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Abstract. This paper introduces some of the results of Morse theory. These

results will be applied to show that every compact, boundaryless, and ori-
entable smooth manifold has the homotopy type of a CW complex. In turn,

this will show how one can compute the Euler characteristic, which is a topo-

logical invariant, using analysis.
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1. Introduction

The version of Poincare-Hopf Index theorem that the writer is familiar with is
as follows:

Theorem 1.1. Suppose that M is a compact, boundaryless and orientable manifold
and that Y is a smooth vector field on M with isolated zeroes. Then,∑

p:Y (p)=0

Ind(Y, p) = χ(M)

In the statement of Theorem 1.1, χ(M) is defined to be the transversal intersec-
tion number between a smooth vector field and the zero section of the manifold.
More explicitly, if

⇀
v is a smooth vector field on M , then

χ(M) = V (M)#O(M)

where
V (x) = (x,

⇀
v (x)) ∈ TM for all x ∈M , and

O(x) = (x, 0) ∈ TM for all x ∈M .
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This intersection number is a homotopy invariant. Since any two vector fields on
M are homotopic by a linear homotopy, χ(M) does not depend on the choice of

the vector field
⇀
v .

In fact, a different definition of χ(M) tells us that the Euler characteristic is
a much tougher invariant; χ(M) is the alternating sum

∑
n∈Z≥0

(−1)nrankHn(M)

where Hn(M) denotes the n-th singular homology group of M . If two spaces have
the same homotopy type, then they have the same homology groups. So, χ(M)
only depends on the homotopy type of the manifold M .

We can see that the first definition of χ(M) is differential while the second
definition of χ(M) is more algebraic. Using some results from Morse theory, we can
establish the equality ∑

n∈Z≥0

(−1)nrankHn(M) = V (M)#O(M)

and connect the two seemingly unrelated formulations of χ(M).

2. Some Terminology

Let M ⊆ Rk be a smooth n-dimensional manifold embedded in an ambient
Euclidean space. For a point q ∈M , a chart at q ∈M is a pair (U, φ) such that U
is an open set in Rn that contains the point q and

φ : U →M

is a diffeomorphism onto its image. For our convenience, we will further require
that 0 ∈ U and φ(0) = q.

Let

f : M → R
be a smooth and real-valued funtion. For a point p ∈M , we say that p is a critical
point of f if the derivative of f : M → R at p is not a submersion. In our particular
case,

Df|p : Tp(M)→ R
must be the zero linear transformation. For the purposes of computation, we can
pick a chart (U, φ) at p and compute

D(f ◦ φ)|0 : Rn → R

Since Dφ maps Rn to Tp(M) bijectively, p is a critical point of f if and only if

D(f ◦ φ) = (0, . . . , 0).

The map

f ◦ φ : U → R
is a smooth and real-valued function defined on an open set U in Rn. The hessian
matrix of f ◦ φ at p is the matrix

H = (Dijf ◦ φ|0)1≤i,j≤n =

D11f ◦ φ|0 . . . D1nf ◦ φ|0
...

. . .
...

Dn1f ◦ φ|0 ... Dnnf ◦ φ|0

 .

Suppose that p ∈M is a critical point of f . Then p is a nondegenerate critical
point of f if the hessian of (f ◦φ) at 0 is an invertible matrix. Lemma 2.2 will show
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that this definition of nondegenerate critical points is independent of the choice of
the chart (U, φ)

We will assume the following result:

Lemma 2.1. Let U ⊆ Rn be an open subset and let f : U → Rm be a C1 function.
For i, j ∈ N such that 1 ≤ i, j ≤ n, if Dijf exists on U and is continuous on U ,
then Djif exists and Dijf|x0

= Djif|xo for any x0 ∈ U .

With notation as above, we write the smooth function f ◦φ as h and the hessian
of f ◦ φ at p as Hp. Then, Hp defines a bilinear form on Rn given by

Hp(v, w) =
(
v1 . . . vn

)D11h|p . . . D1nh|p
...

. . .
...

Dn1h|p . . . Dnnh|p


w1

...
wn

 =

n∑
j=1

n∑
i=1

vjDjih|pwi

where v = (v1, . . . , vn) and w = (w1, . . . , wn) are vectors in Rn.
A homogeneous quadratic form in n-variables, x1, . . . , xn, is a polynomial

of the form
n∑
i=1

n∑
j=1

xibijxj .

We see that each term has degree two and that the polynomial can be written in
the form

XBXT where X = (x1, . . . , xn) and B = (bij)1≤i,j≤n.

In fact, if B is a symmetric matrix then B uniquely determines the quadratic form;
there is a bijection between n × n-symmetric matrices and quadratic forms in n-
variables. In particular, the Hessian matrix Hp can be viewed as a quadratic form
by Lemma 2.2.

We define the index of p to be the maximal dimension of a subspace of Rn such
that Hp is negative definite. More explicitly, the index of p is the dimension of the
maximal subspace S ⊆ Rn such that for any non-zero vector s in S, Hp(s, s) < 0.
The following lemmas show that our definition of the index is independent of the
chart (U, φ).

Lemma 2.2. Suppose that (U1, φ1) and (U2, φ2) are two charts at p. Then there
exists an open neighborhood W of 0 in Rn such that we can define the function

ψ : W → Rn

by
ψ = φ−11 ◦ φ2.

Let H1 and H2 be the hessian matrix of f ◦ φ1 and f ◦ φ2, respectively. Then,

H2 = (Dψ|0)TH1(Dψ|0)

Proof. See page 42 of ”Differential Topology” by Guillemin and Pollack. �

Lemma 2.3. A change of basis replaces a quadratic form with matrix A by a
quadratic form with matrix PTAP , where P is invertible. On the other hand, if P
is an invertible matrix, then a change of a quadratic form represented by the matrix
A to a form represented by the matrix PTAP changes the basis in which we view
the form.

Proof. For the proof of the first statement, see page 268 of ”A Survey of Modern
Algebra” by Birkhoff and Maclane. �
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The two lemmas above tell us that choosing a different chart to compute the
Hessian matrix of a smooth and real-valued function on a manifold amounts to
choosing a different basis for the quadratic form determined by the Hessian matrix.
Hence, what we wish to show is that the dimension of the maximal vector subspace
on which the Hessian is negative definite is invariant under a change of basis.

We will assume the following facts:

Lemma 2.4. By a non-singular linear transformation, any quadratic form that is
not identically zero can be reduced to a form with a nonzero leading coefficient.

Lemma 2.5. By non-singular linear transformations of the variables, a quadratic
form Q can be reduced to a diagonal quadratic form

d1y
2
1 + d2y

2
2 + · · ·+ dry

2
r where di 6= 0 for each i = 1, . . . , r.

Moreover, the number r, which we call the rank, of nonzero diagonal entries is an
invariant of the given form Q.

Theorem 2.6. Any quadratic form Q can be reduced by non-singular linear trans-
formations to a form

Q(ξ) = z21 + · · ·+ z2p − z2p+1 − · · · − z2r .

The proofs of the results above can be found in ”A Survey of Modern Algebra”
by Birkhoff and Maclane.

Proposition 2.7. Let f : M → R be a smooth and real-valued function and let p
be a nondegenerate critical point of f . Then, the index of f at p is well-defined.

Proof. By Lemmas 2.2, 2.3 and Theorem 2.6, there exists a chart (U,ψ) at p such
that the hessian of f ◦ ψ at 0 is a diagonal matrix, the diagonal entries of which
are either 1 or −1. Set H to be the hessian of f ◦ ψ at 0 and λ to be the number
of negative diagonal entries of the Hessian. The maximal dimension of the vector
subspace V ⊆ Rn on which H is negative definite is λ. By definition, λ is the index
of p.

Let (W,φ) be another chart at p. Set H ′ to be the hessian of f ◦ φ at 0 and set
V ′ ⊆ Rn to be the vector subspace of maximal dimension on which the hessian of
f ◦ φ at 0 is negative definite. Suppose for contradiction that V ′ has dimension ρ,
where ρ 6= λ. We can assume without loss of generality that ρ > λ. As ψ and φ are
diffeomorphisms,

f ◦ φ = (f ◦ ψ) ◦ γ
where

γ = ψ−1 ◦ φ.
γ is a diffeomorphism between two open subsets of Rn. By Lemma 2.2,

H ′ = (Dγ|0)T (H)(Dγ|0).

Then, there exists a vector w ∈ Rn such that w ∈ V ′ and Dγ|0(w) /∈ V , but

H(Dγ|0(w), Dγ|0(w)) = H ′(w,w) < 0.

This contradicts the condition that V is the maximal subspace on which H is
negative definite. Therefore, ρ = λ. �

We will call a smooth and real-valued function f : M → R a Morse function
if all of its critical points are nondegenerate.
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3. The Morse lemma

The Morse lemma says that a Morse function f onM can be viewed as a very neat
polynomial in a small neighborhood of its nondegenerate critical point. Although
it is an important lemma, proving this result in this paper will demand too many
pages. Instead, we will state a series of lemmas that will lead to the proof of the
Morse lemma.

Lemma 3.1. Suppose that f : U → R is a smooth function defined on an open
subset, U , of Rn that contains the origin and f(0) = 0.Then, for an open and
convex neighborhood V of the origin that is contained in U ,

f(x1, . . . , xn) =

n∑
i=1

xigi(x1, . . . , xn)

for some suitable smooth functions g1, . . . , gn defined on V such that gi(0) = Dif|0
for each i = 1, . . . , n.

Proof. See Milnor’s ”Morse Theory” for a proof. �

As before, let M be a smooth n-dimensional manifold embedded in some ambient
Euclidean space Rk. Suppose that f : M → R is a Morse function on M , and let
p ∈M be a non-degenerate critical point of f .

Lemma 3.2. Suppose that (U, φ) is a chart at p. Then there exists an open subset
W contained in U such that W contains the origin and

(f ◦ φ)(x1, . . . , xn)− f(p) =

n∑
i=1

n∑
j=1

xihij(x1, . . . , xn)xj

for any x = (x1, . . . , xn) ∈W .The function hij is smooth on W and

hij(0) = Dij(f ◦ φ)|0.

Moreover the matrix (hij(x1, . . . , xn))1≤i,j≤n is symmetric and invertible when eval-
uated at any point x ∈W .

Proof. (Sketch) We can iterate Lemma 3.1 two times so that

(f ◦ φ)(x1, . . . , xn)− f(p) =

n∑
i=1

n∑
j=1

xih
′
ij(x1, . . . , xn)xj .

Let H ′(x) be the matrix whose coefficients are h′ij(x) and let

H(x) = (H ′(x) +H ′(x)T )/2.

We can guarantee the last condition by observing that

n∑
i=1

n∑
j=1

xih
′
ij(x1, . . . , xn)xj =

(
x1 · · · xn

)
H(x)

(
x1 · · · xn

)T

�
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Lemma 3.3. Let U ⊆ Rk be an open subset. Let n be a natural number such that
0 ≤ n < k. Let

g : U → R
be a smooth function such that

g(x1, . . . , xk) =

k∑
i=n

k∑
j=n

xicij(x1, . . . , xn, . . . , xk)xj

where each cij is a smooth function defined on U . Suppose that (cij(0, . . . , 0))n≤i,j≤k
is not the zero matrix and (cij(x1, . . . , xk))n≤i,j≤k is a symmetric matrix when
evaluated at any point (x1, . . . , xk) in U . Then, there exist an open subset W in U
that contains the origin and a diffeomorphism ψ : W → ψ(W ) such that ψ(0) = 0
and

(g ◦ ψ)(x1, . . . , xk) =

k∑
i=n

k∑
j=n

xidij(x1, . . . , xn, . . . , xk)xj

where dij is a smooth function defined on W and dnn(w) 6= 0 for any w ∈W .

Lemma 3.4. There exists a chart (W,ψ) at p such that

(f ◦ ψ)(x1, . . . , xn)− f(p) = d1(x1, . . . , xn) + · · ·+ dn(x1, . . . , xn)

where di(w) 6= 0 for any w ∈W and for any i.

Theorem 3.5. (The Morse lemma)
Let p be a nondegenerate critical point for f . Then there exists a chart (U,ψ) at

p such that

f ◦ ψ(x1, ..., xn) = f(p)− (x1)2 − · · · − (xλ)2 + (xλ+1)2 + · · ·+ (xn)2

for all (x1, . . . , xn) ∈ U , where λ is the index of f at p.

The techniques used for the proofs of Lemmas 3.3, 3.4 and Theorem 3.5 are
adaptations of the proofs of Lemmas 2.4, 2.5 and Theorem 2.6 found in ”A Survey
of Modern Algebra”. Although Milnor’s ”Morse Theory” has a proof of the Morse
lemma that does the job in one go, it may be more manageable to prove the result
one step at a time.

4. Homotopy Type

For this section, we assume that f is a Morse function on M and we let

Ma = f−1(−∞, a] = {q ∈M : f(q) ≤ a}.
We will assume an important theorem:

Theorem 4.1. Let a < b and suppose that f−1[a, b] is a compact set that does
not contain any critical points of f . Then, Ma is diffeomorphic to M b. Moreover,
Ma is a deformation retract of M b so that the inclusion map i : Ma → M b is a
homotopy equivalence.

The proof of this theorem uses the gradient field of f , which we will talk about
in Section 6. The zeroes of the gradient field coincide with the critical points of f .
As a result, the gradient field of f is a smooth vector field on M such that it does
not vanish on the compact set f−1[a, b]. Then, we can view the gradient field as
a smooth assignment of nonzero vectors that are orthogonal to the level sets of f .
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The idea is to ”flow” along these orthogonal vectors so that M b moves to Ma. For
a complete proof, see page 12 of Milnor’s ”Morse Theory”.

Now, we prove one of main results of this paper.

Theorem 4.2. Let f : M → R be a Morse function on M and let c ∈ R be a
critical value of f . Let p be the only critical point in f−1(c) and let λ be the index
of p. Suppose that f−1[c− δ, c+ δ] is a compact set and contains no critical points
of f other than p for some δ > 0. Then, we can find a positive number ε > 0 small
enough such that M c+ε has the homotopy type of M c−ε with a λ-cell eλ attached;
more explicitly, M c+ε has the homotopy type of M c−ε ∪ eλ which is homeomorphic
to M c−ε ∪|∂ψ Dλ, for some attaching map ∂ψ.

During the course of the proof, it will be useful to keep a concrete example handy.
Consider a 2-torus embedded in R3 and consider the height function

f : M → R

on M given by

f(x, y, z) = z.

In the figure below, p is a nondegenerate critical point of index 1.

Proof. The first step of this proof is to show that M c+ε has the homotopy type of
M c−ε and a small region that contains p. To do this, we construct a function F
that takes on values that are smaller than f in a small neighborhood of p and show
that F−1(−∞, c− ε] is a deformation retract of F−1(−∞, c+ ε].

Using the Morse lemma, find a chart (U, φ) at p so that

(f ◦ φ)(x) = c− x21 − · · · − x2λ + x2λ+1 + · · ·+ x2n for each x = (x1, . . . , xn) ∈ U .

Note that the only critical point of f in φ(U) is p, because

D(f ◦ φ)|x =
(
−2x1 · · · −2xλi 2xλi+1 · · · 2xn

)
=
(
0 · · · 0

)
⇔ xi = 0 for all i = 1, . . . , n

for each x ∈ U . Let ε > 0 be a positive number such that

(1) f−1[c− ε, c+ ε] ⊆ f−1[c− δ, c+ δ], and
(2) B = {x ∈ Rn : ‖x‖ ≤ 2ε} ⊆ U .



8 SHIN KIM

By our assumption on f−1[c−δ, c+δ], f−1[c−ε, c+ε] is a compact set that contains
no critical points of f other than p.

Find a smooth function

µ : R→ R

so that

(1) µ(0) > ε,
(2) µ(k)(r) = 0 for all r ≥ 2ε and k ∈ Z≥0, and
(3) −1 < µ′(r) ≤ 0 for all r.

Define a function

F : M → R

by

F = f on M − φ(U), and

(F ◦ φ)(x) = (f ◦ φ)(x)− µ(x21 + · · ·+ x2λ + 2x2λ+1 + · · ·+ 2x2n) for all x ∈ U.

One can show that F is a smooth function.
First, we prove that

F−1(−∞, c+ ε] = f−1(−∞, c+ ε] = M c+ε.

Let W denote the set

W = {x21 + · · ·+ x2λ + 2x2λ+1 + · · ·+ 2x2n < 2ε}

Then, W is an open subset of U that is contained in B. By contstruction, F agrees
with f on the set M − φ(W ). On the other hand, for any x ∈W we see that

(F ◦ φ)(x)

=(f ◦ φ)(x)− µ(x21 + · · ·+ x2λ + 2x2λ+1 + · · ·+ 2x2n)

≤(f ◦ φi)(x)

=c− x21 − · · · − x2λ + x2λ+1 + · · ·+ x2n

≤c+
1

2
[x21 + · · ·+ x2λ + 2x2λ+1 + · · ·+ 2x2n]

≤c+ ε.

The inequalities above imply that φ(W ) is contained in both F−1(−∞, c + ε] and
f−1(−∞, c+ ε]. Therefore, F−1(−∞, c+ ε] = f−1(−∞, c+ ε].

Next, we prove that the critical points of F are the same as those of f . We
only need to concern ourselves with the behavior of F in the open set φ(U) which
contains φ(W ). For convenience, set

g : φ(U)→ R

to be the smooth map given by

(g ◦ φ)(x) = µ(x21 + · · ·+ x2λ + 2x2λ+1 + · · ·+ 2x2n)
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so that F = f − g on φ(U). Then, for all x ∈ U ,

D(F ◦ φ)|x

=D(f ◦ φ)|x −D(g ◦ φ)|x

=
(
−2x1 · · · −2xλi 2xλi+1 · · · 2xn

)
− µ′(g(x)) ◦

(
2x1 · · · 2xλi 4xλi+1 · · · 4xn

)
=
(
−2x1 · · · −2xλi 2xλi+1 · · · 2xn

)
−
(
2µ′(g(x))x1 · · · 2µ′(g(x))xλi 4µ′(g(x))xλi+1 · · · 4µ′(g(x))xn

)
So, for each i = 1, . . . , n, the i-th partial of F is

Di(F ◦ φ)|x =

{
[−2− 2µ′(g(x))]xi if i = 1, . . . , λ

[2− 4µ′(g(x))]xi if i = λ+ 1, . . . , n
.

Because −1 < µ′(r) ≤ 0 for all r ∈ R, −2 − 2µ′(g(x)) < 0 and 2 − 4µ′(g(x)) > 0
for all x ∈ U . Thus,

Di(F ◦ φ)|x = 0⇔ xi = 0 for each i = 1, . . . , n.

It follows that the only critical point of F in φ(U) is φ(0) = p.
Lastly, we show that F−1[c − ε, c + ε] is compact and does not contain any

critical point of F . We know from above that F−1(−∞, c + ε] = f−1(−∞, c + ε].
We also know that F ≤ f on M because µ is a non-negative function. As a result,
f−1(−∞, c− ε] ⊆ F−1(−∞, c− ε] and therefore F−1[c− ε, c+ ε] ⊆ f−1[c− ε, c+ ε].
Then, F−1[c−ε, c+ε] is compact, as it is a closed subset of a compact set. Moreover,
the subset relation also tells us that the only possible critical point of F that
F−1[c− ε, c+ ε] can contain is p. However,

F (p) =(F ◦ φ)(0)

= (f ◦ φ)(0)− (g ◦ φ)(0)

= c− µ(0) < c− ε.

Thus, p /∈ F−1[c− ε, c+ ε] and so F−1[c− ε, c+ ε] cannot contain any critical point
of F .

In the special case of the height function on the 2-torus, the pre-images of F can
be thought of in the following manner:



10 SHIN KIM

The three observations above tell us that F−1[c−ε, c+ε] satisfies the hypotheses
of Theorem 4.1. Thus, F−1(−∞, c− ε] is a deformation retract of M c+ε. Note that
p is contained in the small region F−1(−∞, c− ε]−f−1(−∞, c− ε]. This completes
the first step.

The second step of the proof is to show that M c−ε∪eλ is a deformation retract of
F−1(−∞, c− ε], where eλ is homeomorphic to a λ-dimensional unit disk Dλ ⊆ Rλ.

Let S be the set given by

S = {(u1, . . . , un) ∈ U : u21 + · · ·+ u2λ ≤ ε and uλ+1 = · · · = un = 0}.

We define the λ-cell eλ to be

eλ = φ(S)

Define the map

ψ : Dλ → eλ

by the formula

ψ(x1, . . . , xλ) = φ(

√
ε

λ
x1, . . . ,

√
ε

λ
xλ, 0, . . . , 0)

Since φ is a homeomorphism, ψ is a homeomorphism between Dλ and eλ.
We need to check that eλ is contained in F−1(−∞, c − ε]; if eλ was not con-

tained in F−1(−∞, c− ε], then it would not make sense to say that M c−ε ∪ eλ is a
deformation retract of F−1(−∞, c− ε]. Let q be a point in eλ. Then,

q = φ(x1, . . . , xλ, 0, . . . , 0), where x21 + · · ·+ x2λ ≤ ε.

For convenience, set α = x21 + · · ·+ x2λ. We observe that

F (q) =(F ◦ φ)(x1, . . . , xλ, 0, . . . , 0)

=(f ◦ φ)(x1, . . . , xλ, 0, . . . , 0)− (g ◦ φ)(x1, . . . , xλ, 0, . . . , 0)

=c− α− µ(α).

If α = x21 + · · · + x2λ = 0, then q = p and p is in the set F−1(−∞, c − ε] by
construction. Otherwise, by the Mean Value Theorem, we can write

µ(α)− µ(0) = αµ′(β) for some β ∈ (0, α).

Moving the µ(0) term on the other side and substituting the resulting expression
for µ(α), we get that

F (q) = c− [α+ αµ′(β) + µ(0)]

= c− [α(1 + µ′(β)) + µ(0)]

< c− ε
because 1 + µ′(β) > 0 and µ(0) > ε

Thus, q ∈ F−1(−∞, c− ε]. In particular, we note that for any x ∈ φ−1(eλ)

φ(x1, . . . , xn) ∈M c−ε ⇔ x21 + · · ·+ x2λ = ε.

Let H be the closure in M of F−1(−∞, c − ε] − f−1(∞, c − ε]. We know that
F = f in the region outside H. This implies that

F−1(−∞, c− ε]− f−1(∞, c− ε] ⊆ φ(W ).

Then, H must be contained in φ(B).
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We wish to construct a homotopy

rt : M c−ε ∪H →M c−ε ∪H

such that r1 is the identity, r0 maps F−1(−∞, c− ε] into M c−ε ∪ eλ, and rt is the
identity outside H for all time t. Since H is contained in φ(U), we only need to
concern ourselves with φ(U) to construct the desired homotopy.

For convenience, set

ξ(x) = x21 + · · ·+ x2λ and

η(x) = x2λ+1 + · · ·+ x2n for all x ∈ U

Because H ⊆ φ(U), we can divide H into the three regions φ(R1), φ(R2), and φ(R3)
where R1, R2, and R3 are given by

R1 = {x ∈ φ−1(H) : ξ(x) ≤ ε}
R2 = {x ∈ φ−1(H) : ε ≤ ξ(x) ≤ η(x) + ε}
R3 = {x ∈ φ−1(H) : η(x) + ε ≤ ξ(x)}

To visualize this situation, we return to the case of the 2-torus embedded in R3.
Under the assumption that p is a nondegenerate critical point of index 1,

(f ◦ φ)(x, y) = c− x2 + y2

for all points (x, y) in the open neighborhood U of p.

The λ-cell eλ is given by

eλ = φ({(x, 0) ∈ U : x2 ≤ ε}),

and the regions R1, R2 and R3 are given by

R1 = {(x, y) ∈ φ−1(H) : −
√
ε ≤ x ≤

√
ε}

R2 = {(x, y) ∈ φ−1(H) : x ≤ −
√
ε or x ≥

√
ε} ∩ {(x, y) ∈ φ−1(H) : −x2 + y2 ≥ −ε}

R3 = {(x, y) ∈ φ−1(H) : −x2 + y2 ≤ −ε}.
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To obtain the desired deformation retraction in this particular case, we can
vertically push the region R1 into eλ and the region R2 into (f ◦ φ)−1(c− ε) which
is equal to the set {(x, y) ∈ U : −x2 + y2 = −ε}. We will adapt this idea to
construct the desired homotopy in the general case.

In the region φ(R1) let rt be given by

rt(φ(x)) = (x1, . . . , xλ1
, txλ1+1, . . . , txn) for all x ∈ R1.

We see that r1 is the identity on R1 and r0 maps the region R1 into eλ. The image
of φ(R1) under rt is contained in F−1(−∞, c − ε] because, for any t ∈ [0, 1] and
x ∈ R1,

F (rt(φ(x))) =c− ξ(x) + t2η(x)− µ(ξ(x) + 2t2η(x))

≤c− ξ(x) + η(x)− µ(ξ(x) + 2t2η(x))

because η(x) is non-negative for all x ∈ R1

≤c− ξ(x) + η(x)− µ(ξ(x) + 2η(x))

because µ is a non-increasing function by construction

=F (φ(x)) ≤ c− ε
because x ∈ H.

In the region φ(R2) define rt to be

rt(φ(x)) =

{
(x1, . . . , xλ1 , 0, . . . , 0) if η(x) = 0

(x1, . . . , xλ1 .st(x)xλ1+1, . . . , st(x)xn) otherwise

where st : R2 → R is given by

st(x) = t+ (1− t)

√
ξ(x)− ε
η(x)

.
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With a similar argument as above, we can show that the image of rt lies in
F−1(−∞, c − ε]. We also need to check that rt is continuous when η(x) = 0.
To do this, it suffices to check that

lim
η(x)→0

√
ξ(x)− ε
η(x)

xi = 0 for each i = λ1 + 1, . . . , n.

We observe that

|

√
ξ(x)− ε
η(x)

xi |= |
xi√
η(x)

| · | (ξ(x)− ε) |

≤ | (ξ(x)− ε) | because
√
x2i ≤

√
η(x).

The bounds on the region R2 forces ξ(x) to approach ε as η(x) approaches 0.
Therefore,

lim
η(x)→0

√
ξ(x)− ε
η(x)

xi ≤ lim
η(x)→0

| (ξ(x)− ε) |= 0.

So, rt is continuous on the region φ(R2). By construction, r1 is the identity on
φ(R2). r0 maps φ(R2) into M c−ε because

f(r0(φ(x)) =c− ξ(x) + (s0(x))2η(x)

= c− ξ(x) + ξ(x)− ε
= c− ε for any x ∈ R2.

Note that our definition of rt agree on φ(R1 ∩R2) where

R1 ∩R2 = {x ∈ φ−1(H) : ξ(x) = ε}.
In the region φ(R3), let rt be the identity. Note that our definitions of rt agree

in the regions φ(R2 ∩R3) where

R2 ∩R3 = {x ∈ φ−1(H) : ξ(x) = η(x) + ε}
and that R1 ∩R3 ⊆ R2 ∩R3.

Finally, we need to check that rt is the identity in the regions φ(R1) ∩M c−ε,
φ(R2) ∩M c−ε, and φ(R3) ∩M c−ε. Note that

φ1(R1) ∩M c−ε = φ({x ∈ φ−1(H) : ξ(x) = ε and η(x) = 0}).
So rt is the identity in φ1(R1). Next,

φ(R2) ∪M c−ε = φ({x ∈ φ−1(H) : ξ(x) = η(x) + ε})
and rt is the identity in this region. Lastly, we note that

φ1(R3) ⊆M c−ε,

so there is nothing to check.
Note that

φ−1(H) \R1 = {x ∈ φ−1(H) : ξ(w) > ε},
φ−1(H) \R2 = {x ∈ φ−1(H) : ξ(w) < ε} ∪ {w ∈ φ−1(H) : (ξ − η)(w) > ε}, and

φ−1(H) \R3 = {x ∈ φ−1(H) : (ξ − η)(w) < ε}

are all open sets in φ−1(H) by the continuity of ξ and η. φ−1(H) is a closed set
in Rn because it is a closed subset of B. Then, R1, R2 ,and R3 are closed sets in
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φ−1(H). Hence, φ(R1),φ(R2), and φ(R3) are closed sets contained in H since φ is a
homeomorphism. So, rt is a continuous map on M c−ε ∪H because rt is continuous
when restricted to the closed sets φ(R1),φ(R2),φ(R3), and M c−ε. This finishes the
second step.

For the third and last step, we prove that

M c−ε ∪ eλ

is homeomorphic to

M c−ε ∪∂ψ Dλ

for some attaching map ∂ψ.
Let the continuous map

∂ψ : ∂Dλ → eλ

be given by

∂ψ = ψ|∂Dλ .

As noted above,

eλ ∩M c−ε = ψ(∂Dn)

and

M c−ε ∩ eλ = im(∂ψ).

Consider the commuting diagram below:

M c−ε qDλ

q

��

f

''
M c−ε ∪∂ψ Dλ

f

// M c−ε ∪ eλ

Let the quotient map

q : M c−ε qDλ →M c−ε ∪∂ψ Dλ

be defined in the obvious manner. Define f to be

f(x) =

{
x if x ∈M c−ε

ψ(x) if x ∈ Dλ.

It is true that if A is a compact space, B is a Hausdorff space, and g : A → B
is a contiuous bijection, then g is actually a homeomorphism. We can check that
f is a continuous bijection. The compactness of M implies that M c−ε ∪∂ψ Dλ is a
compact set. Additionally, M c−ε ∪ eλ is a Hausdorff space since it is a subspace of
Rk. Thus, f is a homeomorphism. �

With more bookkeeping, we can use the arguments above to show the following
result:

Theorem 4.3. Let f : M → R be a Morse function on M and c ∈ R be a critical
value of f . Let {p1, . . . , pk} be the set of all nondegenerate critical points in f−1(c)
and let λi be the index of pi. Suppose that f−1[c − δ, c + δ] is a compact set and
contains no critical points of f other than {p1, . . . , pk} for some δ > 0. Then, we
can find a positive number ε > 0 small enough such that M c+ε has the homotopy
type of M c−ε with e1, . . . , ek attached, where each ei is diffeomorphic to the unit
ball in Rλi and ei ∩ ej = ∅ whenever i 6= j.
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5. CW Complexes

A CW complex is a space built in the following manner:

(1) Start with a discrete set X0 ⊆ X and regard the points in X0 as 0-cells.

(2) Build the n-skeleton Xn inductively by attaching n-cells enα to Xn−1.

More explicitly, let Dn
α be n-dimensional unit disks and ∂ϕα : ∂Dn

α → Xn−1

be continuous maps. Let K be the quotient space of the disjoint union

Xn−1 qα Dn
α under the identifications x ∼ ∂ϕα(x) where x ∈ ∂Dn

α.

Then, there is a homeomorphism ψ : K → Xn such that for any x ∈ Xn−1,

ψ([x]) = x. The cell enα is homeomorphic to Dn
α − ∂Dn

α via ψ|(Dnα−∂Dnα).

(3) X = ∪n∈NXn. If X 6= Xm for any m ∈ N, then we require that

A ⊆ X is open (or closed) if and only if A ∩Xn is open (or closed)

in Xn for each n.

From the defintion above, we obtain a map ϕα : Dn
α → X defined to be the

composition Dn
α ↪→ Xn−1 qα Dn

α → Xn ↪→ X. Dn
α ↪→ Xn−1 qα Dn

α is continuous
since if a set A in the latter space is open, then A∩Dn

α is open in Dn
α. Xn−1qαDn

α →
Xn is continous because it is a composition of a homeomorphism and a quotient
map. Xn ↪→ X is continous by condition (3). Therefore ϕα is a continuous map
and we call this map the characteristic map of enα. By following the composition,
we can see that ϕα restricted to the interior of Dn

α is a homeomorphism onto enα.
We will assume some facts about CW complexes.

Proposition 5.1. CW complexes are Hausdorff.

Proof. See page 522 of ”Algebraic Topology” by Hatcher. �

Lemma 5.2. If X is a finite CW complex, then X is compact.

Lemma 5.3. Suppose that X is a finite CW complex and ∂ϕ : ∂Dn → Xn−1 is a
continuous map. Then, X ∪∂ϕ Dn is again a finite CW complex.

Lemma 5.4. Suppose that X is a finite CW complex. Let Dn be an n-dimensional
unit disk, K0 = X ∪∂f0 Dn and K1 = X ∪∂f1 Dn where ∂f0, ∂f1 : ∂Dn → X
are continuous maps. If ∂f0 and ∂f1 are homotopic in X, then X ∪∂f0 Dn and
X ∪∂f1 Dn have the same homotopy type.

Proof. The following proof is from ”On Simply Connected, 4-dimensional Polyhe-
dra” by Whitehead.

Let fi be the map given by the composition Dn ↪→ X q Dn → X ∪∂fi Dn for
i = 1, 2 and let gt : ∂Dn → X be the homotopy between g0 = ∂f0 and g1 = ∂f1.
Define h0 : K0 → K1 such that h0 restricted to X is the identity and

h0(f0(ru)) =

{
f1(2ru) for 0 ≤ 2r ≤ 1, u ∈ ∂Dn

g2−2r(u) for 1 ≤ 2r ≤ 2, u ∈ ∂Dn.

Similarly, define h1 : K1 → K0 such that h1 restricted to X is the identity and

h1(f1(ru)) =

{
f0(2ru) for 0 ≤ 2r ≤ 1, u ∈ ∂Dn

g2r−1(u) for 1 ≤ 2r ≤ 2, u ∈ ∂Dn.
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One can check that h0 and h1 are well-defined and continuous maps.
Since h1 is the identity on X, h1 ◦ h0 : K0 → K0 is given by

h1(h0(x)) = x for x ∈ X

h1(h0(f0(ru))) =


h1(f1(2ru)) = f0(4ru) for 0 ≤ 4r ≤ 1, u ∈ ∂Dn

h1(f1(2ru)) = g4r−1(u) for 1 ≤ 4r ≤ 2, u ∈ ∂Dn

h1(g2−2r(u)) = g2−2r(u) for 1 ≤ 2r ≤ 2, u ∈ ∂Dn.

We define a homotopy ξt from h1 ◦ h0 to the identity by

ξt(x) = x for x ∈ X

ξt(f0(ru))) =


f0((4− 3t)ru) for 0 ≤ r ≤ 1

4−3t , u ∈ ∂D
n

g(4−3t)r−1(u) for 1
4−3t ≤ r ≤

2−t
4−3t , u ∈ ∂D

n

g 1
2 (4−3t)(1−r)

(u) for 2−t
4−3t ≤ r ≤ 1, u ∈ ∂Dn.

Note that ξ0 = h1 ◦ h0 and ξ1 = id as desired. ξt is a well-defined and continuous
function, but we will not check this.

In a similar manner, h0 ◦ h1 : K1 → K1 is given by

h0(h1(x)) = x for x ∈ X

h0(h1(f1(ru))) =


f1(4ru) for 0 ≤ 4r ≤ 1, u ∈ ∂Dn

g2−4r(u) for 1 ≤ 4r ≤ 2, u ∈ ∂Dn

g2r−1(u) for 1 ≤ 2r ≤ 2, u ∈ ∂Dn.

If 1
4−3t ≤ r ≤

2−t
4−3t , then

g1−[(4−3t)r−1](u) =

{
g2−4r(u) if t = 0

g2r−1(u) if t = 1

and if 2−t
4−3t ≤ r ≤ 1, then

g1−[ 12 (4−3t)(1−r)](u) =

{
g2r−1(u) if t = 0

g1(u) if t = 1.

Using this, we can contstruct a homotopy ηt from h0 ◦ h1 to id. �

Lemma 5.5. If a map F : X → Y has a left homotopy inverse L : Y → X and a
right homotopy inverse R : Y → X, then F is a homotopy equivalence and R and
L are 2-sided homotopy inverses.

Proof. Let h1t be a homotopy from L ◦ F to idX and let h2t be a homotopy from
F ◦ R to idY . Then, h1t ◦ R is a homotpy from (L ◦ F ) ◦ R to R, and L ◦ h2t is
a homotopy from L ◦ (F ◦ R) to L. As a result, we obtain a homotpy h3t from R
to L by concatenating the two homotopies h11−t ◦ R and L ◦ h2t . Then, we get the
relation RF ∼= LF ∼= idX by concatenating h3t ◦ F and h1t . Thus, R is a 2-sided
homotopy inverse and F is a homotopy equivalence. We can show that L is a
2-sided homotopy inverse by a similar argument. �

Lemma 5.6. Let X and Y be finite CW complexes and ∂ϕ : ∂Dn → Xn−1 be an
attaching map. Then, any homotopy equivalence f : X → Y extends to a homotopy
equivalence F : X ∪∂ϕ Dn → Y ∪f◦∂ϕ Dn.
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Proof. Define F : X ∪∂ϕ Dn → Y ∪f◦∂ϕ Dn to be

F ([x]) =

{
[f(x)] if x ∈ X
[x] if x ∈ Dn − ∂Dn.

Let g : Y → X be the homotopy inverse of f and define G : Y ∪f◦∂ϕ Dn →
X ∪g◦f◦∂ϕ Dn to be

G([y]) =

{
[g(y)] if y ∈ Y
[y] if y ∈ Dn − ∂Dn.

F and G are well defined and continuous functions.
Let ϕ : Dn → X∪∂ϕDn be the characteristic map associated to Dn in X∪∂ϕDn

so that ϕ|∂Dn = ∂ϕ. Then, the characteristic map associated to Dn in X∪g◦f◦∂ϕDn

is the same as G ◦ F ◦ ϕ. Let ht be the homotopy between g ◦ f and idX . Because
g ◦ f ◦ ∂ϕ is homotopic to ∂ϕ by ht ◦ ∂ϕ, there is a homotopy equivalence

k : X ∪g◦f◦∂ϕ Dn → X ∪∂ϕ Dn

by Lemma 5.4. Moreover, the proof of this lemma gives the following formula for
k:

k(x) = x if x ∈ X

k(G(F (ϕ(ru))) =

{
ϕ(2ru) for 0 ≤ 2r ≤ 1, u ∈ ∂Dn

h2−2r(ϕ(u)) for 1 ≤ 2r ≤ 2, u ∈ ∂Dn.

This formula also defines a map

k ◦G ◦ F : X ∪∂ϕ Dn → X ∪∂ϕ Dn.

Additionally, k ◦G ◦ F is homotopic to the identity by the map

qt : X ∪∂ϕ Dn → X ∪∂ϕ Dn

given by

qt(x) = ht(x) for x ∈ X

qt(ϕ(ru)) =

{
ϕ( 2

1+tru) for 0 ≤ r ≤ 1+t
2 and u ∈ ∂Dn

h2−2r+t(ϕ(u)) for 1+t
2 ≤ r ≤ 1 and u ∈ ∂Dn

qt is well-defined and continuous. So, F has a left homotopy inverse.
Let F ′ : X ∪g◦f◦∂ϕ Dn → Y ∪f◦g◦f◦∂ϕ Dn be a map given by

F ′([x]) =

{
[f(x)] if x ∈ X
[x] if x ∈ Dn − ∂Dn.

The characteristic map associated to Dn in Y ∪f◦∂ϕ Dn and Y ∪f◦g◦f◦∂ϕ Dn are
the same as F ◦ ϕ and F ′ ◦G ◦ F ◦ ϕ, respectively. Let ηt be a homotopy between
f ◦ g and idY . Then, f ◦ g ◦ f ◦ ∂ϕ is homotopic to f ◦ ∂ϕ in Y via ηt ◦ f ◦ ∂ϕ.
Again, by Lemma 5.4, there is a homotopy equivalence

k′ : Y ∪f◦g◦f◦∂ϕ Dn → Y ∪f◦∂ϕ Dn

given by

k′(F ′(G(y))) = f(g(y)) if y ∈ Y

k′(F ′(G(F (ϕ(ru)))) =

{
F (ϕ(2ru)) for 0 ≤ 2r ≤ 1, u ∈ ∂Dn

(h2−2r(F (ϕ(u)))) for 1 ≤ 2r ≤ 2, u ∈ ∂Dn.
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Also, k′ ◦ F ′ ◦G is homotopic to the identity on Y ∪f◦∂ϕ Dn via the homotopy pt
given by

pt(x) = ηt(y) for x ∈ X

pt(ϕ(ru)) =

{
F (ϕ( 2

1+tru)) for 0 ≤ r ≤ 1+t
2 and u ∈ ∂Dn

h2−2r+t(F (ϕ(u))) for 1+t
2 ≤ r ≤ 1 and u ∈ ∂Dn

One can check that k′ ◦ F ′ ◦ G and pt are well-defined and continuous. Hence, G
has a left homotopy inverse.
G◦F is a left homotopy inverse to k. Because k is a homotopy equivalence, it also

has a right inverse, and so G◦F ◦k is also homotopic to the identity by Lemma 5.5.
Then, G has a right homotopy inverse F ◦ k and also has a left homotopy inverse
k′ ◦ F ′. So, F ◦ k is a 2-sided inverse and F ◦ k ◦ G is homotopic to the identity
by Lemma 5.5. Consequently, F has a right homotopy inverse k ◦G. Thus, F is a
homotopy equivalence by Lemma 5.5. �

We will assume the following fact:

Theorem 5.7. Cellular Approximation Theorem
Every map f : X → Y of CW complexes is homotopic to a map f ′ : X → Y

such that f ′(Xn) ⊆ Y n for all n ∈ N.

Proof. See Hatcher p.349 �

We can now prove a remarkable result.

Theorem 5.8. If f is a Morse function on a compact manifold M , then M has
the homotopy type of a finite CW complex with one cell of dimension λ for each
critical point of index λ.

Proof. We will see in the next section that the compactness of M forces the number
of critical points of f to be finite. Then, the number of critical values are also finite
and we can write c0 < · · · < cn for the critical values of f . Note that c0 is the
minimum of f on M so that Ma is empty for a < c0. For a real number a, suppose
that c0 < a < c1 and that there are k critical points p1, . . . , pk in the level set
f−1(c0). Then, by Theorem 4.3, Ma has the homotopy type of qki=1D

λi
i where λi

is the index of pi for each i = 1, . . . , k. So, Ma has the homotopy type of a finite
CW complex.

Now, suppose that j ∈ {1, . . . , n}, cj−1 < a < cj , and Ma has the homotopy type
of a finite CW complex. So, there exists a homotopy equivalence h′ : Ma → K
where K is a CW complex. Let c = cj and choose a positive number δ so that
[c − δ, c + δ] does not contain any other critical values then c. By Theorem 4.3,
there exists a positive number ε so that M c+ε has the homotopy type of M c−ε∪∂φ′1
Dλ1

1 ∪∂φ′2 · · · ∪∂φ′k D
λk
k where ∂φ′1, . . . , ∂φ

′
k are some attaching maps and k is the

number of critical points in f−1(c). Additionally, there is a homotopy equivalence
h : M c−ε →Ma by Theorem 4.1.

Consider the map h′ ◦ h ◦ ∂φ′i : ∂Dλi
i → K for each i = 1, . . . , n. By the Cellular

Approximation Theorem, this map is homotopic to a map ψi : ∂Dλi
i → Kλi−1 that

maps to the λi − 1 skeleton of K. So, K ∪ψ1
Dλ1

1 · · · ∪ψk D
λk
k is again a finite CW

complex by Lemma 5.3. Then, we see that

M c−ε ∪∂φ′1 D
λ1
1 ∪∂φ′2 · · · ∪∂φ′k D

λk
k
∼= K ∪h′◦h◦∂φ′1 D

λ1
1 · · · ∪h′◦h◦∂φ′k D

λk
k
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by Lemma 5.6 and that

K ∪h′◦h◦∂φ′1 D
λ1
1 · · · ∪h′◦h◦∂φ′k D

λk
k
∼= K ∪ψ1

Dλ1
1 · · · ∪ψk D

λk
k

by Lemma 5.4. So, M c+ε has the homotopy type of a finite CW complex.
By induction, M has the homotopy type of a finite CW complex. Moreover, it

has one cell of dimension λ for each critical point of index λ. �

One immediate application of this theorem is that if M is a compact manifold
such that there exists a Morse function on M , then M has the homotopy type of a
CW complex. It is true that there exists a Morse function on any compact manifold
embedded in an ambient Euclidean space; therefore, every embedded and compact
manifold has the homotopy type of a CW complex. Another application of this
theorem, the one that we will focus on for the rest of this paper, is to make the
connection between the Euler characteristic of M and the transversal intersection
number mentioned in the beginning of the paper. Before we do so, however, we
need to derive the explicit formula for the gradient field.

6. The Gradient Field

A smooth vector field
⇀
v on a manifold M is a smooth map

⇀
v : M → Rk

such that
⇀
v (x) ∈ Tx(M) for all x ∈M . Suppose that f is a smooth and real-valued

function defined on M . The gradient field of f , denoted grad(f), is a vector field
on M that satisfies the property

Df|p(w) = grad(f)(p) · w for p ∈M and w ∈ Tp(M).

Just from the definition, it is not clear if grad(f) even exits or if it is smooth.
The explicit fomula for grad(f), however, will imply that grad(f) exists for any
manifold M and is indeed a smooth vector field.

We will assume the following fact:

Proposition 6.1. let V be a finite dimensional vector space. Given any basis
{E1, . . . , En} for V, let ε1, . . . , εn be linear maps

εi : V → R

defined by

εi(Ej) =

{
1 if i = j

0 otherwise

Then, {ε1, . . . , εn} is a basis for V ∗.

For each point x in M , Tx(M) is an n-dimensional vector subspace of Rk. For
each vector w in Tx(M), define a linear map

ψw : Tx(M)→ R

given by the formula

ψw(u) = w · u for any u ∈ Tx(M).

Next, define a R-vector space homomorphism

η : Tx(M)→ Tx(M)∗
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by the formula
η(w) = ψw for each w ∈ Tx(M).

We claim that η defined above is an isomorphism. Indeed, choose a set of vectors
{u1, . . . , un} that forms a basis for Tx(M). By Gram-Schmidt orthogonaliztion, we
can find an orthonormal basis {E1, . . . , En} of Tx(M). We set η(Ei) = εi for each
i = 1, . . . , n. Then ε1, . . . , εn are linear maps from Tx(M) to R that satisfy the
hypothesis of Proposition 6.1. Thus, {ε1, . . . , εn} is a basis for Tx(M)∗ and η is an
isomorphism.

As above, let f be a smooth and real-valued function defined on M . For each
x ∈M ,

Df|x : Tx(M)→ R
is a linear functional defined on the vector subspace Tx(M) contained in Rk. With
notation as above, let

vx = η−1(Df|x) ∈ Tx(M).

By the definition of η,

Df|x(w) = vx · w for any w ∈ Tx(M).

Moreover, the vector vx is uniquely determined for each x ∈ M since η is an
isomorphism. Hence, the gradient field of f exists and is the unique vector field
given by

grad(f)(x) = vx.

It will be useful for us to derive the formula for grad(f) in some open neighbor-
hood of M . Let (U, φ) be a chart at some point in M . Let G(x) be the matrix
given by

G(x) = (Dφ|x)T ◦Dφ|x
for each x ∈ U .

Lemma 6.2. For each x ∈ U , there exists an invertible matrix P (x) such that

P (x)TG(x)P (x) = id.

Proof. (Sketch)
For each x ∈ U , G(x) defines a quadratic form on Rn such that

(z1, . . . , zn)G(x)(z1, . . . , zn)T = (Dφ|x(z1, . . . , zn)) · (Dφ|x(z1, . . . , zn))

for each (z1, . . . , zn) ∈ Rn. Then, G(x) is positive definite on Rn. By Theorem
2.6, there exists an invertible matrix P (x) such that P (x)TG(x)P (x) is a diagonal
matrix with either 1 or −1 in its diagonal entries. This matrix must be the identity
matrix. �

Lemma 6.2 implies that G(x) is an invertible matrix and that det(G(x)) = 1 for
each x ∈ U .

Lemma 6.3. Consider the vector field

φ∗grad(f) : U → Rn

on U , defined by the composition

φ∗grad(f)(x) = Dφ−1|φ(x)(grad(f)(φ(x))).

Then,
(φ∗grad(f)(x)) = D(f ◦ φ)|x(G(x)−1).
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Proof. (Sketch) By the definition of the gradient field and the Chain Rule,

(Dφ|x(φ∗grad(f)(x))) ·Dφ|x(ei) = D(f ◦ φ)|x(ei)

for each i = 1, . . . , n. Set φ∗grad(f)(x) = (v1(x), . . . , vn(x)) for each x ∈ U . The
first equality implies that

D(f ◦ φ)|x(ei) = v1(x)(Dφ|x(e1) ·Dφ|x(ei)) + · · ·+ vn(x)(Dφ|x(en) ·Dφ|x(ei)).

Therefore,

(φ∗grad(f)(x))G(x) = D(f ◦ φ)|x

�

Corollary 6.4. grad(f) is a smooth vector field on M and the zeroes of grad(f)
are precisely the critical points of f .

Proof. (Sketch)
We write the inverse of G(x) as (G(x)−1) = (gij(x))1≤i,j≤n. Then, Cramer’s

rule implies that gij(x) is a smooth function on U . We can use the formula

grad(f)(φ(x)) = Dφ|xD(f ◦ φ)|x(G(x)−1)

to show that grad(f) is a smooth vector field on φ(U) and that the zeroes of grad(f)
on φ(U) are precisely the critical points of f of φ(U). �

7. The Euler Characteristic

Now we return to the problem posed in the introduction. Suppose that M is a

closed and orientable manifold. For a smooth vector field
⇀
v on a manifold M the

map

V : M → TM

is a smooth map given by

V (x) = (x,
⇀
v (x))

where TM = {(x, v) ∈ Rk × Rk : x ∈ M and v ∈ Tx(M)} is the tangent bundle of
M .

Lemma 7.1. The map V : M → T (M) defined above is an immersion.

Proof. (Sketch)
We can show that

DV|p(w) = (w,D
⇀
v |p(w)) for each w ∈ Tp(M).

�

In particular, consider the zero vector field
⇀
o given by

⇀
o (x) = 0 for all x ∈M .

and the associated map O : M → TM given by

O(x) = (x, 0).

Then, O is an immersion by Lemma 7.1.
Additionally, let f be a Morse function on M and consider grad(f), the gradient

field of f on M . We will denote the associated map to be Y . So, the map

Y : M → TM



22 SHIN KIM

is defined to be the smooth map given by

Y (x) = (x, grad(f)(x)).

Y is also an immersion.
We will assume that

Proposition 7.2. the tangent bundle TM of a manifold M is a 2n-dimensional
manifold where n is the dimension of M .

Proof. See page 51 of ”Differential Topology” by Guillemin and Pollack. �

By Proposition 7.2, we get that

dim(M) + dim(M) = dim(TM).

Thus the intersection number Y (M)#O(M) makes rigorous sense.
Note that the intersections of Y (M) and O(M) are precisely the zeroes of the

vector field grad(f). So, the zeroes of a vector field are the objects that require our
attention.

Lemma 7.3. Suppose that p ∈M is a zero of a vector field
⇀
v . Then

D
⇀
v |p : Tp(M)→ Rk

carries Tp(M) into Tp(M).

Proof. (Sketch)
Let (U, φ) be a chart at p. Consider the pulback vector field

φ∗
⇀
v : U → Rn

and write

φ∗
⇀
v (x) =

n∑
i=1

wi(x)ei for all x ∈ U .

We can show that

⇀
v (φ(x)) =

n∑
i=1

wi(x)Diφ|x for all x ∈ U .

The j-th coordinate function of
⇀
v (φ(x)) can be written as

n∑
i=1

wi(x)Di(φj)|x for all x ∈ U.

The r-th partial derivative of the above j-th coordinate function at 0 is

Dr(

n∑
i=1

wiDi(φj))|0 =

n∑
i=1

[Dr(wi)|0Di(φj)|0 + wi(0)Dri(φj)|0]

=

n∑
i=1

Dr(wi)|0Di(φj)|0

because p is a zero of the vector field
⇀
w.

Then,

D(
⇀
v ◦ φ)|0(er) =

n∑
i=1

Dr(wi)|0Di(φ)|0.

�
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A nondegenerate zero of a vector field
⇀
v is a point p ∈M such that

⇀
v (p) = 0

and D
⇀
v |p : Tp(M) → Tp(M) is a bijection. Just by comparing the definitions, a

statement that seems likely to be true is

Lemma 7.4. p is a nondegenerate zero of
⇀
v if and only if V (M) t O(M) at (p, 0).

Proof. Let p ∈M be a nondegenerate zero of the vector field
⇀
v . Note that

DV|p(Tp(M)) = {(r, s) ∈ R2k : r ∈ Tp(M) and s = D
⇀
v |x(r)} and

DO|p(Tp(M)) = {(r, 0) ∈ R2k : r ∈ Tp(M)} = Tp(M)× {0}.

By Lemma 7.1, DV|p(Tp(M)) and DO|p(Tp(M)) are n-dimensional vector subspaces
of T(p,o)(TM).

We claim that

DV|p(Tp(M))⊕DO|p(Tp(M)) = Tp(M)× Tp(M).

Indeed, let (u,w) ∈ Tp(M)×Tp(M). By Lemma 7.3 and the fact that D
⇀
v |p is a bi-

jection, there exists r ∈ Tp(M) such that D
⇀
v |p(r) = w. So, (r, w) ∈ DV|p(Tp(M)).

Additionally, (u− r, 0) ∈ DO|p(Tp(M)) because the vector (u− r) is an element of
Tp(M). Since (r, w) + (u− r, 0) = (u,w),

Tp(M)× Tp(M) ⊆ DV|p(Tp(M)) +DO|p(Tp(M)).

Since the left-hand side is a vector space that has 2n-dimensions, and the right-hand
side has dimension of at most 2n, the claim follows.

The claim also implies that

DV|p(Tp(M))⊕DO|p(Tp(M)) = Tp(M)× Tp(M) = T(p,0)(TM).

By the definition of transversal intersections,

V (M) t O(M) at (p, 0) in TM.

Conversely, suppose that

V (M) t O(M) at (p, 0) ∈ TM , or

DV|p(Tp(M))⊕DO|p(Tp(M)) = T(p,0)(TM).

Then,

DV|p(Tp(M)) ∩DO|p(Tp(M)) = (0, 0), or

DV|p(Tp(M)) ∩ Tp(M)× {0} = (0, 0).

The above observation implies that D
⇀
v |p must be an injection. Since D

⇀
v |p is a

map from Tp(M) into itself by Lemma 7.3, it must also be a bijection. Thus, p is

a nondegenerate zero of
⇀
v . �

Lemma 7.5. Suppose that f is a Morse function on a compact, boundaryless, and
orientable manifold, M . For a point p ∈ M , p is a nondegenerate zero of grad(f)
if and only if p is a nondegenerate critical point of f .

Proof. Suppose that p ∈ M is a critical point of f and let (U, φ) be a chart at p.
For convenience, set

φ∗grad(f)(x) = (v1(x), . . . , vn(x)) for each x ∈ U .
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Let G(x) = DφT|x ◦Dφ|x and write (G(x)−1) = (gij(x))1≤i,j≤n. By Lemma 6.3,

φ∗grad(f)(x) = D(f ◦ φ)|x(G(x)−1).

The j-th coordinate function of φ∗grad(f) at any x ∈ U is given by the formula

vj(x) =

n∑
i=1

Di(f ◦ φ)|xg
ij(x) for each x ∈ U.

Then, the r-th partial derivative of the function vj at 0 is

Dr(vj)|0

=Dr(
n∑
i=1

Di(f ◦ φ)gij)|0

=

n∑
i=1

[Dri(f ◦ φ)|0g
ij(0) +Di(f ◦ φ)|x(Drg

ij)|0]

by the Product Rule.

We note that Di(f ◦ φ)|0 = 0 for each i = 1, . . . , n because φ(0) = p is a critical
point of f . Therefore,

Dr(vj)|0 =

n∑
i=1

Dri(f ◦ φ)|0g
ij(0).

The derivative of φ∗grad(f) at 0, Dφ∗grad(f)|0, is an n-by-n matrix. The entry in
the r-th column and the j-th row of this matrix is Dr(vj)|0. As a result,

Dφ∗grad(f)|0 = ((G(0))−1)T (H(0))T

where H(0) is the Hessian of f ◦ φ at 0.
Additionally, using the identity

Dφ|x(φ∗grad(f)(x)) = grad(f)(φ(x)),

we can write

grad(f)(φ(x)) = (

n∑
i=1

Di(φ1)|xvi(x), . . . ,

n∑
j=1

Di(φk)|xvi(x))

for each x ∈ U .

The j-th coordinate function of grad(f) ◦ φ is given by

n∑
i=1

Di(φj)|xvi(x)
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and the r-th partial derivative of this coordinate function at 0 is

Dr(

n∑
i=1

Di(φj)vi)|0 =

n∑
i=1

[Dri(φj)|0vi(0) +Di(φj)|0Dr(vi)|0]

by the Product Rule

=

n∑
i=1

Di(φj)|0Dr(vi)|0

since vi(0) = 0 for each i = 1, . . . , n as noted above

As a result,
D(grad(f) ◦ φ)|0 = Dφ|0 ◦ (D(φ∗grad(f))|0).

Therefore, by the Chain Rule and the formula for D(φ∗grad(f))|0 above,

D(grad(f))|p = Dφ|0 ◦ (G(0)−1)T ◦H(0)T ◦D(φ−1)|p.

Since ((G(0)−1)T is an invertible matrix, D(grad(f))|p is a bijection onto Tp(M) if
and only if H(0) is invertible. �

By Lemma 7.4 and Lemma 7.5, we deduce that

Y (M) t O(M).

It is true that Y (M) and O(M) are submanifolds of TM because Y and O are
embeddings. So the intersections between Y (M) and O(M) form a compact 0
dimensional submanifold of TM . It follows that Y (M) ∩ O(M) is a finite set of
points. Then, by Corollary 6.4,

Corollary 7.6. the set of critical points of f is finite.

We now compute the oriented intersection number Y (M)#O(M).

Theorem 7.7.
Y (M)#O(M) =

∑
c∈C

(−1)λc

where C is the set of all critical points of f and λc is the index of f at the critical
point c.

Proof. Let (p, 0) ∈ TM be a point of intersection between V (M) and O(M). Using
the Morse lemma, find a chart (U, φ) such that

f ◦ φ(x1, . . . , xn) = f(p)− (x1)2 − · · · − (xλ)2 + (xλ+1)2 + · · ·+ (xn)2

for all (x1, . . . , xn) ∈ U , where λ is the index of f at p.
By Lemma 7.5 and the proof of Lemma 7.4,

T(p,0)(TM) = Tp(M)× Tp(M).

We choose the bases

{D1φ|0 × 0, . . . , Dnφ|0 × 0, 0×D1φ|0, . . . , 0×Dnφ|0} and

{D1φ|0, . . . , Dnφ|0}

as positive bases for the tangent spaces T(p,0)(TM) and Tp(M), respectively. We
know that

DY|p(v) = (v,Dgrad(f)|p(v)) for each v ∈ Tp(M).
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Then,

DY|p(Djφ|0) =DY|p(Dφ|0(ej))

=(Dφ|0(ej), D(grad(f))|p(Dφ|0(ej)))

=(Dφ|0(ej), [Dφ|0 ◦ ((G(0))−1)T ◦H(0)T ◦D(φ−1)|p](Dφ|0(ej)))

from the proof of Lemma 7.5

=(ej , ((G(0))−1)T ◦H(0)T (ej))

in terms of the positively oriented basis

of T(p,0)(T (M)) that we chose above .

The sign of (p, 0) is given by the determinant of the 2n-by-2n matrix whose
columns are the images of the positive basis of Tp(M) under the maps DV|p and
DO|p in terms of the positive basis of T(p,0)(T (M)). Denote this 2n-by-2n matrix
as S. Our calculations show that the two n-by-n upper blocks of S are the identitry
matrices, that the lower-left n-by-n block of S is ((G(0))−1)T ◦ H(0)T , and that
the lower-right n-by-n block of S is the zero matrix.
G(0) has a positive determinant by Lemma 6.2. Also, H(0) is the hessian matrix

of f ◦φ at 0. By the explicit formula for f ◦φ, H(0) is a diagonal matrix of which the
first λ diagonal entries are −2 and the rest are 2. Thus, the sign of the determinant

of the matrix ((G(0))−1)T ◦ H(0)T is (−1)λ and the sign of (p, 0) is (−1)n
2

(−1)λ

because it takes n2 transpositions to switch the left n columns of S with the right n
columns of S. If n is even, the intersection number is the number that we claimed
it would be.

Now, since the intersection number is a homotopy invariant and Y is homotopic
to O, we get that

Y (M)#O(M)

= (−1)n
2

O(M)#Y (M)

= (−1)n
2

Y (M)#O(M).

So, if n is odd, Y (M)#O(M) = 0. �

So far, we see that the number above is a differential invariant of a compact,
boundaryless, and orientable manifold. To make the connection between V (M)#O(M)
and χ(M) as promised in the beginning of this paper, we must figure out how the
number

∑
c∈C(−1)λc relates to the topological properties of M . Indeed, the results

from Section 5 tell us that M has the homotopy type of a CW-complex K and that
K has exactly one cell of dimension λc for each critical point c ∈ C. So,∑

c∈C
(−1)λc =

n∑
i=0

(−1)idi

where di is the number of i-dimensional cells of K. In fact, for the CW-complex
K, it is true that

Theorem 7.8.

χ(K) =

n∑
i=0

(−1)nrankHi(K) =

n∑
i=0

(−1)idi
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where Hi(K) is the i-th singular homology group of K and di is the number of
i-dimensional cells of K.

Proof. See page 146 of Hatcher’s ”Algebraic Topology” for a proof. �

In particular, χ(K) is a homotopy type invariant as it is expressed in terms of
the homology groups of K. Since M and K homotopically equivalent,

Corollary 7.9.
V (M)#O(M) = χ(M)

.

Thus, we have essentially shown that we can compute a homotopy type invariant
of a manifold using differential methods. Moreover, recall that V (M)#O(M) is 0
if M is odd dimensional.

Corollary 7.10. The Euler characteristic of an odd dimensional, boundaryless,
compact and orientable manifold is 0.

This is a standard consequence of Poincare duality, but the proof presented here
does not require any knowledge of that.

8. Further Work

We have talked about how Morse functions imply interesting topological data
of the compact, boundaryless, and orientable manifold on which the function is
defined.

In fact, we can find a Morse function Lp for an arbitrary manifold X. This
function has the special property that L−1p (−∞, a] is a bounded subset of X ⊆ Rk
for each a ∈ R. Using this, we can show that X has the homotopy type of a CW
complex as long as X can be embedded as a closed subset of an ambient Euclidean
space. With this more general notion of Morse theory, we can study the path space
of a Riemannian manifold and make connections between the topology of the path
space and the number of geodesics that the manifold can have. Also, Morse theory
can be applied to Lie groups to prove the famous Bott periodicity theorem. The
proof of these results can be found in the later chapters of Milnor’s book on Morse
Theory.

The idea of Morse theory also has other applications in symplectic geometry and
differential geometry. The subjects that are beyond the scope of this paper, such
as Floer homology, must surely be fascinating.
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