quantity.

Lemma 2.3. For any n ∈ N and ε > 0,

cov(n, 2ε, T ) ≤ sep(n, ε, T ) ≤ cov(n, ε, T ).

Proof. Let {U1, . . . , Uk} be a cover of Y by sets of dn-diameter less than ε with
k = cov(n, ε, T ). Suppose that A ⊆ Y is a finite subset with |A| > k. Then,
there exists i with 1 ≤ i ≤ k and a, a′ ∈ A such that a, a′ ∈ Ui. So, A cannot be
(n, ε)-separated. Thus, sep(n, ε, T ) ≤ cov(n, ε, T ).

Now, let A be an (n, ε)-separated set with |A| = sep(n, ε, T ). Then the collection
of open balls {B(a, ε)}a∈A is a covering of Y . Suppose that the collection does not
cover Y . Then, there exists z ∈ Y \ A such that dn(z, a) ≥ ε for all a ∈ A. This
contradicts our assumption because A∪{z} is an (n, ε)-separated set that is strictly
larger than A. Therefore, cov(n, 2ε, T ) ≤ sep(n, ε, T ). �

For each ε > 0, we define

hε(T ) = lim sup
n→∞

1

n
log(cov(n, ε, T )).

Since cov(n, ε, T ) ≤ cov(n, ε′, T ) whenever ε > ε′, hε(T ) increases monotonically as
ε approaches zero. We define the topological entropy of T to be the limit

htop(T ) = lim
ε→0+

hε(T ).

The lemma above implies that

htop(T ) = lim
ε→0+

lim sup
n→∞

1

n
log(sep(n, ε, T )).

As an aside, the topological entropy is indeed a “topological invariant” in the
following sense.

Proposition 2.4. htop(T ) does not depend on the choice of a particular metric
generating the topology of X.

Proof. See Proposition 2.5.3 of [1]. �

There are a few important facts about entropy that we will need later.

Proposition 2.5. Let (Y, d) be a compact metric space and let T : Y → Y be a
continuous map. Then,

htop(T ) = sup{hµ(T ) : µ is a T -invariant probability measure on Y }.
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Proof. See Theorem 8.6 of [14]. �

Proposition 2.6. Let Y be a compact metric space and let T : Y → Y be a
continuous map. If µ and ν are T -invariant probability measure on Y and p ∈ [0, 1],
then

hpµ+(1−p)ν(T ) = phµ(T ) + (1− p)hν(T ).

Proof. See Theorem 8.1 of [14]. �

Proposition 2.7. Let Y be a compact metric space and let T : Y → Y be a
continuous map. Let µ be a T -invariant probability measure on Y . Then, there
exists a probability space (Ξ, ν) and a measurable map from Ξ to the space of T -
invariant and ergodic probability meaures on Y given by ξ 7→ µξ such that

µ =

∫
Ξ

µξdν(ξ).

Moreover,

hµ(T ) =

∫
Ξ

hµξ(T )dν(ξ).

Proof. For the first statement, see Theorem 6.10 and the following remark of [14].
For the second statement, see Theorem 8.4 of [14]. �

Remark 2.8. Let (Z, d) be a compact metric space and let S : Z → Z be a home-
omorphism. We say that S is expansive if there exists δ > 0 such that whenever
x and y are distinct points in Z there exists n ∈ Z with d(Sn(x), Sn(y)) > δ.
Let M(Z, S) denote the space of S-invariant probability measures on Z. We view
M(Z, S) as a topological subspace of the space of Radon measures on Z equipped
with the weak-∗ topology. Define Φ : M(Z, S)→ R by Φ(ρ) = hρ(S). Theorem 8.2
of [14] states that if S is expansive then Φ is upper semi-continuous. This fact and
Proposition 2.6 are used to prove Theorem 8.4 of [14]. A similar argument is used
later on in this paper to construct a measure with positive entropy.

The notion of ergodicity also makes sense in a different setting. Let Z be a locally
compact space, let ν be a probability measure on Z, and let H be a locally compact
group. Suppose that H acts continuously on Z. We say that ν is H-invariant if
h∗ν = ν for all h ∈ H where h∗ν is the measure given by

h∗ν(E) = ν(h−1E) for any Borel set E ⊆ Z.

An H-invariant measure ν is ergodic if any measurable function f : Z → R on
Z such that f(hz) = f(z) for all h ∈ H and ν-a.e. z ∈ Z is constant almost
everywhere.

In the case when H = {as}s∈R is a one-parameter group, one can show that the
quantity 1

shν(as) is independent of s 6= 0. So, we may define the measure theoretic
entropy of the flow {as}to be

hν(a◦) = hν(a1).

A similar results holds for the topological entropy of a flow.
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3. Hausdorff dimension and upper box dimension

Let (Y, d) be a compact metric space, and let F ⊆ Y be a subset. Fix s ≥ 0.
If {Ui}∞i=1 is countable collection of sets and δ > 0 is a positive number, then we
say that {Ui} is a δ-cover of F whenever F ⊆

⋃∞
i=1 Ui and diam(Ui) < δ for each

i ∈ N. For any δ > 0, we define

Hsδ(F ) = inf
{ ∞∑
i=1

diam(Ui)
s : {Ui} is a δ-cover of F

}
.

If 0 < δ′ < δ, then any δ′-cover of F is also a δ-cover of F . This implies that
Hsδ ≤ Hsδ′ . Then, we can define the s-dimensional Hausdorff measure of F by

Hs(F ) = lim
δ→0+

Hsδ(F ).

Let {Ui} be a δ-cover of F . If t > s, then

diam(Ui)
t = diam(Ui)

sdiam(Ui)
t−s ≤ diam(Ui)

sδt−s

for each i ∈ N. It follows that

Htδ(F ) ≤ δt−sHsδ(F ).

Similarly, if t′ < s, then

Ht
′

δ (F ) ≥ 1

δs−t′
Hsδ(F ).

So, if 0 < Hs(F ) <∞, then Ht(F ) = 0 whenever t > s and Ht′(F ) =∞ whenever
t′ < s. Therefore,

inf{s : Hs(F ) = 0} = sup{s : HsF =∞}

and we define the Hausdorff dimension of F , or dimH(F ), to be this common value.

Proposition 3.1. The Hausdorff dimension has the following properties.

(1) If E and F are subsets of Y and E ⊆ F , then dimH(E) ≤ dimH(F ).
(2) If F1, F2, . . . is a sequence of subsets of Y , then dimH(

⋃∞
i=1 Fi) = supi∈N dimH(Fi).

Proof. See page 29 of [6]. �

Let ε > 0 be a postive number. A set E ⊆ F is ε-separated if d(x, y) ≥ ε for any
x, y ∈ E with x 6= y. Note that any ε-separated subset of F is finite because Y is
compact. Define sep(ε, F ) to be the maximum cardinality of ε-separated subsets
of F . A collection {Ui}i∈I is an ε-cover of F if diam(Ui) < ε for all i ∈ I and⋃
i∈I Ui = F . Define cov(ε, F ) to be the minimum cardinality of ε-covers of F .

Note that cov(ε, F ) is finite because Y is compact.
Define the upper box dimension of F by

dimub(F ) = lim sup
ε→0+

log(sep(ε, B))

− log(ε)
.

Proposition 3.2. The upper box dimension has the following properties.

(1) If E and F are subsets of Y and E ⊆ F , then dimub(E) ≤ dimub(F ).
(2) If E and F are subsets of Y , then dimub(E∪F ) = max{dimub(E), dimub(F )}.

The upper box dimension tends to be easier to compute than the Hausdorff
dimension.
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Lemma 3.3. Suppose that (εk) is a sequence in (0, 1) such that εk+1 ≥ cεk for
some 0 < c < 1 and (εk) decreases to zero. Then,

dimub(F ) = lim sup
k→∞

log(sep(εk, F ))

− log(εk)
.

Proof. For any k large enough so that c > εk+1 and ε ∈ [εk+1, εk],

log(sep(ε, F ))

− log(ε)
≤ log sep(εk+1, F )

− log(εk)

=
log(sep(εk+1, F ))

− log(εk+1) + log( εk+1

εk
)

≤ log(sep(εk+1, F ))

− log(εk+1) + log(c)

Then,

lim sup
ε→0

log(sep(ε, F ))

− log(ε)
≤ sup
k≥n

log(sep(εk, F ))

− log(εk) + log(c)
for all n ∈ N.

Therefore,

lim sup
ε→0

log(sep(ε, F ))

− log(ε)
≤ lim sup

k→∞

log(sep(εk, F ))

− log(εk) + log(c)
.

We choose a subsequence (εkj )j∈N such that

lim
j→∞

log(sep(εkj , F ))

− log(εkj ) + log(c)
= lim sup

k→∞

log(sep(εk, F ))

− log(εk) + log(c)
.

Then,

lim
j→∞

log(sep(εkj , F ))

− log(εkj )
= lim
j→∞

log(sep(εkj , F ))

− log(εkj ) + log(c)

− log(εkj ) + log(c)

− log(εkj )

= lim
j→∞

log(sep(εkj , F ))

− log(εkj ) + log(c)
.

Therefore,

lim sup
k→∞

log(sep(εk, F ))

− log(εk) + log(c)
= lim
j→∞

log(sep(εkj , F ))

− log(εkj )

≤ lim sup
ε→0

log(sep(ε, F ))

− log(ε)
.

The result follows because

lim sup
k→∞

log(sep(εk, F ))

− log(εk) + log(c)
= lim sup

k→∞

log(sep(εk, F ))

− log(εk)

�

Furthermore, the upper box dimension is related to the Hausdorff dimension by
the following facts.

Lemma 3.4. For any ε > 0,

cov(2ε, F ) ≤ sep(ε, F ) ≤ cov(ε, F ).

Proof. The lemma follows by arguments analogous to the ones given in the proof
of lemma 2.3. �
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Proposition 3.5. For any subet F ⊆ Y ,

dimH(F ) ≤ dimub(F ).

In particular, if the upper box dimension of a set F is zero, then the Hausdorff
dimension of F is zero.

Proof. By lemma 3.2,

log(cov(2ε, F ))

− log(ε)
≤ log(sep(ε, F ))

− log(ε)
≤ log(cov(ε, F ))

− log(ε)
.

Additionally,

log(cov(2ε, F ))

− log(2ε)
=

log(cov(2ε, F ))

− log(ε)− log(2)
.

Therefore,

dimub(B) = lim sup
ε→0+

log(cov(ε, F ))

− log(ε)
.

Since F can be covered by cov(δ, F ) sets of diameter less than δ,

Hsδ(F ) ≤ cov(δ, F )δs,

for any nonnegative number s. So, if 1 < Hs(F ) for some s ≥ 0, then

log(cov(δ, F )) + s log(δ) > 0

for all δ sufficiently small. Thus,

s ≤ lim sup
δ→0+

log(cov(δ), F )

− log(δ)
.

�

In general, the Hausdorff dimension of a subset does not equal the upper box
dimension of the subset. For example, consider the case when Y = [0, 1] and
F = {0}∪{ 1

n : n ∈ N}. Proposition 3.3 and the fact that single element subsets have
zero Hausdorff dimension imply that countable sets have zero Hausdorff dimension.
So, dimH(F ) = 0. However, we will show that dimub(F ) = 1

2 .

Let δ ∈ (0, 1
2 ) be given. Let m be the integer such that 1

m(m+1) < δ ≤ 1
(m−1)m .

Then, any subset U ⊆ Y with diam(U) < δ can contain at most one of the points
in {1, 1

2 , . . . ,
1
m}. So, cov(δ, F ) ≥ m. Additionally, [0, 1

m ] can be covered by m + 1
intervals of length δ. So, cov(δ, F ) ≤ 2m. Consequently,

log(m)

log(m(m+ 1))
≤ log(cov(δ, F ))

− log(δ)
≤ log(2m)

log((m− 1)m)
.

For each k ∈ N with k ≥ 2, set εk = 1
2

1
(k−1)k + 1

2
1

k(k+1) . Then, 1
k(k+1) < εk ≤

1
(k−1)k for each k. Additionally, εk+1 ≥ k

k+2εk for each k so that εk+1 ≥ 1
2εk for all
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k ≥ 2. Therefore,

dimub(F ) = lim sup
k→∞

log(cov(εk, F ))

log(εk)
by lemma 3.4

≤ lim sup
k→∞

log(2k)

log((k − 1)k)

= lim sup
k→∞

log(2) + log(k)

2 log(k)

2 log(k)

log(k − 1) + log(k)

=

(
lim
k→∞

log(2) + log(k)

2 log(k)

)(
lim
k→∞

2 log(k)

log(k − 1) + log(k)

)
=

1

2

Similarly,

dimub(F ) = lim sup
k→∞

log(cov(εk, F ))

log(εk)

≥ lim inf
k→∞

log(k)

log(k(k + 1))

=
1

2
.

4. Partial result towards Littlewood’s conjecture

Set G = SL(3,R), Γ = SL(3,Z), and X = G/Γ. Let dX be a metric on X
induced by a right-invariant metric, dG, on G. Let A 6 G be the subgroup given
by

A = {a(s, t) : s, t ∈ R},
where

a(s, t) =

e−s−t 0 0
0 es 0
0 0 et

 ,

for all real numbers s and t. We say that an A-invariant measure µ on X is algebraic
if there exists g ∈ G and a closed subgroup L 6 G such that the following properties
hold:

• LgΓ admits a unique L-invariant probability measure,
• µ is supported on LgΓ, and
• the restriction of µ to LgΓ is the unique L-invariant probability measure

on LgΓ.

Manfred Einsiedler, Anatole Katok, and Elon Lindenstrauss used the following
theorem to prove a partial result towards the Littlewood conjecture.

Theorem 4.1. Let µ be an A-invariant and ergodic probability measure on X.
Suppose that there exists a one-parameter subgroup {at}t∈R of A such that hµ(a◦) >
0. Then, µ is an A-invariant algebraic measure which is not supported on a periodic
A-orbit. In fact, µ is the G-invariant probability measure on X.

If µ is the G-invariant measure on X, then the support of µ is the entire space X.
The Godement compactness criterion implies that X = G/Γ is compact if and only
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if the only unipotent element of Γ is the identity element. Since

1 1 0
0 1 0
0 0 1

 is a

nontrivial unipotent element of Γ, X is not compact. Therefore, µ is not compactly
supported.

Corollary 4.2. Suppose that µ satisfies the hypotheses of Theorem 4.1. Then µ is
not compactly supported.

We recall that a lattice in Rn is a set of all integral combinations of n linearly
independent vectors v1, . . . vn. We denote the space of all lattices with covolume
one in Rn by Ln. A set of n vectors determine a lattice with covolume one if and
only if the n-by-n matrix whose columns are the n vectors has determinant ±1.
Moreover, given two n-by-n matrices A and B in SL(n,R), the columns of A and
the columns of B determine the same lattice if and only if AB−1 is an element
of SL(n,Z). Thus, SL(n,R)/SL(n,Z) is identified with Ln by the map given by
gSL(n,Z) 7→ g(Zn).

This identification induces a topology on Ln. We say that a subset E ⊂ Ln
is bounded if the closure of E is compact with respect to this topology. For each
lattice Λ ∈ Ln, we define

δRn(Λ) = min
v∈Λ\{0}

‖v‖∞.

Proposition 4.3 (Mahler compactness criterion). E ⊆ Ln is bounded if and only
if there exists ε > 0 such that δRn(Λ) > ε for all Λ ∈ E

Proof. See page 53 of [8]. �

For any pair of real numbers α and β, we define xα,β by

xα,β =

1 0 0
α 1 0
β 0 1

Γ.

Let A+ be the semigroup in G given by

A+ = {a(s, t) : s, t > 0}.

The following proposition states that the pairs of real numbers that satisfy the
equation in Littlewood’s conjecture are precisely those that correspond to the un-
bounded orbits under the action of coordinate dilations in the space L3.

Proposition 4.4. The pair of real numbers (α, β) satisfies

lim inf
n→∞

n‖nα‖‖nβ‖ = 0

if and only if A+xα,β is unbounded.

Proof. If either α or β is a rational number, then we can find an integer vector v
such that xα,β(v) has at least one zero in its entries. Then, we can use Proposition
4.3 to check that A+xα,β is unbounded. So, we may assume that both α and β are
irrational numbers.

Suppose that A+xα,β is unbounded. Let ε ∈ (0, 1
2 ) be given. By Proposition 4.3,

there exists positive numbers s, t > 0 such that

δR3((a(s, t)xα,β)(Z3)) < ε
1
3 .
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So, there exists (n, k, l) ∈ Z3 \ {0} such that

ε
1
3 > ‖(a(s, t)xα,β)(n, k, l)‖∞

= ‖

e−s−t 0 0
esα es 0
etβ 0 et

nk
l

 ‖∞
= ‖(ne−s−t, nesα+ kes, netβ + let)‖∞

Then, n must be nonzero; otherwise, either k 6= 0 so that |nesα+ kes| = |kes| > 1,
or l 6= 0 so that |netβ + let| = |let| > 1. Additionally, we can assume that n is
positive because we can replace (n, k, l) with (−n,−k,−l) without changing the
inequality above. Thus,

n‖nα‖‖nβ‖ = ne−s−t(es‖nα‖)(et‖nβ‖)
≤ ne−s−t(es|nα+ k|)(et|nβ + l|)
< ε

Since α and β are irrational, n‖nα‖‖nβ‖ 6= 0. Then, by repeating the argument
above, we can find a positive integer n′ so that

0 < n′‖n′α‖‖n′β‖ < n‖nα‖‖nβ‖.
In this manner, we can inductively choose a sequence of distinct positive integers
(nk) such that nk‖nkα‖‖nkβ‖ converges to 0 as k approaches ∞. Thus, α and β
satisfy the desired equation.

On the other hand, suppose that α and β satisfy

lim inf
n→∞

n‖nα‖‖nβ‖ = 0.

Let ε ∈ (0, 1
2 ) be given. Then, there exists n ∈ N such that

n‖nα‖‖nβ‖ < ε6.

We can find integers k and l such that ‖nα‖ = |nα− k|, and ‖nβ‖ = |nβ − l|. So,

n|nα− k||nβ − l| < ε6.

If max[|nα − k|, |nβ − l|] < ε, then we can choose positive numbers s and t such
that

es|nα− k| = ε, and et|nβ − k| = ε.

This implies that

ne−s−t <
ε6

es|nα− k|et|nβ − k|
< ε.

Now, suppose that max[|nα − k|, |nβ − l|] ≥ ε. Without loss of generality, we
may assume that |nα− k| ≥ ε. In this case, n|nβ − l| < ε5. Let Q be the smallest
integer larger than 1

2ε . By Theorem 1.2, there exists a positive integer q < Q so
that

‖qnα‖ < 1

Q
< 2ε.

Note that Q < 1
ε by our choice of ε. Then,

qn|qnβ − ql| < ε3 < ε.

So, we can choose positive numbers s and t such that

es‖qnα‖ = 2ε, and et|qnβ − ql| = ε.
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Moreover,
qn‖qnα‖|qnβ − ql| < qn|qnα− qk||qnβ − ql| < ε3.

Therefore,
‖(qne−s−t, qnesα− k′es, qnetβ − qlet)‖∞ ≤ 2ε,

where k′ is the integer closest to qnα. �

For any σ, τ > 0 and t ∈ R, set aσ,τ (t) = a(σt, τt). For any 0 < l < 1, define Kl

to be the closure of

{xα,β ∈ X : δR3(a(s, t)xα,β(Z3)) ≥ l for all s, t > 0}.
For any 0 < l < 1, Kl is a compact metric space by Proposition 4.3, and a(s, t)Kl ⊆
Kl for all s, t > 0. Note that if

⋃
0<l<1Kl is empty, then Littlewood’s conjecture is

true. For our purposes, we assume that
⋃

0<l<1Kl is nonempty.

Proposition 4.5. Let a ∈ A and K ⊆ X be compact with aK ⊆ K. Then the
map µ 7→ hµ(a|K) is an upper semi-continuous map from the space of a-invariant
probability measures on K with the weak-* topology to the nonnegative real numbers.

Proof. See Corollary 9.3 of [4]. �

Proposition 4.6. For any σ, τ > 0 and l > 0, the topological entropy of aσ,τ acting
on the compact set Kl is 0.

Proof. Let σ, τ > 0 and l > 0 be given. Suppose, for contradiction, that the
topological entropy of a(σ, τ) acting on Kl is positive. By Proposition 2.5, there
exists an a(σ, τ)-invariant probability measure ν′ on Kl such that hν′(a(σ, τ)) > 0.
Note that ν′ extends to a Radon probability measure ν on X supported on Kl.

For each n ∈ N, define the map ψn : C(Kl)→ R by

ψn(f) =
1

n2

∫ n

0

∫ n

0

∫
Kl

f(x) d(a(s, t)∗ν
′)(x) ds dt

for all f ∈ C(Kl). Note that

ψn(f) =
1

n2

∫ n

0

∫ n

0

∫
a(−s,−t)Kl

f(a(s, t)x) dν′(x) ds dt

=
1

n2

∫ n

0

∫ n

0

∫
Kl

f(a(s, t)x) dν′(x) ds dt,

because Kl ⊆ a(−s,−t)Kl for all s, t > 0. Then, ψn is a positive linear functional
and ‖ψn‖ = 1. By the Riesz-Kakutani representation theorem, ψn corresponds to
a unique probability measure ν′n. By construction, ν′n is a(σ, τ)-invariant. Then,
Proposition 2.6 and Proposition 4.5 imply that,

hν′n(a(σ, τ)) =
1

n2

∫ n

0

∫ n

0

ha(s,t)∗ν′(a(σ, τ)) ds dt.

For any s, t > 0, hν′(a(σ, τ)) = ha(s,t)∗ν′(a(σ, τ)); in fact, a(s, t) defines an isomor-
phism between (Kl, ν

′) and (Kl, a(s, t)∗ν
′) for all s, t > 0. Therefore,

hν′n(a(σ, τ)) = hν′(a(σ, τ)).

The space of Radon measures on Kl is the dual space of C(Kl), which is a
separable space. Thus, the unit sphere in the space of Radon measures on Kl is
metrizable in the weak-∗ topology. Since (ν′n)n∈N is a sequence contained in the
unit sphere, the Banach-Alaogulu theorem implies that there exists a subsequence
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(ν′nj )j∈N that converges in the weak-∗ topology. Let ν′∞ be the weak-∗ limit. Then,

ν′∞ is a(σ, τ)-invariant because, for any g ∈ C(Kl),∫
Kl

g(x) d(a(σ, τ)∗ν
′
∞)(x) =

∫
a(−σ,−τ)Kl

g(a(σ, τ)x) ν′∞(x)

= lim
j→∞

∫
a(−σ,−τ)Kl

g(a(σ, τ)x) dν′nj (x)

= lim
j→∞

∫
Kl

g(x) d(a(σ, τ)∗ν
′
nj )(x)

= lim
j→∞

∫
Kl

g(x) dν′nj (x)

=

∫
Kl

g(x) dν′∞(x).

Furthermore, Propostion 4.5 implies that

hν′∞(a(σ, τ)) ≥ lim sup
j→∞

hν′nj
(a(σ, τ)) = hν′(a(σ, τ)) > 0.

We denote the extension of ν′∞ to a Radon probability measure on X supported
on Kl by ν∞. Let f ∈ Cc(X) and s0, t0 ∈ R. We observe that∫

X

f(x) d(a(s0, t0)∗ν∞)(x)

=

∫
X

f(a(s0, t0)x) dν∞(x)

= lim
j→∞

1

n2
j

∫ nj

0

∫ nj

0

∫
X

f(a(s0 + s, t0 + t)x) dν(x) ds dt

= lim
j→∞

1

n2
j

∫ nj+t0

t0

∫ nj+s0

s0

∫
X

f(a(s, t)x) dν(x) ds dt

Then,

|
∫
X

f(x) dν∞(x)−
∫
X

f(x) d(a(s0, t0)∗µ∞)(x)|

≤ lim
j→∞

1

n2
j

∫ ∫
Rj

∫
X

|f(x)| dν(x) ds dt,

where Rj = ([0, nj ]× [0, nj ])4([t0, nj + t0]× [s0, nj + s0]). The Lebesgue measure
of Rj is at most 2(|t0|nj + |s0|nj). Therefore,

lim
j→∞

1

n2
j

∫ ∫
Rj

∫
X

|f(x)| dν(x) ds dt,

≤ lim
j→∞

2(|t0|nj + |s0|nj)‖f‖∞
n2
j

= 0.

As a result, ∫
X

f(x) dν∞(x) =

∫
X

f(x) d(a(s0, t0)∗ν∞)(x)
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for all f ∈ Cc(X) and s0, t0 ∈ R. Then, for every s0, t0 ∈ R,

ν∞ = a(s0, t0)∗ν∞

because a(s0, t0)∗ν∞ is a Radon measure. It follows that ν∞ is A-invariant.
Let ν∞ =

∫
Ξ
νξ dm(ξ) be the ergodic decomposion of ν∞. By Proposition 2.7,

hν∞(a(σ, τ)) =

∫
Ξ

hνξ(a(σ, τ)) dm(ξ).

Additionally,

hν∞(a(σ, τ)) = hν′∞(a(σ, τ)).

Therefore, we can choose an A-invariant ergodic measure νξ such that

hνξ(aσ,τ ) = hνξ(a(σ, τ)) > 0 and νξ(X \Kl) = 0.

This contradicts Corollary 4.2. �

For any r > 0 and x ∈ X, let BGr denote the open ball in G of dG-radius r at
the identity and let Br(x) = BGr x. We will assume the following lemma.

Lemma 4.7. For every r > 0, there exists a constant c0 ≥ 1 such that

c−1
0 ‖g − h‖ ≤ dG(g, h) ≤ c0‖g − h‖

for all g, h ∈ BGr , where ‖A‖ = maxi,j |aij | for A = (aij) ∈M3(R).

For any 0 < l < 1, define Cl to be the closure of

{x ∈ X : δR3(a(s, t)x(Z3)) ≥ l for all s, t > 0}.

It is a fact that, for every x ∈ X, there exists some r = r(x) > 0 small enough
such that the map given by g 7→ gx is an isometry between BGr and Br(x). For any
0 < l < 1, we can choose a unifrom r such that BGr is isomorphic to Br(x) for all
x ∈ Cl, because Cl is compact by the Mahler compactness critierion.

Fix a = a(1, 1). We note that if x ∈ X, g ∈ BGr and y = gx then ay = (aga−1)ax.
We define the unstable subgroup for conjugation with a by

U = {g ∈ G : anga−n → e as n→ −∞},

where e is the identity. Because

a−1ga =

 g11 e3g12 e3g13

e−3g21 g22 g23

e−3g31 g32 g33

 , for any g = (gij) ∈ G,

U consists of matrices of the form 1 0 0
∗ 1 0
∗ 0 1

 .

In particular, U is homeomorphic to R2. Moreover, if x = eΓ ∈ X is the identity
coset then

Ux ∩ Cl = Kl, for all 0 < l < 1.

The following lemma and proposition show that Kl is a countable union of sets
with zero upper box dimension for all 0 < l < 1.
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Lemma 4.8. Let C ⊆ X be compact with aC ⊆ C, and let r = r(C) be a positive
number such that g 7→ gx is an isometry from BGr to Br(x) for all x ∈ C. Then,
there exists λ > 1 and c2 > 0 so that for any small enough ε > 0, any z ∈ C, any
f ∈ BUr , and any integer N ≥ 1 with dX(fz, z) ≥ λ−N ε, there exists a nonnegative
integer n < N with dX(anfz, anz) ≥ c2ε.

Proof. See lemma 8.4 of [4]. �

Proposition 4.9. Let C ⊆ X be compact with aC ⊆ C. Then, one of the following
properties holds.

(1) The intersection Ux∩C of the unstable manifold Ux with C is a countable
union of compact sets with upper box dimension zero for every x ∈ X.

(2) The action of a on C has positive topological entropy.

Proof. Suppose that there exists some ε > 0 such that Py = C ∩ (BUε y) has upper
box dimension 0 for every y ∈ C. Let x ∈ X such that Ux ∩ C is nonempty.
Suppose that D ⊆ U is a compact subset of U . Then, Dx ∩ C is also a compact
subset of C, so there exists a finite cover {Ui}mi=1 of Dx∩C such that Ui = Pyi for
some yi ∈ C for every 1 ≤ i ≤ m. Since upper box dimension is finitely additive,
the upper box dimension of Dx ∩ C is 0. Then, Ux ∩ C is a countable union of
compact sets of box dimension zero because U is homeomorphic to R2.

On the other hand, suppose that for any ε > 0 there exists y = y(ε) ∈ C such
that the box dimension of Py is positive. Choose r > 0 and ε′ > 0 such that r
and ε′ satisfy the hypothesis of lemma 4.8 and 2ε′ ≤ r. Let y′ be the point in C
such that dimbox(Py′) is nonzero. Fix b ∈ (0, dimub(Py′)). For every N > 0, let
FN ⊆ Py′ be a ε′λ−N -separated set of maximal cardinality. Since b < dimub(Py′),
lemma 3.3 implies that there exist infinitely many integers N with

b ≤ log(sep(ε′λ−N , Py′))

− log(ε′λ−N )
.

We observe that

− log(ε′λ−N )b ≤ log(sep(ε′λ−N , Py′))

⇒ log((ε′)−bλNb) ≤ log(|FN |)

⇒ (ε′)−bλNb ≤ |FN |.

Let (Nk) be an increasing sequence of integers such that (ε′)−bλNkb ≤ |FNk |
for each k ∈ N. Fix k ∈ N, and choose two distinct points p and q in FNk . Then,
dX(p, q) ≥ ε′λ−Nk and there exist g, h ∈ BUε′ such that p = gy′ and q = hy′. We note
that f = gh−1 ∈ BUr . Lemma 4.8 implies that there exists a nonnegative integer n
such that n < Nk and dX(anfq, anq) ≥ c2ε′. Therefore, FNk is (Nk, c2ε

′)-separated.



DYNAMICS AND LITTLEWOOD’S CONJECTURE 17

Finally, we see that

htop(a|C) = lim
ε→0+

lim sup
n→∞

1

n
log(sep(n, ε, a))

≥ lim sup
n→∞

1

n
log(sep(n, c2ε

′, a))

≥ lim sup
k→∞

1

Nk
log(sep(Nk, c2ε

′, a))

≥ lim sup
k→∞

1

Nk
log(|FNk |)

≥ b log(λ) + lim sup
k→∞

log((ε′)−b)

Nk
> 0.

�

For each 0 < l < 1, define

Sl = {(α, β) ∈ [0, 1]× [0, 1] : xα,βΓ ∈ Kl}.

Now, fix 0 < l < 1 and choose r > 0 such that the map g 7→ gx is an isometry
between BGr and Br(x) for all x ∈ Kl. By lemma 4.7, there exists a constant c0 ≥ 1
such that

c−1
0 max[|α− α′|, |β − β′|] ≤ dG(xα,β , xα′,β′) ≤ c0 max[|α− α′|, |β − β′|].

for any xα,β ∈ Kl and xα′,β′ ∈ Br(xα,β). Additionally, each element of Sl corre-
sponds to a unique element in Kl. Thus, if ε < r and E ⊆ Sl is an ε-separated set,
then

F = {xα,βΓ : (α, β) ∈ E}
is an ε

c0
-separated set in Kl. It follows that

dimub(Sl) ≤ dimub(Kl) = 0.

By Proposition 3.5,

dimH(Sl) = 0.

Corollary 4.10. Let S = {(α, β) ∈ [0, 1] × [0, 1] : A+xα,β is bounded}. Then, the
Hausdorff dimension of S is 0.

Therefore, theorem 4.2 implies that the set of counterexamples to the Littlewood
conjecture has Hausdorff dimension zero. In the remaining sections, we will discuss
some of the ideas involved in the proof of theorem 4.2.

5. Measure rigidity

For notational convenience, define

Σ = {t = (t1, t2, t3) ∈ R3 : t1 + t2 + t3 = 0}.

For each t ∈ Σ set αt = a(t2, t3).
Let H 6 G be a subgroup. An element g ∈ G normalizes H if gHg−1 = H, and

a subgroup L 6 G normalizes H if any element of L normalizes H. The normalizer
of H is defined by

N(H) = {g ∈ G : gHg−1 = H}.
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An element g ∈ G centralizes H if gh = hg for all h ∈ H, and the centralizer of H
is defined by

C(H) = {g ∈ G : gh = hg for all h ∈ H}.
Both N(H) and C(H) are subgroups of G containing H. We say that H is unipotent
if (h − Id)n = 0 for some n ∈ N. If A normalizes H, then for every x ∈ X and
a ∈ A,

a(Hx) = H(ax).

As a result, the foliation of X into H-orbits is invariant under the action of A.
Let µ be an A-invariant probability measure on X. For any unipotent subgroup

U 6 G normalized by A, there exists a system {µUx }x∈X of Radon measures on U
and an A-invariant subset X ′ ⊆ X of full measure so that the following properties
hold.

(1) The map x 7→ µUx is measurable.
(2) For every ε > 0 and x ∈ X ′, µUx (BUε ) > 0.
(3) For every x ∈ X ′ and u ∈ U with ux ∈ X ′, µUx ∝ u∗µ

U
ux, where u∗µ

U
ux is

the push forward of µUux under right multiplication by u.
(4) We normalize the measures so that µUx (BU1 ) = 1 for every x ∈ X ′. Then,

for any x ∈ X and t ∈ Σ, µUαtx is proportional to the push forward of µUx
under conjugation by αt.

(5) If U ⊆ C(αt), then µUαtx = µUx .

(6) µ is U -invariant if and only if µUx is the Haar measure on U for almost every
x ∈ X ′.

(7) µUx is atomic if and only if µUx is supported on the identity e ∈ U . In this
case, we say that µUx is trivial.

Now, let (i, j) be a pair of distinct integers with 1 ≤ i, j ≤ 3. We let Eij denote
the matrix whose entries are 1 at the (i, j)-th entry and 0 everywhere else, and we
define

Uij = {uij(s) : s ∈ R}, where uij(s) = Id+ sEij .

We observe thatet1 0 0
0 et2 0
0 0 et3

uij(s)

e−t1 0 0
0 e−t2 0
0 0 e−t3

 = uij(e
ti−tjs).

In particular, A normalizes Uij so that the orbits of Uij form an A-invariant folia-
tion. We denote the foliation of X into Uij-orbits by Fij . The leaves of this foliation
are one-dimensional because Uij is a one-parameter subgroup of G. Additionally,

Uij is a unipotent subgroup of G. In this case, we write {µUijx }x∈X = {µijx }x∈X .
We will assume the following adaptation of the Ledrappier-Young formula ([7]).

Proposition 5.1. For any pair of indices, (i, j), there are constants sij(µ) ∈ [0, 1]
that satisfy the following properties.

(1) sij(µ) = 0 if and only if µijx is trivial for almost every x ∈ X.
(2) sij(µ) = 1 if and only if µijx is Haar for almost every x ∈ X.
(3) For any t ∈ Σ

hµ(αt) =
∑
i,j

sij(µ)(ti − tj)+,

where (r)+ = max(0, r) for each r ∈ R.
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Proof. See lemma 6.2 of [3] �

The following theorem is an important ingredient in the proof of Theorem 4.1.

Theorem 5.2. Let µ be an A-invariant and ergodic probability measure on X. For
every pair (i, j) of distinct indices, there are two mutually exclusive possibilities;
either µijx and µjix are trivial for almost every x ∈ X, or µijx and µjix are Haar for
almost every x ∈ X.

Suppose that there exists a pair of distinct indices (a, b) such that µabx is not
trivial for all x in some subset of positive measure. Define

E = {x ∈ X : µabx is trivial }.

Then, E is an essentially A-invariant subset of X. Indeed, if x ∈ E ∩X ′, then for
any t ∈ Σ there exists a constant C > 0 that depends on x and t such that

µabαtx(Uab \ {0}) = Cµabx (α−t(Uab \ {0})αt)

= Cµabx (Uab \ {0})
= 0.

So, the ergodicity of µ implies that E is a null set. In other words, µabx is nonatomic
almost everywhere.

Then, the proof of Theorem 5.2 can be broken up into two cases. Let 1 ≤ a, b, c ≤
3 be distinct indices and suppose that µabx is nonatomic almost everywhere. The
high entropy case is when either µacx or µcbx is nonatomic for almost every x ∈ X.
The low entropy case is when both µacx and µcbx are trivial for almost every x ∈ X.
In both cases, we can conclude that µabx and µbax is Haar almost everywhere.

For now, we assume that Theorem 5.2 holds. Suppose that µ is an A-invariant
and ergodic probability measure on X such that hµ(a◦) > 0 for some one parameter
subgroup, {at}t∈R, of A. We write a1 = αt for some t ∈ Σ. Since hµ(αt) > 0,
there exists a distinct pair of indices (a, b) such that ta > tb and sab(µ) > 0 by
Proposition 5.1. By Theorem 5.2, µabx and µbax are Haar almost everywhere. Then,
µ is invariant under the actions of Uab and Uba. If µacx is Haar almost everywhere,
then µ is also invariant under the actions of Ubc because Ubc is contained in the
subgroup generated by Uba and Uac. By Theorem 5.2, µ is invariant under Uca and
Ubc. Then, µ is G-invariant because the collection of subgroups

{Uij : (i, j) is a pair of distinct indices}

generates G. An analogous argument holds for the case when µbcx is Haar almost
everyhwere.

On the other hand, suppose that µacx and µbcx are trivial almost everywhere.
Without loss of generality, we may assume that a = 1 and b = 2. Define H to be

the subgroup of G consisting of elements of the form

∗ ∗ 0
∗ ∗ 0
0 0 1

 . It is a fact that

U12 and U21 generate H. So, µ is H-invariant and H is generated by unipotent
one-parameter subgroups. Additionally, H is normalized by A. It is also a fact that
H is the maximal proper subgroup of G that satisfies these three conditions. Then,
Theorem 6.1 of [4] implies that there exists a subgroup L 6 G such that H 6 L, L
is normalized by A, and almost every H-ergodic component of µ is the L-invariant
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measure on a closed L-orbit. With more work, we can show that H must equal L
using the maximailty of H. Define

XH = {x ∈ X : Hx is closed and of finite volume }.

Then, the support of µ is contained in XH .
Let x ∈ XH and write x = gΓ where g ∈ G. It is a fact that we can choose

the representative g to be a matrix with rational entries. Set z = (1, 1, 0) and
m′ = g−1z. Then, m′ is a rational vector so there exists an integer k such that
m = km′ is an integer vector and gm = kz. Define a one parameter subgroup
{bs}s∈R 6 A by

bs = αst where t = (−1,−1, 2).

Then,

bsgm = bskz = (e−sk, e−sk, 0) for all s ∈ R.

By Mahler’s compactness criterion, bsx → ∞ as t → ∞; in other words, for any
compact subsetK ⊆ X, bsx /∈ K for all s sufficiently large. In particular, ifK ⊆ XH

is any compact subset, then x ∈ K cannot return to K infinitely often under the
action of b1. This contradicts Poincaré recurrence because we can approximate the
measure of XH by compact sets contained in XH and XH is a full measure set.
Therefore, µ must be G-invariant.

In this way, Theorem 5.2 implies Theorem 4.1. In the remaining two sections,
we will discuss the proof of Theorem 5.2.

6. The high entropy case

Let λ = (i, j) be a pair of distinct indices. Let k be the other index and let ξ be
a pair of distinct indices such that ξ 6= (i, j) and ξ 6= (j, i). If ξ = (k, i) or ξ = (k, j)
choose t = (t1, t2, t3) ∈ Σ such that ti = tj = 1. Otherwise, choose t such that
ti = tj = −1. Then, αt acts isometrically on the leaves of Fλ = Fij . and contracts
the leaves of Fξ.

For each x ∈ X, we define the measure νλx on R by

νλx (A) = µλx({exp(sEλ) : s ∈ A})

for any Borel set A ⊆ R. It is a fact that νλx is a Radon measure on R for each
x ∈ X.

Lemma 6.1. For any f ∈ Cc(R), the map Φf : X → R given by

Φf (x) =

∫
R
f dνλx

is measurable.

Proof. See the proof of proposition 5.1 in [3]. �

Proposition 6.2. For some null set N ⊆ X and for any two x, y ∈ X \ N such
that there exists y′ = exp(rEλ)x ∈ Fλ(x) with y′ ∈ Fξ(y),

νλy (A) = Cνλx (A+ r)

for any Borel set A ⊆ R and some constant C > 0.
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Proof. Let N0 be the null set such that for any x, y ∈ X \N0,

µλx ∝ u∗µλy whenever y = ux for some u ∈ Uλ, and

µλx = µλy whenever y = αnt for some n ∈ Z.

It is a fact that Cc(R) is a separable space. So we can choose a countable dense
subset, {fk}k∈N, of Cc(R). For each j ∈ N, we use Luzin’s theorem to choose a
compact set, Kj , such that the restriction (Φfk)|Kj is continuous for all k ∈ N and

µ(Kj) > 1− 1
j . By replacing Kj with

⋃j
i=1Ki, we may assume that the sequence

(Kj) is increasing.
For each j ∈ N, define gj : X → R by

gj(x) = lim
n→∞

1

n

n−1∑
k=0

χKj (α
ktx).

By the Pointwise Ergodic Theorem, gj(x) = µ(Kj) for almost every x ∈ X. Define

Lj = {x ∈ X : gj(x) ≤ 1

2
}.

Note that Lj is a measurable set for each j ∈ N and (Lj)j∈N is an increasing
sequence. We observe that

1 = lim
j→∞

µ(Kj)

= lim
j→∞

∫
X

gjdµ

≤ lim
j→∞

(
µ(X \ Lj) +

1

2
µ(Lj)

)
≤1− 1

2
lim
j→∞

µ(Lj).

Therefore, limj→∞ µ(Lj) = 0 so that N = N0 ∪
(⋂∞

j=1 Lj
)

is a null set.

Now, suppose that x, y /∈ N and that there exists an element y′ = exp(rEλ) in
Fλ(x) ∩ Fξ(y). By the construction of N , there exists j0 ∈ N such that x, y /∈ Lj0 .
So, there exists ε > 0 such that

min[gj0(x), gj0(y)] ≥ 1

2
+ ε.

Then, there exists N ∈ N such that for all n ≥ N
n−1∑
k=0

χKj0 (αktx) ≥ n+ nε

2
, and

n−1∑
k=0

χKj0 (αkty) ≥ n+ nε

2
.

This implies that

|{k ∈ {1, . . . , n} : αktx, αkty ∈ Kj}| ≥ bnεc,

for all n ≥ N . Therefore we can choose an increasing sequence of integers (ni)i∈N
so that

αnitx, αnity ∈ Kj for all i ∈ N.
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Since Kj is compact, we can replace (ni)i∈N with a subsequence if necessary and
assume that (αnitx)i∈N and (αnity)i∈N converge to x and y, respectively.

By our choice of N ,

νλαnitx = νλx for all i ∈ N.

By our choice of Kj ,∫
R
fk dν

λ
x = lim

i→∞

∫
R
fk dν

λ
αnitx =

∫
R
fk dν

λ
x for all k ∈ N.

Because {fk}k∈N is dense in Cc(R),∫
R
f dνλx =

∫
R
f dνλx for all f ∈ Cc(R).

Therefore νλx = νλx . Similarly, νλy = νλy . Since αt contracts Fξ(y),

d(αnity, αnity′)→ 0 as i→∞.

Additionally, αnity′ = exp(rEλ)αnitx for each i ∈ N. It follows that

exp(rEλ)x = lim
i→∞

αnity′ = y.

Thus,

νλy = νλy = νλexp(rEλ)x ∝ (T−r)∗ν
λ
x = (T−r)∗ν

λ
x ,

where T−r : R→ R is translation by −r. �

A notable special case of the proposition above is when r = 0 and y′ = x.

Corollary 6.3. There exists a null set N ⊆ X so that for any two x, y ∈ X \ N
such that x ∈ Fξ(y),

νλx = νλy .

Lemma 6.4. Let Fλ1 , . . . , Fλj be different foliations. Let N be a null set. For each
1 ≤ i ≤ j, define

N(λi, x) = {g ∈ Uλi : gx ∈ N}.

Then, there exists a null set N ′ such that N ⊆ N ′ and µλix (N(λi, x)) = 0 for all
x /∈ N ′ and 1 ≤ i ≤ j.

Proof. See lemma 3.1 in [3]. �

Now, suppose that 1 ≤ i, j, k ≤ 3 are three different indices such that µijx and
µjkx are nonatomic almost everywhere. Choose a null set N0 ⊆ X such that the
the properties listed in Section 5 and the statement of Proposition 6.2 holds for all
possible choices of λ, and µijx and µjkx are nontrivial for all x ∈ N0. By lemma 6.4,
there exists a null set N such that N0 ⊆ N and µabx (N((a, b), x) = 0 for all x /∈ N
and 1 ≤ a, b ≤ 3 with a 6= b, where

N((a, b), x) = {g ∈ Uab : gx ∈ N}.
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Let z /∈ N and ε > 0. By the construction of N , µijz is nonatomic. Then, there
exists r ∈ (−

√
ε,
√
ε) \ {0} such that

z′ = exp(rEij)z ∈ Fij(z) \N,

because every neighorhood of the identity element in Uij has positive measure.

Additionally, Proposition 6.3 implies that νjkz = νjkz′ . So, we can choose s ∈
(−
√
ε,
√
ε) \ {0} such that

x = exp(sEjk)z ∈ Fjk(z) \N, and

y = exp(sEjk)z′ ∈ Fjk(z′) \N.

We observe that

y = exp(sEjk)exp(rEij)z

= exp(sEjk)exp(rEij)exp(−sEjk)x

= (Id+ sEjk)(Id+ rEij)(Id− sEjk)x

= (Id+ rEij)(Id− rsEik)x,

since

(Id− rEjk)(Id+ sEjk)(Id+ rEij)(Id− sEjk) = Id− rsEik.
Set

y′ = (Id− rsEik)x ∈ Fik(x),

so that y = exp(rEij)y
′. By Proposition 6.2, there exists D > 0 such that

νikx (A) = Dνiky (A− rs),

for any Borel set A ⊆ R. Additionally, νikz = νikz′ , ν
ik
x = νikz , and νiky = νikz′ by

Corollary 6.3. Therefore, there exists D > 0 so that

νikz (A+ rs) = Dνikz (A),

for any Borel set A ⊆ R. Note that 0 < |rs| < ε.
For each t ∈ R, define Tt : R→ R by

Tt(x) = x+ t
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and define the Borel measure (Tt)∗ν
ik
z by

(Tt)∗ν
ik
z (B) = νikz (T−t(B)) = νikz (B − t).

Define G(νikz ) ⊆ R by

G(νikz ) = {t ∈ R : (Tt)∗ν
ik
z ∝ νikz }.

Then, G(νikz ) is a subgroup of R. We have shown above that 0 is an accumulation
point of G(νikz ). This implies that G(νikz ) is a dense in R.

We claim that G(νikz ) is a closed in R. To see this, let (tn) be a sequence in
G(νikz ) that converges to t0 ∈ R. For each t ∈ G(νikz ) let Ct be the positive number
such that (Tt)∗ν

ik
z = Ctν

ik
z . Then, for any f ∈ Cc(R),∫

R
f(x+ t0) dνikz (x) = lim

n→∞

∫
R
f(x+ tn) dνikz (x)

by the Dominated Convergence Theorem

= lim
n→∞

Ctn

∫
R
f(x) dνikz (x)

Therefore, t0 ∈ G(νikz ) and Ct0 = limn→∞ Ctn . As a result, G(νikz ) is a closed
subgroup of R. It follows that G(νikz ) = R.

We need to use the Lebesgue differentiation theorem, which is stated here.

Proposition 6.5. Let ν1 and ν2 be two locally finite Borel measures on R.

(1) The limit

ρ(x) = lim
r→0

ν1((x− r, x+ r))

ν2((x− r, x+ r))

exists ν2-a.e. and ρ : R→ [0,∞) is a ν2 measurable function.
(2) The set

S = {x : ρ(x) =∞}
is measurable with respect to ν1.

(3) If (ν1)|S is the restriction of ν1 to S, then

ν1 = ρν2 + (ν1)|S .

Let ρ and S be defined as in the statement of Proposition 6.5 with ν1 = νikz and
ν2 = m, where m is the Lebesgue measure. Suppose for contradiction that νikz is
not absolutely continuous with respect to m. Then, S has positive measure. Fix
x ∈ S and let y ∈ R be given. Set t = y − x. Because t ∈ G(νikz ),

(Tt)∗ν
ik
z = Ctν

ik
z

Then,

ρ(y) = lim
r→0

νikz ((y − r, y + r))

m((y − r, y + r))

= lim
r→0

C−1
t (Tt)∗ν

ik
z ((y − r, y + r))

m((y − r, y + r))

= lim
r→0

C−1
t νikz ((x− r, x+ r))

m((x− r, x+ r))

= C−1
t ρ(x).
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Therefore, S must equal R. This contradicts Proposition 6.5. So, νikz is absolutely
continuous with respect to m. By a similar argument, m is absolutely continuous
with respect to νikz . Therefore, there exists a measurable function hz : R→ (0,∞)
so that dνikz = hz dm.

Let t ∈ R. We see that

d(Tt)∗ν
ik
z = Ct dν

ik
z = Cthz dm.

On the other hand, for any f ∈ Cc(R),∫
R
f(x) d(Tt)∗ν

ik
z (x) =

∫
R
f(x+ t) dνikz (x)

=

∫
R
f(x+ t)hz(x) dm(x)

=

∫
R
f(x)hz(x− t) dm(x).

It follows that

hz(x− t) = Cthz(x)

for almost every x ∈ R.
Note that the map t 7→ Ct satisfies Cs+t = CsCt for all s, t ∈ R. Additionally, we

proved that this map is continous when we showed that G(νikz ) is closed. Then, the
map t 7→ log(Ct) is a countinous additive function. It is a fact that all continuous
additive functions are linear. As a result, there exists β ∈ R such that log(Ct) = βt
or Ct = eβt for all t ∈ R. This implies that

hz(x− t) = eβthz(x)

for any t ∈ R and for almost every x ∈ R. Since h is positive almost everywhere,
there exists some constant D > 0 so that

hz(x) = Deβx

for all x ∈ R. We have shown that, for any z /∈ N , there exist constants D > 0 and
β ∈ R depending on z so that

dνikz = Deβx dm.

Let ε > 0 be given. Suppose for contradiction that the set

Eε = {z ∈ X \N :
∣∣∣ log

(hz(x− 1)

hz(x)

)∣∣∣ > ε for almost every x ∈ R}

has positive measure with respect to µ.
Define F : X \N → R by

F (z) = lim sup
n→∞

log νikz ([−n, n])

2n
.

We claim that F is a measurable function. For each n, j ∈ N, set

Onj =

[
−n− 1

j
, n+

1

j

]
and let gnj : R → R be a continuous function such that gnj = 1 on [−n, n] and

gnj = 0 outside Onj . Then, gnj → χ[−n,n] in L1(R, νikz ) for all z ∈ X \N because νikz
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is a Radon measure. Hence,

F (z) = lim sup
n→∞

log(lim supj→∞ Φgnj (z))

2n

is measurable.
Let z ∈ Eε. Then, dνikz = Deβx dm for some D > 0 and |β| > ε. We consider

the case when β > 0. For any r ∈ R,

log(νikz ([−r, r]))
2r

=
log(

∫ r
−r 1 dνikz )

2r

=
log(

∫ r
−rDe

βx dm(x))

2r

=
log(D/β) + log(eβr − e−βr)

2r
.

Additionally, for any r ∈ R,

log(eβr − 1)

2r
≤ log(eβr − e−βr)

2r
≤ log(eβr)

2r
=
β

2

and if r is large enough so that eβr > 1 then

log(eβr − 1) = βr +
1

ξ
for some ξ ∈ (eβr − 1, eβr)

by Taylor’s theorem. Therefore,

F (z) = lim sup
r→∞

log νikz ([−r, r])
2r

=
β

2
.

Similarly, when β < 0,

F (z) = lim sup
r→∞

log νikz ([−r, r])
2r

= −β
2
.

It follows that

F (z) = lim sup
r→∞

log νikz ([−r, r])
2r

>
ε

2
,

for all z ∈ Eε.
Choose t = (t1, t2, t3) ∈ Σ so that ti > tk. Let z ∈ Eε be a typical point for

Poincaré recurrence. Then, there exists an increasing sequence of natural numbers
(nk) such that αnktz /∈ N . On the other hand, for any z /∈ N , n ∈ N, and t ∈ Σ,

F (αntz) = lim sup
r→∞

log(νikαtz([−r, r]))
2r

= lim sup
r→∞

log(C) + log(νikz ([−ren(tk−ti), ren(tk−ti)]))

2r

= en(tk−ti) lim sup
r→∞

log(C) + log(νikz ([−ren(tk−ti), ren(tk−ti)]))

2ren(tk−ti)

= en(tk−ti)F (z).

Then, F (αnktz) → 0 as k → ∞. So, αnktz /∈ Eε for all k large enough. This is a
contradiction. Therefore, Eε must be a null set. Since ε > 0 was given, we have
proved the following result.
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Proposition 6.6. Let 1 ≤ i, j, k ≤ 3 be three different indices. If µijx and µjkx are
nonatomic almost everywhere, then µikx is the Haar measure almost everywhere.

Theorem 6.7. Let a, b, and c be distinct indices. Suppose that µabx is nontrivial
almost everywhere and that either µacx or µcbx is nontrivial almost everywhere. Then
both µabx and µbax are Haar measures almost everywhere and µ is invariant under
the action of the group generated by Uab and Uba.

Proof. By Proposition 6.6 and Proposition 5.1,

sca(µ) > 0⇒ scb(µ) = 1 and sbc(µ) > 0⇒ sac(µ) = 1.

Define t = (t1, t2, t3) and t′ = (t′1, t
′
2, t
′
3) by ta = 2

3 , tb = − 1
3 , tc = − 1

3 , t′a = − 1
3 ,

t′b = 2
3 , and t′c = − 1

3 . By Proposition 5.1,

hµ(αt) = sab(µ) + sac(µ),

hµ(α−t) = sba(µ) + sca(µ),

hµ(αt′) = sba(µ) + sbc(µ), and

hµ(α−t
′
) = sab(µ) + scb(µ).

By the properties of measure theoretic entropy,

hµ(αt) = hµ(α−t) and hµ(αt′) = hµ(α−t
′
).

Therefore,

sab(µ) + sac(µ) = sba(µ) + sca(µ) and

sba(µ) + sbc(µ) = sab(µ) + scb(µ).

Note that sab(µ) > 0 by Proposition 5.1. Then,

sac(µ) = 1⇒ sca(µ) > 0⇒ scb(µ) = 1⇒ sbc(µ) > 0⇒ sac(µ) = 1.

In particular, sac(µ) ≥ sca(µ), so that

sba(µ) ≥ sab(µ) > 0.

By Proposition 6.6 and Proposition 5.1,

scb(µ) > 0⇒ sca(µ) = 1 and sac(µ) > 0⇒ sbc(µ) = 1.

As a result,

sbc(µ) = 1⇒ scb(µ) > 0⇒ sca(µ) = 1⇒ sac(µ) > 0⇒ sbc(µ) = 1.

It follows that

sac(µ) = 1⇔ sac(µ) > 0⇔ scb(µ) > 0⇔ scb(µ) = 1.

Thus, µacx and µcbx are Haar almost everywhere by Proposition 5.1.
Now, we can reverse the roles of sab(µ) and sac(µ) and apply the arguments

above to conclude that µabx is Haar almost everywhere. Note that the inequalities
above also imply that µcax and µbcx are Haar almost everywhere. This allows us to
conclude that µbax is Haar almost everywhere. �
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7. The low entropy case

We will breifly overview the theorems used in the low entropy case. Let a, b and
c be distinct indices and suppose that µabx is nontrivial almost everywhere but µacx
and µcbx are trivial almost everywhere. We recall from the proof of theorem 6.7 that

sab(µ) + sac(µ) = sba(µ) + sca(µ) and

sba(µ) + sbc(µ) = sab(µ) + scb(µ).

Then, sba(µ) ≤ sab(µ), since sac(µ) = 0. Similarly, sab(µ) ≤ sba(µ), because
sbc(µ) = 0. Then,

sba(µ) = sab(µ).

Therefore, it suffices to show that µabx is Haar almost everywhere.
We define

A′ab = {αt ∈ A : ta = tb} and

Cab = C(< Uab, Uba >) = C(Uab) ∩ C(Uba).

Let K ⊆ X be a compact subset. We say that the A′ab returns to K are strong
exceptional if there exists δ > 0 so that for all x, x′ ∈ K and αt ∈ A′ab with
x′ = αtx ∈ Bδ(x) ∩K, every g ∈ BGδ with x′ = gx satisfies g ∈ Cab.

Proposition 7.1. The following two conditions are equivalent.

(1) Almost every ergodic component of µ with respect to A′ab is supported on a
single Cab-orbit.

(2) For every ε > 0, there exists a compact set K with measure µ(K) > 1 − ε
so that the A′ab-returns to K are strong exceptional.

Proof. See Proposition 4.3 of [4]. �

The main theorem in the low entropy case states that µ is Uab invariant if the
two equivalent conditions in Proposition 7.1 fails.

Theorem 7.2. Suppose that µabx are nontrivial almost everywhere and that µijx are
trivial almost everywhere for every pair of indices (i, j) such that (i, j) 6= (a, b) and
either i = a or j = b. Then one of the following properties holds.

(1) Almost every ergodic component of µ with respect to A′ab is supported on a
single Cab-orbit.

(2) µ is Uab-invariant.

Proof. See Section 4 of [4]. �

Then, we can conclude that µ is Uab invariant because there is no element γ ∈ Γ
that satisfies the conclusion of the following theorem.

Theorem 7.3. Suppose that ν is an A′ab invariant probability measure on X and
that supp(ν) ⊆ Cabx for some x ∈ X. Then, there exists an element γ ∈ Γ with the
following properties.

(1) γ is diagonalizable over R.
(2) ±1 are not eigenvalues of γ.
(3) γ has one eigenvalue with multiplicity two and another simple eigenvalue.

Proof. See Theorem 5.1 of [4]. �
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8. Further work

We have merely cited some interesting results in this paper, and it will be worth-
while to learn the proofs of these results. The proof of Proposition 5.1 uses the idea
that the conditional measure for foliations into higher dimensional leaves is a prod-
uct of the conditional measures on the one-dimensional leaves considered above
([3]). Deducing Theorem 4.1 from Theorem 5.2 uses results from the theory of
algebraic groups ([4]). The techniques involved in the proof of Theorem 7.2 are
related to the works of Marina Ratner on unipotent flows ([4]).

Moreover, there are other interesting topics in number theory related to the ideas
discussed here; the type of dynamics considered in this paper can also be observed
in the study of automorphic forms and ideal classes in number fields ([12]).
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