An Invitation to Higher Mathematics

Math 215, Fall Semester, 2001

Solutions to Problems & Exercises Week 1 – August 20-24

1. Construct truth tables for the statements

(i) (not P) or (not Q) Solution:

Р	Q	$(\sim P) \lor (\sim Q)$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

(ii)
$$(\sim P) \land (\sim Q)$$
 Solution:

Р	Q	$(\sim P) \land (\sim Q)$
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

(iii) $A \land (B \lor C)$ Solution:

А	В	С	$(B \lor C)$	$\mathrm{A} \land (\mathrm{B} \lor \mathrm{C})$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	\mathbf{F}	F
F	Т	Т	Т	F
\mathbf{F}	Т	\mathbf{F}	Т	F
\mathbf{F}	F	Т	Т	F
F	F	F	\mathbf{F}	F

(iv)
$$(\sim P) \Longrightarrow Q$$
 Solution:

Р	Q	$(\sim P) \Longrightarrow Q$
Т	Т	Т
Т	\mathbf{F}	Т
\mathbf{F}	Т	Т
F	\mathbf{F}	F

2. Write $(\sim P) \land (\sim Q)$ as an expression using only the operations \sim and \lor . Solution:

$$(\sim P) \land (\sim Q) = \sim \{\sim \{(\sim P) \land (\sim Q)\}\} = \sim \{(\sim \sim P) \lor (\sim \sim Q)\} = \sim \{P \lor Q\}$$

3. (turn in Monday August 27)

Use truth tables to prove that $P \Longrightarrow Q \equiv (\sim Q) \Longrightarrow (\sim P)$. Solution: Compare the two tables

]	5	Q		$P \Longrightarrow Q$	
	۲.	Г	Т		Т	
	r -	Г	F		\mathbf{F}	
]	F	Т		Т	
]	F	F		Т	
Р		0		(~	$\sim Q) \Longrightarrow (\sim P$)
		Š		()
Т		T T		(T)
T T		F			T T T F)
T T F		T F T		(T T F T T T)
T T F F		F F F			T T F T T T T T)

Since the last columns are identical, the two statements are equivalent.

- 4. (i) Give the definition of |a| using logical cases (if a < 0 then ... else ...). Solution: For a real number a, either a > 0, a = 0 or a < 0. If a ≥ 0 then define |a| = a, else if a < 0 then define |a| = -a.
 - (ii) Prove that $|a|^2 = a^2$ for every real number a. *Proof:* For a real number a, either a > 0, a = 0 or a < 0. If $a \ge 0$ then |a| = a, hence $|a|^2 = a^2$. If a < 0 then |a| = -a, hence $|a|^2 = (-a)^2 = a^2$. \Box
- 5. (turn in Monday August 27) Prove that the square of an even integer is even. Proof: An integer n is even means that n = 2p for an integer p. This implies $n^2 = (2p)^2 = 2 \cdot 2p^2$. Thus, n^2 is twice the integer $2p^2$, so is even. \Box
- 6. (turn in Monday August 27) Prove that if a < b and c < d then a + c < b + d. Proof: Use the addition rule of inequalities to obtain $a < b \Longrightarrow a + c < b + c$ $c < d \Longrightarrow c + b < d + b$ Use the transitive rule for inequalities to obtain a + c < b + c = c + b < d + b = b + d. \Box