DYNAMICS AND LITTLEWOOD’S CONJECTURE

SHIN KIM

ABSTRACT. We consider the action of the group, A, of positive diagonal matri-
ces on the space X = SL(3,R)/SL(3,Z). Manfred Einsiedler, Anatole Katok,
and Elon Lindenstrauss showed that if p is an A-invariant and ergodic prob-
ability measure on X and there exists a one-parameter subgroup of A acting
on X with positive entropy, then p must be an algebraic measure. This result
is used to conclude that the set of counterexamples to Littlewood’s conjucture
has Hausdorfl dimension zero if the set is nonempty. We will discuss some
parts of their work.
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1. LITTLEWOOD’S CONJECTURE
For any real number z, we let ||z|| = min{z —p : p € Z} be the distance

between x and the integer closest to x. The following statement about simultaneous

approximation by rationals is known as Littlewood’s conjecture.
Conjecture 1.1. For any real numbers o and (3,

liminf g[[ga||||l¢B]| = 0.
q—o0

To provide some context for this conjecture, we review some basic results in
Diophantine approximation. Let a be any real number. We denote the greatest
integer less than or equal to a as |«]. The fractional part of « is defined by

{a} = a — |a]. The theorem below is known as Dirichlet’s theorem.

Theorem 1.2. Let Q be any integer greater than 1. Then there exist integers p

and q such that 1 < ¢ < @ and | ag—p |< é

Date: May 30, 2018.



2 SHIN KIM

Proof. The theorem holds whenever « is an integer or whenever « is a rational
number whose denominator is less than ) when « is expressed in the lowest terms.
So, we assume that « is either an irrational number, or a rational number whose
lowest possible denominator is greater than or equal to Q. Then, the @+ 1 numbers

0,1,{a},{2a},...,{(Q — 1a}

are distinct numbers in the interval [0,1]. We divide the interval [0, 1] into @
intervals given by

By the pigeonhole principle, one of the ) subintervals contains at least two of
the @ + 1 numbers. It follows that, there exist integers r1,72,$; andss such that
0<ry,re <Q, r1 >rg, and

1
< —.
T Q

Setting g = r1 — 19 and p = 51 — s2, we see that 1 < ¢ < @ and | ga — p |< é O

| (ra—s1) — (roa — s2) |

Corollary 1.3. Suppose that « is irrational. Then, there exist infinitely many
pairs p and q of relatively prime integers with | o — g |< q%

In particular, Corollary 1.3 implies that

liminf g|gall <1
q— 00

for any irrational number . However, it is not true that there are infinitely many
distinct rationals £ such that [ o — & |< 5 for an arbitrary fixed constant ¢ > 0.

Lemma 1.4. Let « be a real quadratic irrational that is a root of a mon-zero poly-
nomial, P(T) = aT? + bT + c, with integer coefficients. Let D be the discriminant.
Then, for any A > /D, the inequality

1
Ag?

‘a - B’ <
q
has only finitely many solutions.
Proof. Suppose that 2 is a rational number such that | @ — £ |< 7. Then,
2
P =[a(5) ++(5) +<
q q q

_|ap® + bpg + c?|
- -

1

ZqQ?
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because P(?) # 0 and ap? +bpg +cg® is an integer. Write P(T) = a(T —a)(T —d').
Then the discrfiminant of P(T) is D = a?(a — o/)?. We observe that

LOIRIERDITS
< agh(3 )

1
)
q q

< —

= Ag? + A244
Note that (Aifz + A';lj}g/(q%) = ? + A',f(lz converges to Q < 1 as ¢q approaches
0o. Thus, there exists an integer N, which depends only on D, A, and a, so that ¢
has to be less than N. ]

Let z = %(\/5 —1). Then,  is a root of the polynomial Q(T) = T?+T — 1, and
the disciriminant of Q(T) is 5. So, the lemma above implies that if A > /5, the
set

p P 1
Pegife-?<
{q q Aq2}
is finite. This proves the following theorem, due to Hurwitz.

Theorem 1.5. Ifc < %, then there exists an irrational number o such that there
are at most finitely many distinct rationals g that satisfy

c
q q
Since z = £(v/5 — 1) is an irrational number, our observation above implies that
there exists some constant r > 0, which depends on z, such that
r
--2-
q q
for all § € Q. Equivalently,
r
||q.'1?|| > -,
q

for all ¢ > 1. We say that a number such as x is badly approzimable by rationals
and we define

Bad = {z € R : there exists r = r(z) > 0 with ||qz| > " for all qg>1}
q

to be the set of all badly approximable numbers.

If € Bad, then liminf,_, ¢|/gz|| > 0. On the other hand, if « is an irrational
number and z ¢ Bad, then we can find a sequence of distinct naturals (g,) such
that gn|gnz|| converges to 0. Thus, the set of counterexamples to the one dimen-
sional analogue of Littlewood’s conjecture is precisely Bad. Then, we can interpret
Littlewood’s conjecture as saying that any two real numbers can be simultaneously
approximated “well” by two rational numbers with the same denominator.
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In this paper, we will discuss how results from dynamics imply that the set
of counterexamples to Littlewood’s conjecture is “small”. To begin, we introduce
some notions from dynamics that we will use.

2. MEASURE THEORETIC ENTROPY AND TOPOLOGICAL ENTROPY

Let (Y, 1) be a probability space, and let T : Y — Y be a measurable map. We
say that p is T-invariant if p(T~1(E)) = u(E) for any measurable set £ C Y. A
T-invariant measure p is ergodic if any measurable function f : Y — R such that
f(T(y)) = f(y) for p-a.e. y € Y is constant almost everywhere.

Let p be a T-invariant probability measure. A finite partition of Y is a finite
collection,

P={C,...,Cp},
of essentially disjoint measurable sets such that U?Zl C; is a set of full measure
in Y. Similarly, a countable partition of Y is a countable collection of essentially
disjoint measurable sets whose union is a set of full measure in Y. For a partition
P of Y, we define the entropy of P by

H,(P) = = 3 ul(C) log(u(C)).

CceP

If P and Q are partitions of Y, then the common refinement of P and Q is defined
by
PvO={CND:CePand D e Q}.
Let P be a parition of Y with finite entropy. For each n € N,

T="P = {T~"(C): C € P}

is a partition of Y. The measure theoretic entropy of T relative to P is the limit

The two lemmas below show that this limit exists.
Lemma 2.1. H,(PV Q) < H,(P)+ H,(9Q).
Proof. See Theorem 4.3 of [14]. O

Lemma 2.2. Let (a,) be a sequence of non-negative real numbers such that
0 S Ap4+m S an"'am
for all nym > 0. Then,

Proof. See Theorem 4.9 of [14]. O

The measure theoretic entropy is defined by
h,(T) = sup{h,(T,P) : P is a partition with H, (P) < co}.

Now, suppose that (Y, ;1) is also a compact metric space with a metric d and that
T:Y — Y is a continuous map. For each n € N, we define d,, : Y xY — [0, 00) by

dn(,y) = max d(T (@), T (y)).
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Then, d, is a metric on Y and d,+1 > d, for each n € N. Furthermore, d,
generates the same topology as d. To see this, let B be a basis element for the
topology generated by d,,. Then, B ={z € Y : d,(z,y) < r} for some y € Y and
r > 0. Let 2/ € B. Because T* is continuous at 2’ for each 1 < k < n, we can
choose r' > 0 so that if d(z,2") < ¢/ then d,(z,2') < r — d,(2’,y). This implies
that the open ball centered at x’ with d-radius equal to r’ is contained in B.

Fix € > 0. A subset A CY is (n,€)-separated if d,,(x,y) > ¢ whenever = and
y are any two distinct points in A. Any (n, €)-separated set is finite because it is
a discrete set in (Y,d,) and (Y,d,) is compact by our observation above. Define
sep(n, e, T) to be the maximum cardinality of an (n, €)-separated set.

Define cov(n, €, T) to be the minimum cardinality of a covering of Y by sets of
dn-diameter less than e. Since we can cover Y by finitely many open balls with
dy-radius less than §, cov(n,€,T) is a finite quantity.
Lemma 2.3. For anyn € N and ¢ > 0,

cov(n,2¢,T) < sep(n,e,T) < cov(n,e,T).

Proof. Let {Uy,...,Ux} be a cover of Y by sets of d,-diameter less than e with
k = cov(n,e,T). Suppose that A C Y is a finite subset with |A| > k. Then,
there exists ¢ with 1 <7 < k and a,a’ € A such that a,a’ € U;. So, A cannot be
(n, €)-separated. Thus, sep(n,e,T) < cov(n,e, T).

Now, let A be an (n, €)-separated set with |A| = sep(n, e, T). Then the collection
of open balls {B(a, €)}a4c4 is a covering of Y. Suppose that the collection does not
cover Y. Then, there exists z € Y \ A such that d,(z,a) > € for all a € A. This
contradicts our assumption because AU{z} is an (n, €)-separated set that is strictly
larger than A. Therefore, cov(n,2¢,T) < sep(n,¢,T). O

For each € > 0, we define

1
he(T) = limsup - log(cov(n, €, T)).

n—oo

Since cov(n, e, T) < cov(n,€',T) whenever € > €, he(T) increases monotonically as
€ approaches zero. We define the topological entropy of T to be the limit

hiop(T') = 51~I>r(§1+ he(T).
The lemma above implies that

1
hiop(T) = lim limsup — log(sep(n, €, T)).

e—0t nosoco M

As an aside, the topological entropy is indeed a “topological invariant” in the
following sense.

Proposition 2.4. h,,(T) does not depend on the choice of a particular metric
generating the topology of X.

Proof. See Proposition 2.5.3 of [1]. O
There are a few important facts about entropy that we will need later.

Proposition 2.5. Let (Y,d) be a compact metric space and let T :' Y — Y be a
continuous map. Then,

hiop(T') = sup{h,(T) : p is a T-invariant probability measure on Y'}.
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Proof. See Theorem 8.6 of [14]. O

Proposition 2.6. Let Y be a compact metric space and let T :'Y — Y be a
continuous map. If i and v are T-invariant probability measure on'Y and p € [0, 1],
then

hpu+(1—p)u(T) = th(T) + (1 - p)hl,(T).
Proof. See Theorem 8.1 of [14]. O

Proposition 2.7. Let Y be a compact metric space and let T :' Y — Y be a
continuous map. Let p be a T-invariant probability measure on Y. Then, there

exists a probability space (E,v) and a measurable map from E to the space of T-
invariant and ergodic probability meaures on'Y given by § — e such that

p= /_ pedv ().
Moreover,

ho(T) = / e (T)d (©).

Proof. For the first statement, see Theorem 6.10 and the following remark of [14].
For the second statement, see Theorem 8.4 of [14]. O

Remark 2.8. Let (Z,d) be a compact metric space and let S : Z — Z be a home-
omorphism. We say that S is expansive if there exists § > 0 such that whenever
x and y are distinct points in Z there exists n € Z with d(S"(z),S™(y)) > 4.
Let M(Z,S) denote the space of S-invariant probability measures on Z. We view
M(Z,S) as a topological subspace of the space of Radon measures on Z equipped
with the weak-* topology. Define ® : M (Z,S) — R by ®(p) = h,(S). Theorem 8.2
of [14] states that if S is expansive then ® is upper semi-continuous. This fact and
Proposition 2.6 are used to prove Theorem 8.4 of [14]. A similar argument is used
later on in this paper to construct a measure with positive entropy.

The notion of ergodicity also makes sense in a different setting. Let Z be a locally
compact space, let v be a probability measure on Z, and let H be a locally compact
group. Suppose that H acts continuously on Z. We say that v is H-invariant if
h.v =v for all h € H where h,v is the measure given by

h.v(E) = v(h™'E) for any Borel set E C Z.

An H-invariant measure v is ergodic if any measurable function f : Z — R on
Z such that f(hz) = f(z) for all h € H and v-a.e. z € Z is constant almost
everywhere.

In the case when H = {as}scr is a one-parameter group, one can show that the
quantity %hu (as) is independent of s # 0. So, we may define the measure theoretic
entropy of the flow {as}to be

hy(ao) = hy(ay).

A similar results holds for the topological entropy of a flow.
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3. HAUSDORFF DIMENSION AND UPPER BOX DIMENSION

Let (Y,d) be a compact metric space, and let F C Y be a subset. Fix s > 0.
If {U;}$°, is countable collection of sets and J > 0 is a positive number, then we
say that {U;} is a d-cover of F whenever F C |J;2, U; and diam(U;) < 6 for each
i € N. For any § > 0, we define

H3(F) = inf { Zdiam(Ui)S : {U;} is a é-cover of F'}.
i=1

If 0 < ¢ < 6, then any &-cover of F is also a d-cover of F. This implies that
H3 < H3,. Then, we can define the s-dimensional Hausdorff measure of F' by

H(F) = 51—i>%1+ Hi(F).
Let {U;} be a d-cover of F. If t > s, then
diam(U;)" = diam(U;)*diam(U;)"~* < diam(U;)%6"~*
for each ¢ € N. It follows that
H5(F) < 6" °H3(F).

Similarly, if ' < s, then
1

HE (F) > 5o o (F):
So, if 0 < H*(F) < 0o, then H!(F) = 0 whenever ¢t > s and H! (F) = co whenever

t’ < s. Therefore,
inf{s : H*(F) = 0} = sup{s: H°F = oo}
and we define the Hausdorff dimension of F, or dimg (F'), to be this common value.

Proposition 3.1. The Hausdorff dimension has the following properties.

(1) If E and F are subsets of Y and E C F, then dimy(E) < dimg(F).
(2) If F1, F», ... is a sequence of subsets of Y, then dimpg (s, F;) = sup;en dimpg (F}).

Proof. See page 29 of [6]. O

Let € > 0 be a postive number. A set E C F' is e-separated if d(z,y) > € for any
x,y € F with x # y. Note that any e-separated subset of F' is finite because Y is
compact. Define sep(e, F') to be the maximum cardinality of e-separated subsets
of F. A collection {U,;};er is an e-cover of F if diam(U;) < € for all ¢ € I and
Uicr Us = F. Define cov(e, F') to be the minimum cardinality of e-covers of F.
Note that cov(e, F) is finite because Y is compact.

Define the upper box dimension of F' by

1 B
dimuy(F) = lim sup ‘28P(E B)
e—0t - 10g(€)
Proposition 3.2. The upper box dimension has the following properties.

(1) If E and F are subsets of Y and E C F, then dimy,(E) < dimqy,(F).
(2) If E and F are subsets of Y, then dim,(EUF) = max{dim,(E), dim,(F)}.

The upper box dimension tends to be easier to compute than the Hausdorff
dimension.
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Lemma 3.3. Suppose that (ex) is a sequence in (0,1) such that ex+1 > cex for
some 0 < ¢ <1 and (e) decreases to zero. Then,

dimyp(F) = lim sup log(sep(ck, F)) F))
k—o00 - IOg(ek)
Proof. For any k large enough so that ¢ > €1 and € € [eg41, €],
log(sep(e, F)) _log sep(exsn, F)
—log(e) = —log(ex)
_ log(sep(ert1, F))
- —log(ep41) + log (™
log(sep(€xt1, F))
~ —log(€x+1) +log(c)

1
=)

Then,
I F 1 F
lim sup log(sep(e, 7)) < sup og(sep(er, 1)) for all n € N.
=0 —log(e) k>n —log(ex) + log(c)
Therefore,
1 F 1 F
oy PRSP F) L dog(sep(en, F)

0 —log(e) koo —log(er) +log(c)”
We choose a subsequence (¢, ) jen such that

log(sep(ex;, F)) log(sep(ex, )

lim = limsu .
j—o0 —log(ex, ) + log(c) k%wp —log(ex) + log(c)
Then,
L log(seplen, F)) | log(sep(er, F)) ~loger,) +log(c)
j—oo  —log(ex;) j—oo —log(eg;) + log(c) —log(ex;)
_ log(sep(ey,, I))
= lim .
j—oo —log(ex; ) + log(c)
Therefore,

. log(sep(ex, F)) . log(sep(ex;, F))
lim sup = lim —————
k—oo —log(ex) +1log(c) j—oo  —log(ex;)
1 F
< lim sup 2802 F)).
e—0 —log(e)
The result follows because
1 F 1 F
o OGP F) o dog(sep(es. F))
k—oo — log(ex) +log(c) k—s 00 —log(ex)

(]

Furthermore, the upper box dimension is related to the Hausdorff dimension by
the following facts.

Lemma 3.4. For any e > 0,
cov(2¢, F) < sep(e, F) < cov(e, F).

Proof. The lemma follows by arguments analogous to the ones given in the proof
of lemma 2.3. O
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Proposition 3.5. For any subet F C Y,

In particular, if the upper box dimension of a set F is zero, then the Hausdorff
dimension of F is zero.

Proof. By lemma 3.2,

log(cov(2¢, F)) < log(sep(e, F)) < log(cov(e, F))

—log(e) = —log(e) T  —log(e)
Additionally,
log(cov(2¢, F))  log(cov(2e, F'))
—log(2¢)  —log(e) —log(2)
Therefore,

dimy,(B) = limsup M.
ot —log(e)

Since F' can be covered by cov(d, F) sets of diameter less than 0,
H3(F) < cov(d, F)o®,
for any nonnegative number s. So, if 1 < H*(F) for some s > 0, then
log(cov(d, F')) + slog(d) > 0
for all § sufficiently small. Thus,

s < limsup log(cov(9), F') .
5—0+ —log(é)

]

In general, the Hausdorff dimension of a subset does not equal the upper box
dimension of the subset. For example, consider the case when Y = [0,1] and
F = {0}U{+ : n € N}. Proposition 3.3 and the fact that single element subsets have
zero Hausdorff dimension imply that countable sets have zero Hausdorff dimension.
So, dimp (F) = 0. However, we will show that dim.,(F) = 3.

Let 4 € (0, ) be given. Let m be the integer such that P e o} +1) <6< m
Then, any subset U CY with diam(U) < § can contain at most one of the points
in {1,3,...,L}. So, cov(8, F) > m. Additionally, [0, L] can be covered by m + 1
intervals of length §. So, cov(d, F') < 2m. Consequently,

log(m) < log(cov(d, F)) < log(2m)
log(m(m+1)) = —log(d) ~ log((m—1)m)
2k(k+1) Then, k(k1+1) <€ <
€y, for each k so that ex1q > *Gk for all

ForeacthNw1thk>2 setek—Q(k 1)k+

for each k. Additionally, €511 >

=Dk 1)k k+2
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k > 2. Therefore,
log(cov(eg, F))

dimyp(F) = lim sup by lemma 3.4
koo log(ex)
. log(2k)
<1 —
= i log((k = 1)k)
— limsup log(2) + log (k) 2log(k)

koo 2log(k)  log(k —1) + log(k)

. log(2) + log(k) . 2log(k)
:<JL“§O 21og (k) )<klinéo1og(k—1)+1og(k)>
1
2

Similarly,

I F
dimyp(F) = lim sup —og(cov(ek, )

k— o0 10g(€k)
L log(k)
> liminf — 2"/
= s log(k(k + 1))
!
2

4. PARTIAL RESULT TOWARDS LITTLEWOOD’S CONJECTURE

Set G = SL(3,R), ' = SL(3,Z), and X = G/T. Let dx be a metric on X
induced by a right-invariant metric, dg, on G. Let A < G be the subgroup given
by

A={a(s,t):s,teR},

where
et 0 0
a(s,t) = 0 et 0],
0 0 ¢

for all real numbers s and t. We say that an A-invariant measure p on X is algebraic
if there exists g € G and a closed subgroup L < G such that the following properties
hold:

e LgI' admits a unique L-invariant probability measure,

e 1 is supported on LgI', and

e the restriction of pu to LgIl" is the unique L-invariant probability measure
on LgTI'.

Manfred Einsiedler, Anatole Katok, and Elon Lindenstrauss used the following
theorem to prove a partial result towards the Littlewood conjecture.

Theorem 4.1. Let pu be an A-invariant and ergodic probability measure on X.
Suppose that there exists a one-parameter subgroup {a;}ier of A such that hy(as) >
0. Then, u is an A-invariant algebraic measure which is not supported on a periodic
A-orbit. In fact, p is the G-invariant probability measure on X.

If w4 is the G-invariant measure on X, then the support of u is the entire space X.
The Godement compactness criterion implies that X = G/T" is compact if and only
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O =

1 0
if the only unipotent element of T" is the identity element. Since | 0 0] isa
0 1
nontrivial unipotent element of I'; X is not compact. Therefore, i is not compactly
supported.

Corollary 4.2. Suppose that p satisfies the hypotheses of Theorem 4.1. Then pu is
not compactly supported.

We recall that a lattice in R™ is a set of all integral combinations of n linearly
independent vectors vy, ...v,. We denote the space of all lattices with covolume
one in R™ by L,,. A set of n vectors determine a lattice with covolume one if and
only if the n-by-n matrix whose columns are the n vectors has determinant +1.
Moreover, given two n-by-n matrices A and B in SL(n,R), the columns of A and
the columns of B determine the same lattice if and only if AB~' is an element
of SL(n,Z). Thus, SL(n,R)/SL(n,Z) is identified with £,, by the map given by
gSL(n,Z) — g(Z™).

This identification induces a topology on L,. We say that a subset £ C L,
is bounded if the closure of E is compact with respect to this topology. For each
lattice A € L,,, we define

Ogn(A) = min ||v] co-
veA\{0}
Proposition 4.3 (Mahler compactness criterion). E C L,, is bounded if and only
if there exists € > 0 such that ogn(A) > € for all A € E

Proof. See page 53 of [8]. O

For any pair of real numbers v and 3, we define z, g by

100
Tap=|a 1 O]T.
8 0 1

Let A* be the semigroup in G given by
At = {a(s,t) : 5, > 0}.

The following proposition states that the pairs of real numbers that satisfy the
equation in Littlewood’s conjecture are precisely those that correspond to the un-
bounded orbits under the action of coordinate dilations in the space Ls.

Proposition 4.4. The pair of real numbers (a, B) satisfies

lim inf n||na|||nB]| =0
n—,oo
if and only if At x4 g is unbounded.

Proof. If either a or 3 is a rational number, then we can find an integer vector v
such that z, g(v) has at least one zero in its entries. Then, we can use Proposition
4.3 to check that A*z, g is unbounded. So, we may assume that both o and 3 are
irrational numbers.

Suppose that ATz, 5 is unbounded. Let € € (0, %) be given. By Proposition 4.3,
there exists positive numbers s,t > 0 such that

Sgs ((a(s, )za,p)(Z%)) < €5.



12 SHIN KIM

So, there exists (n, k,1) € Z3\ {0} such that

1
s > [[(a(s, t)za,p)(n, k)]0
et 0 0 n
=l efa € 0 k| lloo
etB 0 € l
= [(ne” 57", ne*a + ke, ne' B+ le") || o
Then, n must be nonzero; otherwise, either k # 0 so that |ne®a + ke®| = |ke®| > 1,
or | # 0 so that |ne'B + lef| = |le!| > 1. Additionally, we can assume that n is
positive because we can replace (n,k,l) with (—n, —k, —1) without changing the
inequality above. Thus,
nlnalllngl| = ne™*~*(e*nal)(e'|nAl])
< ne” (e na + k) (e’ B + 1))
<€

Since o and f are irrational, n|nal|||ng|| # 0. Then, by repeating the argument
above, we can find a positive integer n’ so that

0 <n'l[n'alllln’B]| < nlnall|ns].

In this manner, we can inductively choose a sequence of distinct positive integers
(nk) such that ng||ngal|||nef]| converges to 0 as k approaches co. Thus, a and
satisfy the desired equation.

On the other hand, suppose that o and S satisfy

lim inf n||nal|||np5] = 0.

n—o00
Let € € (0, 2) be given. Then, there exists n € N such that

nllnallnB] < €.

We can find integers k and [ such that ||na| = |na — k|, and ||ng|| = [nB8 —|. So,

nlna — k||nB — 1| < €°.
If max[|na — k|, |[nB — l]] < €, then we can choose positive numbers s and ¢ such
that

eflna — k| =€, and e'|nfB — k| = e.

This implies that

€0

—s—t
ne < eslna — kletinf — k| s©
Now, suppose that max[|na — k|, |nS — [l|]] > e. Without loss of generality, we
may assume that [na — k| > e. In this case, n|n8 — | < €. Let @ be the smallest
integer larger than ie By Theorem 1.2, there exists a positive integer ¢ < @ so

2
that

1
llgna|| < = < 2e.

Q
Note that @ < % by our choice of €. Then,

qn|gnB —ql| < & < e.
So, we can choose positive numbers s and ¢ such that

e®|lqnall = 2¢, and e'|gnf — ql| = e.
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Moreover,
qnllgnalllqnB — ql| < qnlgna — gkl|qns — ql| < €.
Therefore,
[(gne™~", qne*a — K'e”, qne' f — gle’)||oo < 2e,
where k' is the integer closest to gna. (I

For any 0,7 > 0 and t € R, set a, ,(t) = a(ot, 7¢t). For any 0 <[ < 1, define K]
to be the closure of

{Tap € X : 6gs(a(s,t)za,5(Z)) > 1 for all s,t > 0}.

For any 0 < I < 1, K is a compact metric space by Proposition 4.3, and a(s,t)K; C
K for all s, > 0. Note that if | J,_, ., K; is empty, then Littlewood’s conjecture is
true. For our purposes, we assume that | J,_,_; K is nonempty.

Proposition 4.5. Let a € A and K C X be compact with aK C K. Then the
map [ — hu(a‘K) s an upper semi-continuous map from the space of a-invariant
probability measures on K with the weak-* topology to the nonnegative real numbers.

Proof. See Corollary 9.3 of [4]. O

Proposition 4.6. For any o,7 > 0 and ! > 0, the topological entropy of a, , acting
on the compact set K; is 0.

Proof. Let 0,7 > 0 and [ > 0 be given. Suppose, for contradiction, that the

topological entropy of a(o,7) acting on K is positive. By Proposition 2.5, there

exists an a(o, 7)-invariant probability measure v/ on K; such that h,/(a(c, 7)) > 0.

Note that v/ extends to a Radon probability measure v on X supported on K.
For each n € N, define the map v, : C(K;) — R by

1 n n ,
vl =5 [ [ [ ) dato ) dsa
for all f € C(K;). Note that

1 n n ,
Yu(f) = ﬁ/o /0 /{1(_87_“& fla(s,t)z) dv'(x) dsdt
1 n n ,
= ﬁ/o /0 . fla(s,t)x) dv'(x) ds dt,

because K; C a(—s,—t)K; for all s,t > 0. Then, v, is a positive linear functional
and ||¢,|| = 1. By the Riesz-Kakutani representation theorem, v,, corresponds to
a unique probability measure v/,. By construction, v/, is a(o, 7)-invariant. Then,
Proposition 2.6 and Proposition 4.5 imply that,

1 n
hl/;L (G(O', T)) = ﬁ /0 /0 ha(s,t)*u/ (G(U, T)) dsdt.

For any s,t > 0, hy(a(0,T)) = ha(s),(a(o,7)); in fact, a(s,t) defines an isomor-
phism between (Kj,v') and (K7, a(s,t).v) for all s,¢ > 0. Therefore,
hy;, (a(0,7)) = hus(a(o, 7).
The space of Radon measures on K; is the dual space of C(K;), which is a
separable space. Thus, the unit sphere in the space of Radon measures on K; is

metrizable in the weak-* topology. Since (v],)nen is a sequence contained in the
unit sphere, the Banach-Alaogulu theorem implies that there exists a subsequence
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/
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)jen that converges in the weak-* topology. Let v/, be the weak-* limit. Then,
J
is a(o, T)-invariant because, for any g € C(K))

/ o) d(a(o, 7)) (z) =
K,

/ o(alo, 7)) vl (x)
a(—o,—7)K;

= lim gla(o,7)x)dv), (x)
170 Ja(—o,—7)K; !

= lim [ g(z)d(a(o,7).vy,)(x)
j=oo J kg, J

= lim g(z)dv), ()

j—oo J g, i
~ [ g o).
K;
Furthermore, Propostion 4.5 implies that

hy:_(a(o,7)) > limsup hl,/ (a(o, 1)) = hy(a(o,T)) > 0.
]*)OO
We denote the extension of v/

to a Radon probability measure on X supported
on Kj by veo. Let f € C.(

X) and sg,tg € R. We observe that

/ () d(a(s0, to)+veo) ()
:/ F(also, o)) dve ()
X

—Jl;r&n—/ / /f a(so+ s, to +t)x) dv(xz)dsdt

n;+to n;+so
—hm—/ / /f (s,t)x) dv(z)dsdt
]—>oo’l7,

[ f@ (o)~ [ f@)dlatsosto)on) @)

< lim — // /\f )| dv(zx) ds dt,
]—><x>n

x [0,n;])A([to, nj + to] X [s0,nj + so]). The Lebesgue measure
of R; is at most 2(|to|n; + |so|n;). Therefore

hm—// /|f )| dv(x) ds dt,
]~>oon

Then,

where R; = ([0, n;]

As a result,

[ fa) vt /f (50, t0) o) (&)
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for all f € C.(X) and sg,tg € R. Then, for every sg, o € R,
Voo = a(SOatO)*Voo

because a(so, to)«Voo 18 @ Radon measure. It follows that v is A-invariant.
Let voo = fE ve dm(§) be the ergodic decomposion of v,. By Proposition 2.7,

o (a(0,7)) = / o (a0, 7)) dm(€).

Additionally,
hy (a(o, 7)) = hulm(a(a, 7).
Therefore, we can choose an A-invariant ergodic measure v, such that
hue(ao,r) = hye(a(o, 7)) >0 and ve(X \ K;) = 0.
This contradicts Corollary 4.2. O

For any 7 > 0 and = € X, let BS denote the open ball in G of dg-radius 7 at
the identity and let B,(x) = BSx. We will assume the following lemma.

Lemma 4.7. For every r > 0, there exists a constant ¢y > 1 such that
¢ g — bl < da(g,h) < collg — bl
for all g,h € BY, where || A| = max; j |a;j| for A = (a;;) € M3(R).
For any 0 <[ < 1, define C to be the closure of
{x € X : dps(a(s, t)x(Z®)) > for all s,t > 0}.

It is a fact that, for every x € X, there exists some r = r(z) > 0 small enough
such that the map given by g ~ gz is an isometry between B and B,.(x). For any
0 <1 < 1, we can choose a unifrom r such that B is isomorphic to B, (z) for all
x € Cj, because C} is compact by the Mahler compactness critierion.

Fix a = a(1,1). We note that ifz € X, g € BY and y = gz then ay = (aga™!)ax.
We define the unstable subgroup for conjugation with a by

U={geG:a"ga™" — easn— —o0},
where e is the identity. Because

g11 63912 63913
atga=[e3g01 g2 g23 |, for any g = (gi5) € G,
6_3931 332 g33

U consists of matrices of the form

¥ ¥
o = O
—_ o O

In particular, U is homeomorphic to R?. Moreover, if x = eI’ € X is the identity
coset then

UenNCy =K, forall0 << 1.

The following lemma and proposition show that K; is a countable union of sets
with zero upper box dimension for all 0 <1 < 1.
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Lemma 4.8. Let C C X be compact with aC C C, and let r = r(C) be a positive
number such that g — gx is an isometry from BS to B.(x) for all x € C. Then,
there exists A > 1 and cg > 0 so that for any small enough € > 0, any z € C, any
f € BY, and any integer N > 1 with dx(fz,z) > \~Ne, there exists a nonnegative

integer n < N with dx(a"™ fz,a™z) > cae.

Proof. See lemma 8.4 of [4]. O

Proposition 4.9. Let C C X be compact with aC C C. Then, one of the following
properties holds.

(1) The intersection Ux N C of the unstable manifold Uz with C is a countable
union of compact sets with upper box dimension zero for every x € X.
(2) The action of a on C has positive topological entropy.

Proof. Suppose that there exists some € > 0 such that P, = C' N (BYy) has upper
box dimension 0 for every y € C. Let x € X such that Uz N C' is nonempty.
Suppose that D C U is a compact subset of U. Then, Dz N C' is also a compact
subset of C, so there exists a finite cover {U;}", of Dz N C such that U; = Py, for
some y; € C for every 1 < i < m. Since upper box dimension is finitely additive,
the upper box dimension of Dz N C is 0. Then, Uz N C' is a countable union of
compact sets of box dimension zero because U is homeomorphic to R2.

On the other hand, suppose that for any ¢ > 0 there exists y = y(¢) € C such
that the box dimension of P, is positive. Choose r > 0 and ¢ > 0 such that r
and € satisfy the hypothesis of lemma 4.8 and 2¢/ < r. Let y’ be the point in C
such that dimpos(P,) is nonzero. Fix b € (0,dimy,(Py)). For every N > 0, let
Fy CPybeac A~ N_separated set of maximal cardinality. Since b < dimyp(Py),
lemma 3.3 implies that there exist infinitely many integers N with

log(sep(¢ AN, P,))

b<
- —log(e/A\—N)

We observe that

—log(¢ \™M)b < log(sep(e AN, P,))
= log((¢")"*A"?) < log(|Fx )
= (¢)7°ANY < | Fyl.

Let (Ni) be an increasing sequence of integers such that (¢/) " °AN® < |Fy, |
for each k € N. Fix k € N, and choose two distinct points p and ¢ in Fj,. Then,
dx(p,q) > ¢ A\™N* and there exist g, h € BY such that p = gy’ and ¢ = hy’. We note
that f = gh~! € BY. Lemma 4.8 implies that there exists a nonnegative integer n
such that n < Nj and dx (a™fq,a"™q) > c2€'. Therefore, Fl, is (N, ca€')-separated.
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Finally, we see that

1
hiop(ajc) = lim limsup - log(sep(n, €, a))

e—0T n—ooo

1
> lim sup — log(sep(n, ca€’, a))
n

n—oo

1
> lim sup N log(sep(Ny, ca€’, a))

k—o0 k

1
> limsup — log(|F,|)
k— o0 Ng

1 N\—b
> blog(\) + lim sup M

> 0.
k—o0 Nk

For each 0 < [ < 1, define
S = {(Oz,ﬁ) IS [0, 1] X [O, 1] tTapl € Kl}.

Now, fix 0 < I < 1 and choose r > 0 such that the map g — gz is an isometry
between BY and B,.(z) for all x € K;. By lemma 4.7, there exists a constant cq > 1
such that

¢y max[la — /[, |8 — B']] < da(2a,p,Tarp) < comax(la — |, |8 — .

for any x4 € K; and 24 g € By(xq,3). Additionally, each element of S; corre-
sponds to a unique element in K;. Thus, if ¢ < r and E C 5; is an e-separated set,
then

F = {zasT : (o, ) € E}
is an é-separated set in K. It follows that

dimy(S)) < dimay(K;) = 0.
By Proposition 3.5,

Corollary 4.10. Let S = {(o, 8) € [0,1] x [0,1] : ATz, s is bounded}. Then, the
Hausdorff dimension of S is 0.

Therefore, theorem 4.2 implies that the set of counterexamples to the Littlewood
conjecture has Hausdorff dimension zero. In the remaining sections, we will discuss
some of the ideas involved in the proof of theorem 4.2.

5. MEASURE RIGIDITY
For notational convenience, define
Y= {t = (tl,tg,tg) c Rg i1+ to +t3 = O}

For each t € ¥ set ot = a(ts, t3).

Let H < G be a subgroup. An element g € G normalizes H if gHg™! = H, and
a subgroup L < G normalizes H if any element of L normalizes H. The normalizer
of H is defined by

N(H)={g9e€G:gHg ' = H}.
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An element g € G centralizes H if gh = hg for all h € H, and the centralizer of H
is defined by
CH)={9g€G:gh=hgtorall he H}.
Both N(H) and C(H) are subgroups of G containing H. We say that H is unipotent
it (h — Id)™ = 0 for some n € N. If A normalizes H, then for every z € X and
a € A,
a(Hz) = H(ax).

As a result, the foliation of X into H-orbits is invariant under the action of A.

Let u be an A-invariant probability measure on X. For any unipotent subgroup
U < G normalized by A, there exists a system {u{},cx of Radon measures on U

and an A-invariant subset X’ C X of full measure so that the following properties
hold.

(1) The map z + uY is measurable.

(2) For every € >0 and z € X/, u/(BY) > 0.

(3) For every z € X’ and u € U with ur € X', u¥ o u,ul,, where u,ul, is
the push forward of 4, under right multiplication by wu.

(4) We normalize the measures so that pY(BY) = 1 for every # € X’. Then,
forany x € X and t € X, Ngtx is proportional to the push forward of puY
under conjugation by at.

(5) f U C C(at), then pY, = pY.

(6) w is U-invariant if and only if ¥ is the Haar measure on U for almost every
xe X'

(7) pY is atomic if and only if ¥ is supported on the identity e € U. In this
case, we say that U is trivial.

Now, let (4, j) be a pair of distinct integers with 1 <4, 5 < 3. We let E;; denote
the matrix whose entries are 1 at the (¢, j)-th entry and 0 everywhere else, and we
define

Uij = {uij(s) : s € R}, where u;;(s) = Id + sE;;.
We observe that

e 0 0 et 0 0
0 e 0 |ug(s)| 0 e 2 0 | =uy e hs).
0 0 e 0 0 e

In particular, A normalizes U;; so that the orbits of U;; form an A-invariant folia-
tion. We denote the foliation of X into U;;-orbits by Fj;. The leaves of this foliation
are one-dimensional because U;; is a one-parameter subgroup of G. Additionally,
Ui; is a unipotent subgroup of G. In this case, we write {,u;]“}xex = {u Y ex.
We will assume the following adaptation of the Ledrappier-Young formula ([7]).

Proposition 5.1. For any pair of indices, (3,7), there are constants s;;(p) € [0,1]
that satisfy the following properties.

(1) sij(p) =0 if and only if pd is trivial for almost every x € X.

(2) sij(p) =1 if and only if u¥ is Haar for almost every x € X.

(8) For any t€ X

hu(at) = Z sij () (t — )",

where (r)* = max(0,r) for each r € R.
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Proof. See lemma 6.2 of [3] d
The following theorem is an important ingredient in the proof of Theorem 4.1.

Theorem 5.2. Let p be an A-invariant and ergodic probability measure on X . For
every pair (i,7) of distinct indices, there are two mutually exclusive possibilities;
either uty and p3t are trivial for almost every x € X, or pid and pi® are Haar for
almost every x € X.

Suppose that there exists a pair of distinct indices (a,b) such that p2® is not
trivial for all x in some subset of positive measure. Define

E={zecX:puis trivial }.

Then, E is an essentially A-invariant subset of X. Indeed, if x € E N X', then for
any t € ¥ there exists a constant C' > 0 that depends on x and t such that

paka (Uan \ {0}) = Cpg® (0™ (Ua \ {0})a")

= Cp2(Uap \ {0})
=0.

So, the ergodicity of y implies that E is a null set. In other words, 2’ is nonatomic
almost everywhere.

Then, the proof of Theorem 5.2 can be broken up into two cases. Let 1 < a,b, ¢ <
3 be distinct indices and suppose that p2 is nonatomic almost everywhere. The
high entropy case is when either p2¢ or ¢ is nonatomic for almost every z € X.
The low entropy case is when both p2¢ and p< are trivial for almost every = € X.
In both cases, we can conclude that p2° and u2® is Haar almost everywhere.

For now, we assume that Theorem 5.2 holds. Suppose that p is an A-invariant
and ergodic probability measure on X such that h,(a.) > 0 for some one parameter
subgroup, {a;}icr, of A. We write a; = af for some t € . Since h,(a*) > 0,
there exists a distinct pair of indices (a,b) such that t, > ¢, and sqp(n) > 0 by
Proposition 5.1. By Theorem 5.2, u2 and pb® are Haar almost everywhere. Then,
w is invariant under the actions of Uy and Up,. If pé¢ is Haar almost everywhere,
then p is also invariant under the actions of Uy, because Uy, is contained in the
subgroup generated by Up, and U,.. By Theorem 5.2, y is invariant under U., and
Upe- Then, p is G-invariant because the collection of subgroups

{Ui; : (i,7) is a pair of distinct indices}

generates G. An analogous argument holds for the case when p’¢ is Haar almost
everyhwere.

On the other hand, suppose that p2¢ and pl¢ are trivial almost everywhere.
Without loss of generality, we may assume that a = 1 and b = 2. Define H to be

* % 0
the subgroup of G consisting of elements of the form |« = 0| . It is a fact that
0 0 1

Uy, and Uy generate H. So, p is H-invariant and H is generated by unipotent
one-parameter subgroups. Additionally, H is normalized by A. It is also a fact that
H is the maximal proper subgroup of G that satisfies these three conditions. Then,
Theorem 6.1 of [4] implies that there exists a subgroup L < G such that H < L, L
is normalized by A, and almost every H-ergodic component of p is the L-invariant
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measure on a closed L-orbit. With more work, we can show that H must equal L
using the maximailty of H. Define

Xy ={r € X:Hzis closed and of finite volume }.

Then, the support of p is contained in Xp.

Let z € Xy and write x = gI' where g € G. It is a fact that we can choose
the representative g to be a matrix with rational entries. Set z = (1,1,0) and
m’ = g 'z. Then, m’ is a rational vector so there exists an integer k such that
m = km' is an integer vector and gm = kz. Define a one parameter subgroup
{bs}ser < A by

bs = a®* where t = (—1,-1,2).
Then,
bsgm = bskz = (e °k,e™°k,0) for all s € R.

By Mabhler’s compactness criterion, bsx — oo as t — oo; in other words, for any
compact subset K C X, b,z ¢ K for all s sufficiently large. In particular, if K C Xp
is any compact subset, then € K cannot return to K infinitely often under the
action of b;. This contradicts Poincaré recurrence because we can approximate the
measure of Xy by compact sets contained in Xy and Xy is a full measure set.
Therefore, 1 must be G-invariant.

In this way, Theorem 5.2 implies Theorem 4.1. In the remaining two sections,
we will discuss the proof of Theorem 5.2.

6. THE HIGH ENTROPY CASE

Let A = (4,4) be a pair of distinct indices. Let k be the other index and let £ be
a pair of distinct indices such that £ # (¢, 7) and € # (4,7). If £ = (k,7) or £ = (k,7)
choose t = (t1,t2,t3) € ¥ such that ¢; = t; = 1. Otherwise, choose t such that
ti =t; = —1. Then, o acts isometrically on the leaves of F) = F;;. and contracts
the leaves of F¢.

For each z € X, we define the measure v on R by

vy (A) = wy({eap(sEy) : s € A})

for any Borel set A C R. It is a fact that v is a Radon measure on R for each
zcX.

Lemma 6.1. For any f € C.(R), the map ®¢: X — R given by

Py(x) = / fdvy
R
is measurable.

Proof. See the proof of proposition 5.1 in [3]. ]

Proposition 6.2. For some null set N C X and for any two z,y € X \ N such
that there exists y' = exp(rE\)x € Fy(z) with y' € Fe(y),

VA(A) = CV;\(A +7)

Y

for any Borel set A CR and some constant C > 0.
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Proof. Let Ny be the null set such that for any x,y € X \ Ny,
o u*ug whenever y = ux for some u € Uy, and
u;\ = u;\ whenever y = a"* for some n € Z.

It is a fact that C.(R) is a separable space. So we can choose a countable dense
subset, {fx}ren, of C.(R). For each j € N, we use Luzin’s theorem to choose a
compact set, K, such that the restriction (®y, )| K; 1s continuous for all k € N and
p(K;) >1— % By replacing K; with (J/_, K;, we may assume that the sequence
(Kj;) is increasing.

For each j € N, define g; : X — R by

n—1

1
gj(w) = Jim ~% " xx,(a™x).
k=0

By the Pointwise Ergodic Theorem, g;(x) = p(K;) for almost every € X. Define
1
Li={reX:yg(x)< 5}

Note that L; is a measurable set for each j € N and (L;)jen is an increasing
sequence. We observe that

1= lim pu(Kj;)
j—o0

= lim g;dp

j—oo Jx
< lim (M(X \L;)+ l,u(L))
T jooo J 2 J

<1- 2 tim u(ry).
j*}m
Therefore, lim; o p(L;) = 0 so that N = No U (2, L;) is a null set.
Now, suppose that 2,y ¢ N and that there exists an element y' = exp(rFE)) in
Fy\(x) N F¢(y). By the construction of N, there exists jo € N such that z,y ¢ Lj,.
So, there exists € > 0 such that

. 1
min[gj, (), 9o (y)] 2 5 + €.
Then, there exists NV € N such that for all n > N

— n + ne
kZ_OXKjO(aktx) > —5 and

n—1
n + ne
D XK, (0Fy) > =
k=0
This implies that
Hk € {1,...,n}: a* =z oMy € K;}| > |ne],

for all n > N. Therefore we can choose an increasing sequence of integers (n;);en
so that

™z, oty € K; for all i € N.
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Since K; is compact, we can replace (n;);eny With a subsequence if necessary and
assume that (a™®x);cy and (a™ity);cn converge to T and 7, respectively.
By our choice of N,

A A :
Vinge, = vy for all i € N.

By our choice of Kj,

/ fedva = lim / fedvinee = / frdv) for all k € N.
R 11— 00 R ]R

Because {fx}ren is dense in C.(R),

/fdl/% = / fdv) for all f € C.(R).
R R

vy. Similarly, v = v;). Since a® contracts Fe(y),

Therefore v = g

d(a"ty, a™ty') = 0 as i — oo.
Additionally, a™ty’ = exp(rE))a™tx for each i € N. It follows that

exp(rE)\)T = lim o™y =7.
1—> 00

Thus,
V;\ = Vé\ = Vc%\:rp(rE,\)E X (T*T)*V% = (T*T)*V:L’A7
where T_,. : R — R is translation by —r. O

A notable special case of the proposition above is when r =0 and y’ = z.

Corollary 6.3. There exists a null set N C X so that for any two z,y € X \ N
such that x € Fe(y),

Lemma 6.4. Let F,, ..., F); be different foliations. Let N be a null set. For each
1 <4 <j, define

Ni,z)={g €Uy, gz € N}.

Then, there exists a null set N' such that N € N’ and p)(N(\;,z)) = 0 for all
x @& N and1<i<j.

Proof. See lemma 3.1 in [3]. O

Now, suppose that 1 < 7,5,k < 3 are three different indices such that p% and
pik are nonatomic almost everywhere. Choose a null set Ny C X such that the
the properties listed in Section 5 and the statement of Proposition 6.2 holds for all
possible choices of A, and p¥¥ and pi¥ are nontrivial for all z € Ny. By lemma 6.4,
there exists a null set N such that Ny C N and pu2*(N((a,b),z) = 0 for all ¢ N
and 1 < a,b < 3 with a # b, where

N((a,b),2) ={g € Usp : gv € N}.
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B
Gik)

Let 2 ¢ N and € > 0. By the construction of N, u% is nonatomic. Then, there
exists r € (—v/€,/€) \ {0} such that

2 =exp(rE;;)z € Fi;(z) \ N,

because every neighorhood of the identity element in U;; has positive measure.
Additionally, Proposition 6.3 implies that v* = l/gfc
(—v/€,v/€) \ {0} such that

x =exp(sEjr)z € Fji(z) \ N,and

y = exp(sEj)z" € Fj(2') \ N.

So, we can choose s €

We observe that
y = exp(sEj)exp(rE;j)z

= exp(sEj,)exp(rE;j)exp(—sEj,)x

= (Id + SEjk)(Id + T‘Eij)(ld - SEjk)l‘

= (Id + ’I"Ez])([d — T‘SE@k)l‘,
since

(Id — ’I"Ejk)(Id + SE]k)(Id + TE”)(Id — SEjk) =1Id— TSEZ']C.
Set
y' = (Id —rsEy)x € Fi(z),

so that y = exp(rE;;)y’. By Proposition 6.2, there exists D > 0 such that
vik(A) = Duék (A —rs),

x

for any Borel set A C R. Additionally, v?* = vif,viF = vi* and i} = viF by
Corollary 6.3. Therefore, there exists D > 0 so that

vF(A+1rs) = DU*(4),

for any Borel set A C R. Note that 0 < |rs| <.
For each t € R, define T; : R — R by

Ti(z)=x+t
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and define the Borel measure (7}).v* by
(Ty)«v2"(B) = v (T—4(B)) = vi*(B — t).
Define G(vi¥) C R by
Gk ={t eR: (T}).v* x vk}

Then, G(vi¥) is a subgroup of R. We have shown above that 0 is an accumulation
point of G(v¥). This implies that G(vi¥) is a dense in R.

We claim that G(v%) is a closed in R. To see this, let (,) be a sequence in
G (viF) that converges to to € R. For each t € G(v¥) let C; be the positive number
such that (T}).vF = Cyvik. Then, for any f € C.(R),

[ s+t = i [ st at
R n—oo [p

by the Dominated Convergence Theorem

= lim Ctn/f(x) dvik ()
R

n—oo

Therefore, to € G(v*) and Cy, = lim, oo Cy,. As a result, G(v%*) is a closed
subgroup of R. It follows that G(v*) = R.
We need to use the Lebesgue differentiation theorem, which is stated here.

Proposition 6.5. Let vy and vy be two locally finite Borel measures on R.
(1) The limit

— lim vi((x —ryz+r))
ple) = }ao vo((z — 1,z +7))

exists vy-a.e. and p: R — [0,00) is a vo measurable function.
(2) The set

$ = {a: p(a) = oo}

18 measurable with respect to vy.
(3) If (v1)|s is the restriction of v to S, then
vy = pva + (v1))s-

Let p and S be defined as in the statement of Proposition 6.5 with vy = v/*¥ and
vo = m, where m is the Lebesgue measure. Suppose for contradiction that v%* is
not absolutely continuous with respect to m. Then, S has positive measure. Fix
r € S and let y € R be given. Set t =y — z. Because t € G(viF),

(Tt)*I/ik = Ctl/;k
Then,
vt ((y = ry + 7))
m
=0 m((y — 7,y +71))
P By~ ry )
=0 m((y —r,y+r))
Crlvib((z —ra+7))
r—=0  m((z—r,x+71))
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Therefore, S must equal R. This contradicts Proposition 6.5. So, v¥ is absolutely
continuous with respect to m. By a similar argument, m is absolutely continuous
with respect to v2*. Therefore, there exists a measurable function h, : R — (0, o0)
so that dvi* = h, dm.

Let t € R. We see that

d(T) vk = Cy dvi* = Cyh., dm.
On the other hand, for any f € C.(R),

/ F(2) d(T,) () = / Fla+ t) ()
R R
= [ Fa+ Oh (o) dm(a)
R
:/f(x)hz(x—t)dm(x).
R

It follows that
h.(x —t) = Cih.(x)
for almost every x € R.

Note that the map t — C} satisfies Cs s = CsCy for all s,t € R. Additionally, we
proved that this map is continous when we showed that G(v¥) is closed. Then, the
map t — log(Cy) is a countinous additive function. It is a fact that all continuous
additive functions are linear. As a result, there exists 8 € R such that log(C;) = St
or Oy = €A for all t € R. This implies that

h.(z—t) = e’th,(x)

for any ¢ € R and for almost every x € R. Since h is positive almost everywhere,
there exists some constant D > 0 so that

h.(x) = DePe
for all x € R. We have shown that, for any z ¢ N, there exist constants D > 0 and
5 € R depending on z so that
dl/;k = DéeP dm.
Let € > 0 be given. Suppose for contradiction that the set

hz}gj(;)l))‘ > ¢ for almost every z € R}

has positive measure with respect to p.
Define F : X \ N — R by

EE:{zGX\N:‘log(

1 ik ([_
F(z) = limsup log vz ([=n,n]) n,n])
n—00 2n
We claim that F' is a measurable function. For each n,j € N, set
1 1
J J
and let g7 : R — R be a continuous function such that g = 1 on [-n,n] and
g; = 0 outside OF. Then, g7 — X[—n ) in LY (R, vi*) for all z € X \ N because vi¥



26 SHIN KIM

is a Radon measure. Hence,

log(lim sup;_, ., ®4n (2
F(z) = limsup ( joro0 oj (2))

n—oo 2n

is measurable.
Let z € E.. Then, dvi* = De’® dm for some D > 0 and |3| > e. We consider
the case when 8 > 0. For any r € R,

log(v*([—r,7])) _ log(J, 1dvi¥)
2r N 2r
B log([", DeP* dm(x))
N 2r
_ 10g(D/B) + log(e” — =)
2r ’

Additionally, for any r € R,
log(e®m — 1) - log(efr — e=F7) < log(e’") B
2r - 2r - 2r 2
and if 7 is large enough so that e > 1 then

1
log(e’™ — 1) = pr + ¢ for some £ € (" — 1,e")

by Taylor’s theorem. Therefore,

ik ([
F(z) = limsup logv:"([=r,r]) (=) =

r—00 2r

NIy

Similarly, when £ < 0,

F(z) = limsup logv"(l=r:7]) v (=) = fé.
r—00 r 2
It follows that x| )
. log v2*(|—r, T €
F(z) = hfisip — 73
for all z € E..
Choose t = (t1,t2,t3) € X so that t; > tx. Let z € E. be a typical point for
Poincaré recurrence. Then, there exists an increasing sequence of natural numbers

(ng) such that a™**z ¢ N. On the other hand, for any 2 ¢ N, n € N, and t € &,

lOg(VﬁéZ([_ra ’I"]))

F(a™2%) = lim sup

T—00 2r
ik ([__ n(tkfti) Tl(tk,fti)
— limsup log(C) + log(vi*([—re ,Te )
r—00 2r
ik ([_ n(tk—ti) n(tk—ti)
_ en(tk—ti) lim sup lOg(C) + ].Og(l/z ([ re , e D)
r—00 27“(3”(““7%)

="t p(z).

Then, F(a™*%z) — 0 as k — oco. So, a™*z ¢ E, for all k large enough. This is a
contradiction. Therefore, F. must be a null set. Since € > 0 was given, we have
proved the following result.
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Proposition 6.6. Let 1 < i,j,k < 3 be three different indices. If u%J and p* are
nonatomic almost everywhere, then pik is the Haar measure almost everywhere.

Theorem 6.7. Let a,b, and ¢ be distinct indices. Suppose that u2® is nontrivial
almost everywhere and that either ¢ or u< is nontrivial almost everywhere. Then
both ut® and pb® are Haar measures almost everywhere and p is invariant under
the action of the group generated by U,y and Up,.

Proof. By Proposition 6.6 and Proposition 5.1,

Sca(pt) > 0= sep(p) =1 and spe(p) > 0 = s40(p) = 1.

Define t = (t1,t2,t3) and t' = (t],t5,t3) by to = 2, ty = —4, t, = 1, ¢/ = — L,
t, = %, and t/, = —%. By Proposition 5.1,
hu(a®) = sap(11) + sac(i),
hyu(@™*) = spa(p) + sca(p),
hyu(at) = spa () + spe(p), and
(™) = san (1) + se ().

By the properties of measure theoretic entropy,
hu(a®) = hu(a~t) and (o) = hy(a™?).
Therefore,
Sab(1) + Sac(t) = Sba(tt) + Sca(pr) and
Sba (1) + Sve(p) = Sap(pt) + seb ()
Note that s4,(1) > 0 by Proposition 5.1. Then,
Sac(t) = 1= sca(pt) > 0= sep(p) =1 = spe(p) > 0= sac(p) = 1.
In particular, sq.(p) > Seq(p), so that
sba () = sap(p) > 0.
By Proposition 6.6 and Proposition 5.1,
seb(f) > 0= sea(p) = 1 and s4c(p) > 0 = spe(p) = 1.
As a result,
Spe(p) = 1= sep(pr) > 0= Sca(t) =1 = Sac(p) > 0= spe(p) = 1.
It follows that
Sac(it) =1 84c(p) > 05 sep(p) >0 sep(p) = 1.

Thus, p2¢ and pc® are Haar almost everywhere by Proposition 5.1.

Now, we can reverse the roles of s.p(1) and sq.(u) and apply the arguments
above to conclude that p2’ is Haar almost everywhere. Note that the inequalities
above also imply that pS® and pb¢ are Haar almost everywhere. This allows us to
conclude that p2® is Haar almost everywhere. ]
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7. THE LOW ENTROPY CASE

We will breifly overview the theorems used in the low entropy case. Let a, b and
¢ be distinct indices and suppose that p2’ is nontrivial almost everywhere but ¢
and p are trivial almost everywhere. We recall from the proof of theorem 6.7 that

Sab(1t) + Sac(pt) = Spa(pt) + Sca(p) and
Sba () + Spe(pr) = sap(1) + sep ().
Then, spa(p) < sap(p), since sqc(p) = 0. Similarly, sap(p) < spa(p), because
Spe(p) = 0. Then,
Sba (1) = San(1)-
Therefore, it suffices to show that p2® is Haar almost everywhere.
We define
'p=1a* € A:t, =t} and
Cuwp = C(< Uap, Upg >) = C(Uab) N C(Uba).
Let K C X be a compact subset. We say that the A/, returns to K are strong
exceptional if there exists 6 > 0 so that for all z,2’ € K and a* € A/, with
7' =atr € Bs(z) N K, every g € B§ with 2’ = g satisfies g € Cyp.
Proposition 7.1. The following two conditions are equivalent.

(1) Almost every ergodic component of j with respect to Al is supported on a
single Cyp-orbit.

(2) For every e > 0, there exists a compact set K with measure u(K) > 1 —¢
so that the AL, -returns to K are strong exceptional.

Proof. See Proposition 4.3 of [4]. O

The main theorem in the low entropy case states that u is Uy, invariant if the
two equivalent conditions in Proposition 7.1 fails.

Theorem 7.2. Suppose that p2® are nontrivial almost everywhere and that '/ are
trivial almost everywhere for every pair of indices (i,7) such that (i,j) # (a,b) and
either i = a or j =b. Then one of the following properties holds.

1) Almost every ergodic component of p with respect to A’, is supported on a
w ab
single Cyp-orbit.
(2) w is Ugp-invariant.

Proof. See Section 4 of [4]. O

Then, we can conclude that p is Uy invariant because there is no element v € I'
that satisfies the conclusion of the following theorem.

Theorem 7.3. Suppose that v is an A!, invariant probability measure on X and
that supp(v) C Capx for some x € X. Then, there exists an element v € T with the
following properties.

(1) 7 is diagonalizable over R.
(2) +1 are not eigenvalues of 7.
(8) ~ has one eigenvalue with multiplicity two and another simple eigenvalue.

Proof. See Theorem 5.1 of [4]. O
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8. FURTHER WORK

We have merely cited some interesting results in this paper, and it will be worth-
while to learn the proofs of these results. The proof of Proposition 5.1 uses the idea
that the conditional measure for foliations into higher dimensional leaves is a prod-
uct of the conditional measures on the one-dimensional leaves considered above
([3]). Deducing Theorem 4.1 from Theorem 5.2 uses results from the theory of
algebraic groups ([4]). The techniques involved in the proof of Theorem 7.2 are
related to the works of Marina Ratner on unipotent flows ([4]).

Moreover, there are other interesting topics in number theory related to the ideas
discussed here; the type of dynamics considered in this paper can also be observed
in the study of automorphic forms and ideal classes in number fields ([12]).
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