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7. Prove by contradiction that there do not exist integers m and n such that

14m+ 21n = 100

Proof: We give a proof by contradiction. That is, we assume there exists integers m
and n so that 14m + 21n = 100 and derive from this a contradiction. It will follow that
there cannot exist integers n and m satisfying the equation.

We notice that both 14 and 21 are divisible by 7, while 100 is not. We use this to
obtain a contradiction. Rewrite the LHS of the equation as

14m+ 21n = 7 · 2m+ 7 · 3n = 7 · (2m+ 3n)

So 100 = 14m+ 21n = 7 · (2m+ 3n) where 2m+ 3n is an integer. This shows that 100 is
divisible by 7, which is a contradiction.

8. Prove by contradiction that for any integer n,

n2 is odd =⇒ n is odd

Proof: We will assume that n is an integer such that n2 is odd and n is even, and
derive from this a contradiction. Hence, no such integer n can exist, so for every n we
have n2 odd implies that n is odd.
The assumption n is even implies n = 2p for some integer p.
Then n2 = (2p)2 = 2 · 2p2 where 2p2 is an integer, so n2 is even.
This contradicts the assumption n2 is odd.

9. (turn in Wednesday, September 5)
Prove by contradiction that for any integer n,

n2 is even =⇒ n is even

Hint: An integer n is odd if and only if n = 2q + 1 for some integer q.
Proof: We will assume that n is an integer such that n2 is even and n is odd, and

derive from this a contradiction. Hence, no such integer n can exist, so for every n we have
n2 even implies that n is even.

By the hint, the assumption n is odd implies n = 2q + 1 for some integer q.
Then n2 = (2q + 1)2 = 4q2 + 4q + 1 = 2(2q2 + 2q) + 1 where 2q2 + 2q is an integer.
This shows n2 is odd, contradicting the assumption n2 is even.



10. (turn in Wednesday, September 5)
Prove that, for all real numbers a and b,

|a+ b| ≤ |a|+ |b|

Proof: We consider four cases, corresponding to a and b non-negative or negative.
Case 1. a ≥ 0 and b ≥ 0. Then a+ b ≥ 0 so

|a+ b| = a+ b = |a|+ |b|

Case 2. a ≥ 0 and b < 0. This case has two subcases, a+ b ≥ 0 and a+ b < 0.
If a+ b ≥ 0 then using that b < 0 so b < −b and −b = |b| we have

|a+ b| = a+ b < a− b = |a|+ |b|

If a+ b < 0 then using that −a ≤ 0 so −a ≤ a and −b = |b| we have

|a+ b| = −(a+ b) = −a+−b ≤ a− b = |a|+ |b|

Case 3. a < 0 and b ≥ 0. This case has two subcases, a+ b ≥ 0 and a+ b < 0.
If a+ b ≥ 0 then using that a < 0 so a < −a and −a = |a| we have

|a+ b| = a+ b < −a+ b = |a|+ |b|

If a+ b < 0 then using that −b ≤ 0 so −b ≤ b and −a = |a| we have

|a+ b| = −(a+ b) = −a+−b ≤ −a+ b = |a|+ |b|

Case 4. a < 0 and b < 0. Then a+ b < 0 so

|a+ b| = −(a+ b) = −a− b = |a|+ |b|



11. Prove the following statements concerning positive integers a, b, and c.
(i) (a divides b) and (a divides c) =⇒ a divides (b+ c)
Proof:
a divides b implies b = a · p for some integer p.
a divides c implies c = a · q for some integer q.
This implies b+ c = a · p+ a · q = a(p+ q) where p+ q is an integer.
Thus, a divides b+ c.

(ii) (a divides b) or (a divides c) =⇒ a divides (bc)
Proof: There are two cases, either a divides b or a does not divide b.
In the second case, by assumption we must have a divides c.
Case 1. a divides b implies b = a · p for some integer p.
This implies b · c = (a · p) · c = a · (p · c) where p · c is an integer. Thus, a divides bc.
Case 2. a divides c implies c = a · q for some integer q.
This implies b · c = b · (a · q) = a · (b · q) where b · q is an integer. Thus, a divides bc.

12. Which of the following conditions are necessary for the positive integer n to be divisible
by 6?
Solution: For all of the following questions, we use that 6 divides n implies
n = 6 · p = 2 · 3 · p for some integer p.

(i) 3 divides n. Yes: n = 3 · 2p so must be divisible by 3.

(ii) 9 divides n. No: 2p need not be divisible by 3. For example, take n = 6.

(iii) 12 divides n. No: p need not be divisible by 2. For example, take n = 6.

(iv) n = 12. No: n = 6 is divisible by 6.

(v) 6 divides n2. Yes: n2 = n · n 6 · p · n = 6 · pn.

(vi) 2 divides n and 3 divides n. Yes: n = 2 · 3p = 3 · 2p.

(vii) 2 divides n or 3 divides n. Yes: Both 2 and 3 divide n, so either divides n.

Which of these conditions are sufficient?
Solution: We discuss each case above.
If 3 or 9 divides n this does not imply 2 divides n, so i) and ii) are not sufficient.
If 12 divides n then n = 12 · q = 6 · 2q for an integer q, so iii) is sufficient.
n = 12 implies 6 divides n, so iv) is sufficient.
We consider vi) before v) . 2 divides n implies n = 2 · p. 3 divides n = 2 · p implies p

is divisible by 3, or p = 33 · q, so n = 2 · 3 · q = 6 · q is divisible by 6. So, v) is sufficient.
If 6 divides n2, then both 2 and 3 divide n2. This implies both 2 and 3 divide n, so

by vi) 6 divides n and v) is sufficient.
vii) is not sufficient, as n = 2 is divisible by 2 or 3.



13. (turn in Wednesday, September 5)
Prove by induction on n that, for all positive integers n, n3 − n is divisible by 3.

Proof: We formulate the inductive statement first.

P(n): There exists integer q so that n3 − n = 3 · q.

We prove first the case P(1). For n = 1, n3 − n = 13 − 1 = 0 = 3 · 0.

Next, we assume that P(n) is true, and use this to prove the statement P(n+1). We
calculate the LHS of P(n+1)

(n+ 1)3 − (n+ 1) = n3 + 3n2 + 3n+ 1− n− 1 = (n3 − n) + 3(n2 + n)

Use the inductive hypothesis P(n) to write n3 − n = 3q, then we have

(n+ 1)3 − (n+ 1) = (n3 − n) + 3(n2 + n) = 3q + 3(n2 + n) = 3(q + n2 + n)

where (q+n2 +n) is an integer. This shows (n+ 1)3− (n+ 1) is divisible by 3. So P(n+1)
is also true, which completes the proof of the inductive step.

By the Principle of Induction, it follows that P(n) is true for all integers n ≥ 1.


