An Invitation to Higher Mathematics
Math 215, Fall Semester, 2001

Solutions to Problems & Exercises
Week 2 — August 27-31

7. Prove by contradiction that there do not exist integers m and n such that
14m 4+ 21n = 100

Proof: We give a proof by contradiction. That is, we assume there exists integers m
and n so that 14m + 21n = 100 and derive from this a contradiction. It will follow that
there cannot exist integers n and m satisfying the equation.

We notice that both 14 and 21 are divisible by 7, while 100 is not. We use this to
obtain a contradiction. Rewrite the LHS of the equation as

14m+2ln=T7-2m+7-3n="T-(2m + 3n)

So 100 = 14m + 21n = 7 - (2m + 3n) where 2m + 3n is an integer. This shows that 100 is
divisible by 7, which is a contradiction. O

8. Prove by contradiction that for any integer n,

n? isodd = n isodd

Proof: We will assume that n is an integer such that n? is odd and n is even, and
derive from this a contradiction. Hence, no such integer n can exist, so for every n we
have n? odd implies that n is odd.

The assumption n is even implies n = 2p for some integer p.

2

Then n? = (2p)? = 2 - 2p? where 2p? is an integer, so n? is even.

This contradicts the assumption n? is odd. O

9. (turn in Wednesday, September 5)
Prove by contradiction that for any integer n,

n? iseven =—n is even

Hint: An integer n is odd if and only if n = 2¢ + 1 for some integer gq.

Proof: We will assume that n is an integer such that n? is even and n is odd, and
derive from this a contradiction. Hence, no such integer n can exist, so for every n we have
n? even implies that n is even.

By the hint, the assumption n is odd implies n = 2q 4+ 1 for some integer q.

Then n? = (2¢+ 1)? = 4¢®> + 4g + 1 = 2(2¢® + 2q) + 1 where 2¢* + 2q is an integer.

This shows n? is odd, contradicting the assumption n? is even. [J



10. (turn in Wednesday, September 5)
Prove that, for all real numbers a and b,

o+ 0] <a] + ||

Proof: We consider four cases, corresponding to a and b non-negative or negative.
Casel. a>0and b>0. Thena+b> 0 so

la+bl=a+b=|a|l+ ||

Case 2. a > 0 and b < 0. This case has two subcases, a+b >0 and a + b < 0.
If a + b > 0 then using that b < 0 so b < —b and —b = |b| we have

la+bl=a+b<a—b=|a|+ |b|
If a + b < 0 then using that —a < 0 so —a < a and —b = |b| we have
la+bl=—(a+b)=—a+-b<a—b=|a|+ |b|

Case 3. a < 0 and b > 0. This case has two subcases, a+b >0 and a4+ b < 0.
If a + b > 0 then using that a < 0 so a < —a and —a = |a| we have

la+bl=a+b< —a+b=|a|+ b
If a + b < 0 then using that —b <0 so —b < b and —a = |a| we have
la+bl=—(a+b)=—-a+-b< —a+b=|a|l+ |}
Case 4. a < 0and b< 0. Then a+b <0 so

la+bl=—(a+b)=—a—0b=|a| + |b]



11. Prove the following statements concerning positive integers a, b, and c.
(i) (a divides b) and (a divides ¢) = a divides (b + ¢)
Proof:
a divides b implies b = a - p for some integer p.
a divides ¢ implies ¢ = a - ¢ for some integer gq.
This implies b+ c=a-p+ a-q = a(p+ q) where p + ¢ is an integer.
Thus, a divides b+ ¢. [

(ii) (a divides b) or (a divides ¢) = a divides (bc)

Proof: There are two cases, either a divides b or a does not divide b.

In the second case, by assumption we must have a divides c.

Case 1. a divides b implies b = a - p for some integer p.

This implies b-c=(a-p)-c=a- (p-c) where p- ¢ is an integer. Thus, a divides bc.
Case 2. a divides ¢ implies ¢ = a - ¢ for some integer q.

This implies b-c=b-(a-q) = a-(b-q) where b- ¢ is an integer. Thus, a divides be. [

12. Which of the following conditions are necessary for the positive integer n to be divisible
by 67
Solution: For all of the following questions, we use that 6 divides n implies
n=6-p=2-3-p for some integer p.

(i) 3 divides n. Yes: n = 3-2p so must be divisible by 3.

ii) 9 divides n. No: 2p need not be divisible by 3. For example, take n = 6.
iii) 12 divides n. No: p need not be divisible by 2. For example, take n = 6.
iv) n =12. No: n = 6 is divisible by 6.

v) 6 divides n?. Yes: n>=mn-n6-p-n=6-pn.

vi) 2 divides n and 3 divides n. Yes: n=2-3p =3-2p.
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vii) 2 divides n or 3 divides n. Yes: Both 2 and 3 divide n, so either divides n.

Which of these conditions are sufficient?

Solution: We discuss each case above.

If 3 or 9 divides n this does not imply 2 divides n, so i) and ii) are not sufficient.

If 12 divides n then n = 12 - g = 6 - 2¢q for an integer ¢, so iii) is sufficient.

n = 12 implies 6 divides n, so iv) is sufficient.

We consider vi) before v) . 2 divides n implies n = 2 - p. 3 divides n = 2 - p implies p
is divisible by 3, or p=33-¢q,son=2-3-q =6 ¢ is divisible by 6. So, v) is sufficient.

If 6 divides n?, then both 2 and 3 divide n2. This implies both 2 and 3 divide n, so
by vi) 6 divides n and v) is sufficient.

vii) is not sufficient, as n = 2 is divisible by 2 or 3.

O



13. (turn in Wednesday, September 5)

Prove by induction on n that, for all positive integers n, n?

— n is divisible by 3.
Proof: We formulate the inductive statement first.
P(n): There exists integer ¢ so that n® —n =3 q.
We prove first the case P(1). Forn=1,n3-n=13-1=0=3-0.
Next, we assume that P(n) is true, and use this to prove the statement P(n+1). We
calculate the LHS of P(n+1)
n+1)°—(n+1)=n*+3n*+3n+1-n—1=(n>—n)+3(n*>+n)
Use the inductive hypothesis P(n) to write n® — n = 3¢, then we have

(n+1)> = (n+1) = (n® —n) +3(n* +n) =3¢+ 3(n® + n) = 3(¢ +n® +n)

where (g +n?+n) is an integer. This shows (n+1)3 — (n+ 1) is divisible by 3. So P(n+1)
is also true, which completes the proof of the inductive step.

By the Principle of Induction, it follows that P(n) is true for all integers n > 1. O



