An Invitation to Higher Mathematics

Math 215, Fall Semester, 2001

Solutions to Problems & Exercises Week 5 – September 17–21

19. Prove that

i) $\{x \in \mathbb{R} \mid x^2 + x - 2 = 0\} = \{-2, 1\}$ *Proof:* Set $A = \{x \in \mathbb{R} \mid x^2 + x - 2 = 0\}$ and $B = \{-2, 1\}$. Then $x \in A \iff x \in \mathbb{R} \& x^2 + x - 2 = 0 \iff x \in \mathbb{R} \& (x - 1)(x + 2) = 0$ $\iff x = 1 \text{ or } x = -2 \iff x \in B \square$ ii) $\{x \in \mathbb{R} \mid x^2 + x - 2 < 0\} = (-2, 1)$ *Proof:* Set $A = \{x \in \mathbb{R} \mid x^2 + x - 2 < 0\}$ and B = (-2, 1). Then $x \in A \iff x \in \mathbb{R} \& x^2 + x - 2 < 0 \iff x \in \mathbb{R} \& (x - 1)(x + 2) < 0$ $\iff x \in \mathbb{R} \& ((x - 1) < 0 \& (x + 2) > 0) \text{ or } ((x - 1) > 0 \& (x + 2) < 0)$ $\iff x \in \mathbb{R} \& (x < 1 \& x > -2) \text{ or } (x > 1 \& x < -2)$ $\iff x \in \mathbb{R} \& -2 < x < 1 \iff x \in B \square$

iii) $\{x \in \mathbb{R} \mid x^2 + x - 2 > 0\} = \{x \in \mathbb{R} \mid x < -2\} \cup \{x \in \mathbb{R} \mid x > 1\}$ *Proof:* Set $A = \{x \in \mathbb{R} \mid x^2 + x - 2 > 0\}$ and $B = (-\infty, -2) \cup (1, \infty)$. Then

 $\begin{aligned} x \in A \iff x \in \mathbb{R} \& x^2 + x - 2 > 0 \iff x \in \mathbb{R} \& (x - 1)(x + 2) > 0 \\ \iff x \in \mathbb{R} \& ((x - 1) < 0 \& (x + 2) < 0) \text{ or } ((x - 1) > 0 \& (x + 2) > 0) \end{bmatrix} \\ \iff x \in \mathbb{R} \& (x < 1 \& x < -2) \text{ or } (x > 1 \& x > -2) \\ \iff x \in \mathbb{R} \& (x < -2) \text{ or } (x > 1) \iff x \in B \Box \end{aligned}$

20. Find predicates which determine the following subsets of the set of integers \mathbbm{Z}

i) {3}
Solution: {3} = {x ∈ Z | x = 3} □
ii) {1,2,3}
Solution: {1,2,3} = {x ∈ Z | 0 < x < 4} □
iii) {1,3} (turn in this case on Monday, September 24)
Solution: {1,3} = {x ∈ Z | 0 < x < 4 & x is odd} □
Solution': {1,3} = {x ∈ Z | 0 < x & x is a divisor of 3} □

21. (turn in Monday, September 24)

By using a truth table prove that

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Proof: Make the truth table and compare the last two columns

$x \in A$	$x \in B$	$x \in C$	$x\in B\cup C$	$x \in A \cap (B \cup C)$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	\mathbf{F}	Т	Т	Т
Т	\mathbf{F}	\mathbf{F}	F	F
F	Т	Т	Т	F
F	Т	\mathbf{F}	Т	F
F	\mathbf{F}	Т	Т	F
F	F	\mathbf{F}	${ m F}$	F

$x \in A$	$x \in B$	$x \in C$	$x\in A\cap B$	$x\in A\cap C$	$x \in (A \cap B) \cup (A \cap C)$
Т	Т	Т	Т	Т	Т
Т	Т	\mathbf{F}	Т	\mathbf{F}	Т
Т	F	Т	F	Т	Т
Т	F	\mathbf{F}	F	F	F
F	Т	Т	F	F	F
F	Т	F	F	F	F
F	F	Т	F	F	F
F	F	\mathbf{F}	F	F	F

22. (turn in Monday, September 24) By using a truth table prove that

$$A \subset B \Longleftrightarrow A \cup B = B$$

$x \in A$	$x \in B$	$A \subset B$	$A \cup B$	$A \cup B = B$
Т	Т	Т	Т	Т
Т	\mathbf{F}	\mathbf{F}	Т	F
F	Т	Т	Т	Т
F	F	Т	\mathbf{F}	Т

Compare the third and last columns to see they agree. \Box

23. (turn in Monday, September 24)

Prove by contradiction or otherwise that

$$(A \cap B = A \cap C) \& (A \cup B = A \cup C) \iff B = C$$

Proof: Here is a direct proof.

If B = C then both $A \cap B = A \cap C$ and $A \cup B = A \cup C$ are obvious. Assume that $A \cap B = A \cap C$ and $A \cup B = A \cup C$ are given.

Observe $B = (B - A) \cup (B \cap A)$ and $C = (C - A) \cup (C \cap A)$, so it will suffice to show B - A = C - A. Use the two identities $A \cup B = A \cup (B - A)$ and $A \cup C = A \cup (C - A)$ then calculate

 $B-A=(A\cup (B-A))-A=A\cup B-A=A\cup C-A=(A\cup (C-A))=C-A$

Proof: Here is another proof (by contradiction).

If B = C then both $A \cap B = A \cap C$ and $A \cup B = A \cup C$ are obvious. Suppose that $B \neq C$, then we must show that one of $A \cap B = A \cap C$ or $A \cup B = A \cup C$ is false.

Observe $B = (B - A) \cup (B \cap A)$ and $C = (C - A) \cup (C \cap A)$, so if B - A = C - A and $B \cap A = C \cap A$ then B = C, so one of these must be false. If $B \cap A \neq C \cap A$ then this is what we needed to show. Otherwise, assume $B - A \neq C - A$. Then there are elements of $A \cup B = A \cup (B - A)$ not in $A \cup C = A \cup (C - A)$ so $A \cup B \neq A \cup C$. \Box

24. (turn in Monday, September 24)

Using the fact that an implication is equivalent to its contra-positive, prove that, for subsets of a universal set U,

$$A \subset B \Longleftrightarrow B^c \subset A^c$$

Proof: Let P signify $x \in A$ and Q signify $x \in B$. Then $\sim P$ signifies $x \in A^c$ and $\sim Q$ signifies $x \in B^c$. The statement $A \subset B$ is equivalent to $P \Longrightarrow Q$ The statement $B^c \subset A^c$ is equivalent to $\sim Q \Longrightarrow \sim P$. The equivalence of an implication with its contra-positive

$$(P \Longrightarrow Q) \Longleftrightarrow (\sim Q \Longrightarrow \sim P)$$

is then equivalent to

$$A \subset B \Longleftrightarrow B^c \subset A^c$$

Alternately, we can set up the truth table for the inclusions

$x \in A$	$x \in B$	$A \cup B$	A^c	B^c	$B^c \cup A^c$
Т	Т	Т	\mathbf{F}	\mathbf{F}	Т
Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}
F	Т	Т	Т	F	Т
F	\mathbf{F}	Т	Т	Т	Т

and the third and last columns agree. \square

4