Prof. S. Smith

(Solutions) Friday 5 April 2002

Each problem is worth 25 points. (Some problems with parts indicate subdivision of points). Notation: \mathbf{N} denotes the natural numbers $1, 2, 3, \ldots$; \mathbf{Z} is the integers; \mathbf{R} is the real numbers.

Problem 1:

(a) (10 points) As usual π means 3.1415 Let P denote the statement:

$$(\forall x \in \mathbf{Z}) \ (\exists y \in \mathbf{Z}) \ , \ x + y = \pi.$$

- (i) Use the rules to write out not-P (so quantifiers come first, with "not" later).
 - (i) not-P becomes: $(\exists x \in \mathbf{Z}) \ (\forall y \in \mathbf{Z}), \ x + y \neq \pi.$
- (ii) Which is true, P or not-P? (Why?)
 - (ii) not-P is true; PROOF: Since $x, y \in \mathbf{Z}$, also $x + y \in \mathbf{Z}$; so $x + y \neq \pi$ as $\pi \notin \mathbf{Z}$.
- (b) (15 points: New problem, forget about P above) Prove the new statement:

$$(\forall x \in \mathbf{Z})$$
, $[(\exists y \in \mathbf{Z}, x = 2y) \Rightarrow \text{not-}((\exists z \in \mathbf{Z}), x^2 = 2z + 1)]$.

What does this statement say in the usual language of even and odd integers?

Probably easiest by contradiction:

Given: $[(\exists y), x = 2y]$ and $[(\exists z), x^2 = 2z + 1]$; Goal: contradiction.

PROOF: $4y^2 = x^2 = 2z + 1$, so $1 = 4y^2 - 2z = 2(2y^2 - z)$ is even, contradicting that 1 is odd. In other words, again: "The square of an even integer is even."

Problem 2:

Define $f: \mathbf{R} \to \mathbf{R}$ by the formula f(x) = 5x - 7.

(a) (10 points) Is f injective ? (Why/why not)

Yes. PROOF: If 5x - 7 = 5y - 7, then 5x = 5y, and so x = y.

(b) (10 points) Is f surjective? (Why/why not)

Yes. PROOF: Solve y = 5x - 7 for x; that is, 5x = y + 7 so $x = \frac{y+7}{5}$.

(c) (5 points) Is f invertible? (If not, why not; if so, give f^{-1})

Yes. PROOF: By (a) and (b), f is bijective. By (b), $f^{-1}(x) = \frac{x+7}{5}$.

Problem 3: For sets A, B, and C:

(a) (10 points) Assume that |A| = 3 and |B| = 4.

What is the number |Fun(A, B)| of functions from A to B?

A function $f: A \to B$ can be given as a list of values $(f(a_1), f(a_2), f(a_3))$ where each $f(a_i) \in B$; so the number of choices is $4^3 = 64$.

(b) (15 points) Assume that:

$$|A| = 5$$
, $|B| = 6$, $|C| = 7$; $|A \cap B| = 4$, $|A \cap C| = 3$, $|B \cap C| = 2$; and $|A \cap B \cap C| = 1$. What is $|A \cup B \cup C|$? (Why?)

By inclusion/exclusion, $|A \cup B \cup C| = (5+6+7) - (4+3+2) + 1 = 18 - 9 + 1 = 10$.

My numbers were inconsistent: reverse 4,3,2 to 2,3,4 in order to make the Venn diagram all nonnegative.

Problem 4:

Let M denote the set of 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with coefficients $a,b,c,d \in \mathbf{Z}$.

Show that M is a denumerable set (that is, countably infinite).

(Hint: Give a bijection of M with \mathbf{Z}^m for a suitable m > 1. Then apply known theorems.)

PROOF: The map taking $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ to (a, b, c, d) is a bijection (easy to prove) from M to \mathbf{Z}^4 .

By standard theorems: \mathbf{Z} is denumerable, so the Cartesian product \mathbf{Z}^4 is denumerable; so M is denumerable.